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Abstract

In this paper a new class Sλ
p (α, β) of starlike functions is introduced. A subclass

TSλ
p (α, β) of Sλ

p (α, β) with negative coefficients is also considered. These
classes are based on Ruscheweyh derivatives. Certain neighbourhood results
are obtained. Partial sums fn(z) of functions f(z) in these classes are consid-
ered and sharp lower bounds for the ratios of real part of f(z) to fn(z) and f ′(z)
to f ′n(z) are determined.

2000 Mathematics Subject Classification: 30C45.
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1. Introduction
Let S denote the family of functions of the form

(1.1) f (z) = z +
∞∑

k=2

akz
k

which are analytic in the open unit diskU = {z : |z| < 1}. Also denote byT ,
the subclass ofS consisting of functions of the form

(1.2) f (z) = z −
∞∑

k=2

|ak| zk

which are univalent and normalized inU .
For f ∈ S, and of the form (1.1) and g(z) ∈ S given by g (z) = z +∑∞
k=2 bkz

k, we define the Hadamard product (or convolution)f ∗ g of f andg
by

(1.3) (f ∗ g) (z) = z +
∞∑

k=2

akbkz
k.

For−1 ≤ α < 1 andβ ≥ 0, we letSλ
p (α, β) be the subclass ofS consisting of

functions of the form (1.1) and satisfying the analytic criterion

(1.4) Re

{
z

(
Dλf (z)′

)
Dλf (z)

− α

}
> β

∣∣∣∣∣z
(
Dλf (z)′

)
Dλf (z)

− 1

∣∣∣∣∣ ,
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whereDλ is the Ruscheweyh derivative [6] defined by

Dλf (z) = f (z) ∗ 1

(1− z)λ+1
= z +

∞∑
k=2

Bk (λ) akz
k

and

(1.5) Bk (λ) =
(λ + 1)k−1

(k − 1)!
=

(λ + 1) (λ + 1) · · · (λ + k − 1)

(k − 1)!
, λ ≥ 0.

We also letTSλ
p (α, β) = Sλ

p (α, β) ∩ T. It can be seen that, by specializing
on the parametersα, β, λ the classTSλ

p (α, β) reduces to the classes introduced
and studied by various authors [1, 9, 11, 12].

The main aim of this work is to study coefficient bounds and extreme points
of the general classTSλ

p (α, β). Furthermore, we obtain certain neighbourhoods
results for functions inTSλ

p (α, β) . Partial sumsfn(z) of functionsf (z) in the
classSλ

p (α, β) are considered.
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2. The ClassesSλ
p (α, β) and TSλ

p (α, β)

In this section we obtain a necessary and sufficient condition and extreme points
for functionsf(z) in the classTSλ

p (α, β).

Theorem 2.1. A sufficient condition for a functionf(z) of the form (1.1) to be
in Sλ

p (α, β) is that

(2.1)
∞∑

k=2

[(1 + β) k − (α + β)]

1− α
Bk (λ) |ak| ≤ 1,

−1 ≤ α < 1, β ≥ 0, λ ≥ 0 andBk(λ) is as defined in (1.5).

Proof. It suffices to show that

β

∣∣∣∣∣z
(
Dλf (z)

)′
Dλf (z)

− 1

∣∣∣∣∣− Re

{
z

(
Dλf (z)

)′
Dλf (z)

− 1

}
≤ 1− α.

We have

β

∣∣∣∣∣z
(
Dλf (z)

)′
Dλf (z)

− 1

∣∣∣∣∣− Re

{
z

(
Dλf (z)

)′
Dλf (z)

− 1

}

≤ (1 + β)

∣∣∣∣∣z
(
Dλf (z)

)′
Dλf (z)

− 1

∣∣∣∣∣
≤ (1 + β)

∑∞
k=2 (k − 1) Bk (λ) |ak| |z|k−1

1−
∑∞

k=2 Bk (λ) |ak| |z|k−1
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≤ (1 + β)
∑∞

k=2 (k − 1) Bk (λ) |ak|
1−

∑∞
k=2 Bk (λ) |ak|

.

This last expression is bounded above by1− α if
∞∑

k=2

[(1 + β) k − (α + β)] Bk (λ) |ak| ≤ 1− α,

and the proof is complete.

Now we prove that the above condition is also necessary forf ∈ T .

Theorem 2.2. A necessary and sufficient condition forf of the form (1.2)
namelyf (z) = z −

∑∞
k=2 bkz

k, ak ≥ 0, z ∈ U to be inTSλ
p (α, β) , −1 ≤

α < 1, β ≥ 0, λ ≥ 0 is that

(2.2)
∞∑

k=2

[(1 + β) k − (α + β)] Bk (λ) ak ≤ 1− α.

Proof. In view of Theorem2.1, we need only to prove the necessity. Iff ∈
TSλ

p (α, β) andz is real then

1−
∑∞

k=2 kakBk (λ) zk−1

1−
∑∞

k=2 akBk (λ) zk−1
− α ≥ 1−

∑∞
k=2 (k − 1) akBk (λ) zk−1

1−
∑∞

k=2 akBk (λ) zk−1
.

Letting z → 1 along the real axis, we obtain the desired inequality
∞∑

k=2

[(1 + β) k − (α + β)] Bk (λ) ak ≤ 1− α.
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Theorem 2.3. The extreme points ofTSλ
p (α, β), −1 ≤ α < 1, β ≥ 0 are the

functions given by

(2.3) f1 (z) = 1 and fk (z) = z − 1− α

[(1 + β) k − (α + β)] Bk (λ)
zk,

k = 2, 3, . . . whereλ > −1 andBk(λ) is as defined in (1.5).

Corollary 2.4. A functionf ∈ TSλ
p (α, β) if and only if f may be expressed

as
∑∞

k=1 µkfk (z) whereµk ≥ 0,
∑∞

k=1 µk = 1 andf1, f2, . . . are as defined in
(2.3).
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3. Neighbourhood Results
The concept of neighbourhoods of analytic functions was first introduced by
Goodman [4] and then generalized by Ruscheweyh [5]. In this section we study
neighbourhoods of functions in the familyTSλ

p (α, β).

Definition 3.1. For f ∈ S of the form (1.1) and δ ≥ 0, we defineη − δ-
neighbourhood off by

Mη
δ (f) =

{
g ∈ S : g (z) = z +

∞∑
k=2

bkz
k and

∞∑
k=2

kη+1 |ak − bk| ≤ δ

}
,

whereη is a fixed positive integer.

We may writeMη
δ (f) = Nδ (f) andM1

δ (f) = Mδ (f) [5]. We also notice
thatMδ (f) was defined and studied by Silverman [7] and also by others [2, 3].

We need the following two lemmas to study theη − δ- neighbourhood of
functions inTSλ

p (α, β).

Lemma 3.1. Let m ≥ 0 and−1 ≤ γ < 1. If g(z) = z +
∑∞

k=2 bkz
k satisfies∑∞

k=2 kµ+1
∣∣bk

∣∣ ≤ 1−γ
1+β

theng ∈ Sµ
p (γ, β). The result is sharp.

Proof. In view of the first part of Theorem2.1, it is sufficient to show that

k (1 + β)− (γ + β)

1− γ
Bk (µ) =

kµ+1

(1− γ)
(1 + β) .
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But

k (1 + β)− (γ + β)

1− γ
Bk (µ) =

(k (1 + β)− (γ + β)) (µ + 1) · · · (µ + k − 1)

(1− γ) (k − 1)!

≤ k (1 + β) (µ + 1) (µ + 2) · · · (µ + k − 1)

(1− γ) (k − 1)!
.

Therefore we need to prove that

H(k, µ) =
(µ + 1) (µ + 2) · · · (µ + k − 1)

kµ (k − 1)!
≤ 1.

SinceH(k, µ) = [(µ + 1)/2µ] ≤ 1, we need only to show thatH(k, µ) is a
decreasing function ofk. But H(k + 1, µ) ≤ H(k, µ) is equivalent to(1 +
µ/k) ≤ (1 + 1/k)µ. The result follows because the last inequality holds for all
k ≥ 2.

Lemma 3.2. Let f(z) = z −
∑∞

k=2 akz
k ∈ T, −1 ≤ α < 1, β ≥ 0 andε ≥ 0.

If f(z)+εz
1+ε

∈ TSλ
p (α, β) then

∞∑
k=2

kµ+1ak ≤
2η+1 (1− α) (1 + ε)

(2− α + β) (1 + λ)
,

where eitherη = 0 andλ ≥ 0 or η = 1 and1 ≤ λ ≤ 2. The result is sharp with
the extremal function

f (z) = z − (1− α) (1 + ε)

(2− α + β) (1 + λ)
z2, z ∈ U.
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Proof. Lettingg (z) = f(z)+εz
1+ε

we haveg (z) = z −
∑∞

k=2
ak

1+ε
zk, z ∈ U.

In view of Corollary2.4 g(z), may be written asg (z) =
∑∞

k=1 µkgk (z),
whereµk ≥ 0,

∑∞
k=1 µk = 1,

g1 (z) = z and gk (z) = z − (1− α) (1 + ε)

(k − α + β) Bk (λ)
zk, k = 2, 3, . . . .

Therefore we obtain

g (z) = µ1z +
∞∑

k=2

µk

(
z − (1− α) (1 + ε)

(k − α + β) Bk (λ)
zk

)
= z −

∞∑
k=2

µk

(
(1− α) (1 + ε)

(k − α + β) Bk (λ)

)
zk.

Sinceµk ≥ 0 and
∑∞

k=1 µk ≤ 1, it follows that

∞∑
k=2

kη+1ak ≤ sup
k≥2

kη+1

(
(1− α) (1 + ε)

(k − α + β) Bk (λ)

)
.

The result will follow if we can show thatA (k, η, α, ε, λ) = kη+1(1−α)(1+ε)
(k−α+β)Bk(λ)

is a

decreasing function ofk. In view of Bk+1 (λ) = λ+k
k

Bk (λ) the inequality

A (k + 1, η, α, ε, λ) ≤ A (k, η, α, ε, λ)

is equivalent to

(k + 1)η+1 (k − α + β) ≤ kη (k + 1− α + β) (λ + k) .
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This yields

(3.1) λ (k − α + β) + λ + α− β ≥ 0

wheneverη = 0 andλ ≥ 0 and

(3.2) k [(k + 1) (λ− 1) + (2− λ) (α− β)] + α− β ≥ 0,

wheneverη = 1 and1 ≤ λ ≤ 2. Since (3.1) and (3.2) holds for allk ≥ 2, the
proof is complete.

Theorem 3.3.Suppose eitherη = 0 andλ ≥ 0 or η = 1 and1 ≤ λ ≤ 2.
Let−1 ≤ α < 1, and

−1 ≤ γ <
(2− α + β) (1 + λ)− 2η+1 (1− α) (1 + ε) (1 + β)

(2− α + β) (1 + λ) (1 + β)
.

Letf ∈ T and for all real numbers0 ≤ ε < δ, assumef(z)+εz
1+ε

∈ TSλ
p (α, β) .

Then theη-δ - neighbourhood off , namelyMη
δ (f) ⊂ Sη

p (γ, β) where

δ =
(1− γ) (2− α + β) (1 + λ)− 2η+1 (1− α) (1 + ε) (1 + β)

(2− α + β) (1 + λ) (1 + β)
.

The result is sharp, with the extremal functionf(z) = (1−α)(1+ε)
(2−α+β)(1+λ)

z2.

Proof. For a functionf of the form (1.2), let g(z) = z +
∑∞

k=2 bkz
k be in

Mη
δ (f). In view of Lemma3.2, we have

∞∑
k=2

kη+1 |bk| =
∞∑

k=2

kη+1 |ak − bk − ak|
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≤ δ +
2η+1 (1− α) (1 + ε)

(2− α + β) (1 + λ)
.

Applying Lemma3.1, it follows thatg ∈ Sη
p (γ, β) if δ + 2η+1(1−α)(1+ε)

(2−α+β)(1+λ)
≤ 1−γ

1+β
.

That is, if

δ ≤ (1− γ) (2− α + β) (1 + λ)− 2η+1 (1− α) (1 + ε) (1 + β)

(2− α + β) (1 + λ) (1 + β)
.

This completes the proof.

Remark 3.1. By takingβ = 0 and lettingλ = 0, λ = 1 andη = 0 = ε, we note
that Theorems 1,2,4 in [8] follow immediately from Theorem3.3.
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4. Partial Sums
Following the earlier works by Silverman [8] and Silvia [10] on partial sums of
analytic functions. We consider in this section partial sums of functions in the
classSλ

p (α, β) and obtain sharp lower bounds for the ratios of real part off(z)
to fn(z) andf ′(z) to f ′n(z).

Theorem 4.1. Let f(z) ∈ Sλ
p (α, β) be given by (1.1) and define the partial

sumsf1(z) andfn(z), by

(4.1) f1 (z) = z; and fn (z) = z +
∞∑

k=2

akz
k, (n ∈ N/ {1})

Suppose also that

(4.2)
∞∑

k=2

ck |ak| ≤ 1,

where
(
ck := [(1+β)k−(α+β)]Bk(λ)

1−α

)
. Thenf ∈ Sλ

p (α, β). Furthermore,

(4.3) Re

{
f (z)

fn (z)

}
> 1− 1

cn+1

z ∈ U, n ∈ N

and

(4.4) Re

{
fn (z)

f (z)

}
>

cn+1

1 + cn+1

.
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Proof. It is easily seen thatz ∈ Sλ
p (α, β). Thus from Theorem3.3 and by

hypothesis (4.2), we have

(4.5) N1 (z) ⊂ Sλ
p (α, β) ,

which shows thatf ∈ Sλ
p (α, β) as asserted by Theorem4.1.

Next, for the coefficientsck given by (4.2) it is not difficult to verify that

(4.6) ck+1 > ck > 1.

Therefore we have

(4.7)
n∑

k=2

|ak|+ cn+1

∞∑
k=n+1

|ak| ≤
∞∑

k=2

ck |ak| ≤ 1

by using the hypothesis (4.2).
By setting

g1 (z) = cn+1

{
f (z)

fn (z)
−

(
1− 1

cn+1

)}
(4.8)

= 1 +
cn+1

∑∞
k=n+1 akz

k−1

1 +
∑n

k=2 akzk−1

and applying (4.7), we find that∣∣∣∣g1 (z)− 1

g1 (z) + 1

∣∣∣∣ ≤ cn+1

∑∞
k=n+1 |ak|

2− 2
∑n

k=2 |ak| − cn+1

∑∞
k=n+1 |ak|

(4.9)

≤ 1, z ∈ U,
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which readily yields the assertion (4.3) of Theorem4.1. In order to see that

(4.10) f (z) = z +
zn+1

cn+1

gives sharp result, we observe that forz = reiπ/n that f(z)
fn(z)

= 1 + zn

cn+1
→

1− 1
cn+1

asz → 1−.

Similarly, if we take

g2 (z) = (1 + cn+1)

{
fn (z)

f (z)
− cn+1

1 + cn+1

}
(4.11)

= 1−
(1 + cn+1)

∑∞
k=n+1 akz

k−1

1 +
∑∞

k=2 akzk−1

and making use of (4.7), we can deduce that∣∣∣∣g2 (z)− 1

g2 (z) + 1

∣∣∣∣ ≤ (1 + cn+1)
∑∞

k=n+1 |ak|
2− 2

∑n
k=2 |ak| − (1 + cn+1)

∑∞
k=n+1 |ak|

(4.12)

≤ 1, z ∈ U,

which leads us immediately to the assertion (4.4) of Theorem4.1.
The bound in (4.4) is sharp for eachn ∈ N with the extremal functionf(z)

given by (4.10). The proof of Theorem4.1. is thus complete.

Theorem 4.2. If f(z) of the form (1.1) satisfies the condition (2.1). Then

(4.13) Re

{
f ′ (z)

f ′n (z)

}
≥ 1− n + 1

cn+1

.
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Proof. By setting

g (z) = cn+1

{
f ′ (z)

f ′n (z)
−

(
1− n + 1

cn+1

)}
(4.14)

=
1 + cn+1

n+1

∑∞
k=n+1 kakz

k−1 +
∑∞

k=2 kakz
k−1

1 +
∑n

k=2 kakzk−1

= 1 +

cn+1

n+1

∑∞
k=n+1 kakz

k−1

1 +
∑n

k=2 kakzk−1
,

∣∣∣∣g (z)− 1

g (z) + 1

∣∣∣∣ ≤ cn+1

n+1

∑∞
k=n+1 k |ak|

2− 2
∑n

k=2 k |ak| − cn+1

n+1

∑∞
k=n+1 k |ak|

.

Now
∣∣∣g(z)−1
g(z)+1

∣∣∣ ≤ 1 if

(4.15)
n∑

k=2

k |ak|+
cn+1

n + 1

∞∑
k=n+1

k |ak| ≤ 1

since the left hand side of (4.15) is bounded above by
∑n

k=2 ck |ak| if

(4.16)
n∑

k=2

(ck − k) |ak|+
∞∑

k=n+1

ck −
cn+1

n + 1
k |ak| ≥ 0,

and the proof is complete. The result is sharp for the extremal functionf (z) =
z + zn+1

cn+1
.
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Theorem 4.3. If f(z) of the form (1.1) satisfies the condition (2.1) then

Re

{
f ′n (z)

f ′ (z)

}
≥ cn+1

n + 1 + cn+1

.

Proof. By setting

g (z) = [(n + 1) + cn+1]

{
f ′n (z)

f ′ (z)
− cn+1

n + 1 + cn+1

}
= 1−

(
1 + cn+1

n+1

) ∑∞
k=n+1 kakz

k−1

1 +
∑n

k=2 kakzk−1

and making use of (4.16), we can deduce that∣∣∣∣g (z)− 1

g (z) + 1

∣∣∣∣ ≤
(
1 + cn+1

n+1

) ∑∞
k=n+1 k |ak|

2− 2
∑n

k=2 k |ak| −
(
1 + cn+1

n+1

) ∑∞
k=n+1 k |ak|

≤ 1,

which leads us immediately to the assertion of the Theorem4.3.

Remark 4.1. We note thatβ = 1, and choosingλ = 0, λ = 1 these results
coincide with the results obtained in [13].

http://jipam.vu.edu.au/
mailto:gmsmoorthy@yahoo.com
mailto:gmsmoorthy@yahoo.com
http://jipam.vu.edu.au/


Neighbourhoods and Partial
Sums of Starlike Functions

Based on Ruscheweyh
Derivatives

Thomas Rosy, K.G. Subramanian
and G. Murugusundaramoorthy

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 18 of 19

J. Ineq. Pure and Appl. Math. 4(4) Art. 64, 2003

http://jipam.vu.edu.au

References
[1] O.P. AHUJA, Hadamard product of analytic functions defined by

Ruscheweyh derivatives, inCurrent Topics in Analytic Function Theory,
World Scientific Publishing, River Edge, N.J. (1992), 13–28.

[2] O.P. AHUJAAND M. NUNOKAWA, Neighborhoods of analytic functions
defined by Ruscheweyh derivatives,Math. J., 51(3) (2000), 487–492.

[3] O. ALTINTAS AND S. OWA, Neighborhood of certain analytic functions
with negative coefficients,Inter. J. Math and Math. Sci., 19(4) (1996),
797–800.

[4] A.W. GOODMAN, Univalent function with analytic curves,Proc. Amer.
Math. Soc., 8 (1957), 598–601.

[5] S. RUSCHEWEYH, Neighborhoods of univalent functions,Proc. Amer.
Math. Soc., 81(4) (1981), 521–527.

[6] S. RUSCHEWEYH, New criteria for univalent functions,Proc. Amer.
Math. Soc., 49 (1975), 109–115.

[7] H. SILVERMAN, Neighborhoods of classes of analytic function,Far.
East. J. Math. Sci.,3(2) (1995), 165–169.

[8] H. SILVERMAN, Partial sums of starlike and convex functions,J. Math.
Anal. & Appl., 209(1997), 221–227.

[9] H. SILVERMAN, Univalent function with negative coefficients,Proc.
Amer. Math. Soc., 51 (1975), 109–116

http://jipam.vu.edu.au/
mailto:gmsmoorthy@yahoo.com
mailto:gmsmoorthy@yahoo.com
http://jipam.vu.edu.au/


Neighbourhoods and Partial
Sums of Starlike Functions

Based on Ruscheweyh
Derivatives

Thomas Rosy, K.G. Subramanian
and G. Murugusundaramoorthy

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 19 of 19

J. Ineq. Pure and Appl. Math. 4(4) Art. 64, 2003

http://jipam.vu.edu.au

[10] E.M. SILVIA, Partial sums of convex functions of orderα, Houston J.
Math., 11(3) (1985), 397–404.

[11] K.G. SUBRAMANIAN, T.V. SUDHARSAN, P. BALASUBRAH-
MANYAM AND H. SILVERMAN, Class of uniformly starlike functions,
Publ. Math. Debercen, 53(4) (1998) ,309–315.

[12] K.G. SUBRAMANIAN, G. MURUGUSUNDARAMOORTHY, P. BAL-
ASUBRAHMANYAM AND H. SILVERMAN, Subclasses of uniformly
convex and uniformly starlike functions,Math. Japonica,42(3) (1995),
517–522.

[13] T. ROSY, Studies on subclasses of starlike and convex functions, Ph.D.,
Thesis, Madras University (2001).

http://jipam.vu.edu.au/
mailto:gmsmoorthy@yahoo.com
mailto:gmsmoorthy@yahoo.com
http://jipam.vu.edu.au/

	Introduction
	The Classes Sp( ,)  and TSp( ,) 
	Neighbourhood Results
	Partial Sums

