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Abstract

A L'-estimate will be established for cosine series, considering the generalized
Fomin-class F.,, where ¢ is a function more general than the power function
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Let
(1.2) flx) = % + ; @, COS NI.

Many authors ([], [Z], [9] — [15]) have investigated coefficient conditions
guaranteeing thatl(1) is a Fourier series of some functighe L' and they
have given estimates fqf" | f(x)|dx via the sequencéu,, }.

Recently Z. Tomovskil5] proved a theorem of this type by using the class
of coefficients defined by FominJ as follows: a sequencéu,} belongs to
F, (p>1)if ay — 0and

(1.2) Z{%Zmaiv)} < 0.
k i=k

=1
Now we can formulate Z. Tomovski’s resuit):

Theorem 1.1.Let{a,} € F,, 1 < p < 2, then the series](1) is a Fourier
series and the following inequality holds:

(13) /Wlf(x)ldl’écpz:{%zmmp} |
0 =1 k=n

whereC), depends only op.
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Recently we ([]) investigated the properties of classes of numerical se-

guences obtained by using functions more general than the power functions.

Such functions were used first of all in the works of H.P. Mulholla#jdahd M.
Mateljevic and M. Pavlow [2]. The following definition is due to Mateljeti
and Pavlow.

A(q,p) (¢ > p > 0) denotes the family of the nonnegative real functions
¢(z) defined on[0; co) with the following propertiesip(0) = 0, % iS non-
increasing and% is nondecreasing o(D; co). A will denote the set of the
functionsy(z) € A(q, p) for someg > p > 0.

Using this notion in T] we defined the following class: a nullsequereg }
belongs to the clasg,, for somey € A if

(1.4) D7 (% . ¢<|Aak|>> < o0,
n=1 k=n

whereyp is the inverse of the functiop.

The aim of the present paper is to generalize Thedrenusing ,, instead
of 7,, wherep € A. Since our goal is to get a result concerning such functions
asp(z) = z log”(1 4+ =) and not only for functions which are generalizations
of 27 (p > 1), we therefore need to define two subclasseA dllamely we use
the following definitions:A™) denotes the family of functions(z) belonging
to A(q, p) for someg > p > 1 andA®@ is the collection of functiong(z) from
A(q,1) for someq > 1 such that for allA > 0 there existy := p(A) > 1
satisfying the condition tha“f% is nondecreasing oft); A). It is obvious that
A - A
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After giving these definitions we can formulate our result which generalizes
Theoreml.1 (if ¢ € AWM). Furthermore, it contains the case lik¢r) =
x log*(1+z) (a > 0).
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Theorem 2.1.Let{a,} € F, for p € A®. Then the seriesl() is a Fourier
series and the following estimate holds

(2.) [ @i <c, > (%Zwmm)) ,

whereC,, is a constant depending only gn

Remark 2.1. In [3] and [4] L. Leindler investigated a relation among classes
of numerical sequences other thap (see the classes denoteddyy 7, S,(9),
S,(A)) and he proved that all these classes coincide. Laterjmve defined the
classes of sequencss, 7, S,(6), S,(A) exchanging the functiong’ to ¢(z)
and showed that all these classes also coincide. Therefore in Thebidime
classF, can be replaced by any of the above mentioned classes; if\(%.
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Lemma 3.1. ([11]). Let the nullsequencéa, } be of bounded variation and

oo [i/2]

ZZ Aa;_j — Aai+k

=2 k=1

then (L.1) is a Fourier series and the following estimate holds:

o0 7,/2

@) [ wle<c Z|Aak|+z 3 Sk~ B )

=2 | k=1

whereC is some absolute constant.

Lemma 3.2. ([1]). Let {a,} be a nullsequence. Then the following estimate
holds:

> [Z/Q Aa k — Aa k >
(3.2) Z Z i— i+ <C, Z Agm)
=2 k=1 s=1

where

1
) R ol
AP = 5o Z |Aay| , 1l<p<2

k=2s—141
and(, is a constant depending only gn
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Lemma 3.3. ([9]). If @ is increasing then for all sequencés,, } and {b,}
of nonnegative numbers

N (Z?nl aibi) < 2 i Zi\l/(zbi)
Zi:l a; Zi:l a;
holds.

Lemma 3.4.([6]). Let p(z) denote a nonnegative function increasing to infinity
such that%m) is decreasing to zero whenis increasing from zero to infinity.
Furthermore, ifa,, > 0, A\, > 0 for all n, then

> Aup (i— Zm) <G Aap (Z ak) :
n=1 " k=1 n=1 k=n

whereC, depends only on the functionz).

(3.3)

Lemma 3.5. Let b, > 0 for all » and letp be the inverse of the function
o(r) € A®. Then

(3.4)

le(bn) < K- leo (kT ,
where K is a constant depending only gn

Proof. Since 2 is decreasing to zero if — oo, therefore using Lemma.4
and takingo(z) = @(z), b, =n-a,, A\, =1, we get

> Fb) <Kz 7 (Z %’“) ,

k=n
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whence the statement of LemrAabis obtained.
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Proof of Theorem2.1. Lety € A® andb, = ¢(|A a,|). Using LemmaB.5and
that{a,} € F, we have that

Z |Aa,| < K - Z@ (%Z‘POAGRD) < 00,
n=1 n=1 k=n

where K depends only orp. It now follows that the sequencgu,} is of
bounded variation.
Further on, we use the following notations:

28
_ 1
Ag@) = 90{23—1 Z @(\Aak])} ,p>1

k=25-141

(4.1)

denotes a number for Whic{% 7 on(0; A), whereA = sup |Aag|, and byg
k

we denote a number satisfyil‘!?éf—) | (see the definition ap € A®).
Now we will prove that for anyl < p < p/,

@2) S 2AD < 20 Al
s=1 s=1

holds.
Since fory(t) = ¢(t'/?) the function®}” is increasing thus using Lemma

3.3and thatp(21/7z) < 2v(z) we get

. (z |Aakv>> < o3 Dz 21 Aa)

25—1

(4.3) -
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From @.3), taking into account that(cz) < cp(x) if ¢ > 1, we obtain

(4.4) al (Zk 2521S+11|Aak’p)] <9 % <Zk 25— 124;1 ‘f(‘AakD)

Sincep(y(t)) = /7 so from ¢@.4) we have

1
Zk:25*1+1 | Aag|? } :

(4.5) AP = {

9s—1 Generalization of a Result for
Cosine Series on the L! Norm

/_ Zkz 25— 1+1 90<|Aak‘) _ oq/p A (@) Jozsef Németh
From @.5), (4.2) immediately follows. e g
Now we show that Contents

(e ¥ !Aak|>> 14 dd

4.6 2AW) < 4 g

o prarsaye( <1

Since the sequendé = 1 > ©(]Aay|) is monotone decreasing, we obtain Eo 2
Close

n n 28
S s—1= 1 [
D TAY =23 2P <2H 2 w(lAakD) i
s=1 s=1 k=2s—141 Page 11 of 14

2n—1 2n—1

_ (1
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Settingn — oo we have from 4.7) the inequality ¢.6).
Collecting @.1), (4.2), (4.6), using Lemma3.1and Lemma3.2, we get that
(1.2) is a Fourier series an@ () is true. Thus Theorerf.1is proved. O
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