Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

Volume 6, Issue 5, Article 129, 2005

REVERSES OF THE TRIANGLE INEQUALITY IN BANACH SPACES

S.S. DRAGOMIR

SCcHOOL OF COMPUTER SCIENCE AND MATHEMATICS
VICTORIA UNIVERSITY
PO Box 14428, MCMC 8001
VIC, AUSTRALIA.

sever@csm.vu.edu.au
URL: http://rgmia.vu.edu.au/dragomir

Received 18 April, 2005; accepted 05 July, 2005
Communicated by B. Mond

ABSTRACT. Recent reverses for the discrete generalised triangle inequality and its continuous
version for vector-valued integrals in Banach spaces are surveyed. New results are also obtained.
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1. INTRODUCTION

Thegeneralised triangle inequalitynamely

n n
Yol <>l
i=1 i=1

provided(X, ||.||) is a normed linear space over the real or complex field R, C andx;, i €
{1,...,n} are vectors inX plays a fundamental role in establishing various analytic and geo-
metric properties of such spaces.

With no less importance, th@ntinuousversion of it, i.e.,

(L.1) \ / ) dtH </ )

wheref : [a,b] C R — X is a strongly measurable function on the compact intejuwdi|
with values in the Banach spaégand||f (-)|| is Lebesgue integrable da, 0] , is crucial in the
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2 S.S. RAGOMIR

Analysis of vector-valued functions with countless applications in Functional Analysis, Opera-
tor Theory, Differential Equations, Semigroups Theory and related fields.
Surprisingly enough, the reverses of these, i.e., inequalities of the following type

n n b
S il < || | s
=1 i=1 a

with C' > 1, which we callmultiplicative reversesor
b
[ s

n n
2 llall <||>_ e
i=1 i=1

with M > 0, which we calladditive reversesunder suitable assumptions for the involved
vectors or functions, are far less known in the literature.

It is worth mentioning though, the following reverse of the generalised triangle inequality for
complex numbers

b
, / I ()l di < C

Y

b
Y / 1 (&) dt <

Y

n n
cosGZ\sz < sz
k=1 k=1

provided the complex numbetg, k € {1, ..., n} satisfy the assumption

a—0<arg(z)<a+0, forany k € {1,...,n},
wherea € R andf € (0 ”) was first discovered by M. Petrovich in 19177, [22] (se€ [20, p.

492]) and subsequently vias rediscovered by other authors, including J. Karamata [14, p. 300
— 301], H.S. Wilf [23], and in an equivalent form by M. Marden [18]. Marden and Wilf have
outlined in their work the important fact that reverses of the generalised triangle inequality may
be successfully applied to the location problem for the roots of complex polynomials.

In 1966, J.B. Diaz and F.T. Metcalfl[2] proved the following reverse of the triangle inequality

in the more general case of inner product spaces:

Theorem 1.1(Diaz-Metcalf, 1966) Leta be a unit vector in the inner product spac¥; (-, -))
over the real or complex number fidil Suppose that the vectorse H\ {0},i € {1,...,n}
satisfy

Re (z;, a)

[eal

n
Pyl <
i=1

where equality holds if and only if

0<r< , ie{l,...,n}.

Then

)

n
D
i=1

A generalisation of this result for orthonormal families is incorporated in the following result

[2].

Theorem 1.2(Diaz-Metcalf, 1966) Leta,, ..., a, be orthonormal vectors i/. Suppose the
vectorszy, ..., z, € H\ {0} satisfy
R iy .
0<r, < %Hm ief{l,....n}, ke{l, .. m}.
Ty
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Then

m % n
(z) Sl < 3]
1=1

k=1
where equality holds if and only if

n
2@
i=1

n n m
S - (z uxin) S
=1 =1 k=1

Similar results valid for semi-inner products may be found in [15], [16] and [19].

Now, for the scalar continuous case.

It appears, see [20, p. 492], that the first reverse inequality for (1.1) in the case of complex
valued functions was obtained by J. Karamata in his book from 1949, [14]. It can be stated as

/abf(x)dm

—0 <argf(z) <6, x€a,l

COSQ/b|f(x)|dm§

provided

for givend € (0,%).

This result has recently been extended by the author for the case of Bochner integrable func-
tions with values in a Hilbert spacH. If by L ([a,b]; H), we denote the space of Bochner
integrable functions with values in a Hilbert spdéei.e., we recall thaf € L ([a,b]; H) ifand

only if f : [a,b] — H is strongly measurable dn, b] and the Lebesgue integrﬁj | f (t)] dt is
b
1.2) [ sl <k

finite, then
b
|
provided thatf satisfies the condition
|f (@) < KRe(f(t),e) fora.e.tela,b],
wheree € H, |le]| = 1 andK > 1 are given. The case of equality holds[in {1.2) if and only if

[ = ([usna)-.

The aim of the present paper is to survey some of the recent results concerning multiplicative
and additive reverses for both the discrete and continuous version of the triangle inequalities in
Banach spaces. New results and applications for the important case of Hilbert spaces and for
complex numbers and complex functions have been provided as well.

Y

2. DIAZ-METCALF TYPE INEQUALITIES

In [2], Diaz and Metcalf established the following reverse of the generalised triangle inequal-
ity in real or complex normed linear spaces.

Theorem 2.1 (Diaz-Metcalf, 1966) If FF : X — K, K = R,C is a linear functional of a
unit norm defined on the normed linear spa€eendowed with the norr-|| and the vectors
x1,...,x, satisfy the condition

(2.1) 0<r<ReF(x;), i€{l,...,n};
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then

(2.2) Pyl <
=1

)

n
D
i=1

where equality holds if and only if both

(2.3) F (Z a:) = rz |||

and

(2.4) F (Z :17) =D .
=1 =1
If X = H, (H;(-,-)) is an inner product space arfd(z) = (z,e), |le] = 1, then the
condition [2.1) may be replaced with the simpler assumption
(2.5) 0 <rllz| < Re(x;e), i=1,...,n,

which implies the reverse of the generalised triangle inequality (2.2). In this case the equality
holds in [2.2) if and only ifl[2]

(2.6) le =r (Z Hle> e.

Theorem 2.2 (Diaz-Metcalf, 1966) Let F1, ..., F,, be linear functionals onX, each of unit
norm. As in[2], let consider the real numberdefined by

S |F <x>|2] |

¢ = sup

2
20 |
it then follows thatl < ¢ < m. Suppose the vectors, . .., z, whenever:; # 0, satisfy
(2.7) 0 < ry =l < ReFy (), i=1,...,n, k=1,...,m.

Then one has the following reverse of the generalised triangle ineq(2]lity

1
IHEEARE 3

2.8 = i < i

(2.8) ( ) Sl |3

where equality holds if and only if both

=1 =1

and
n 2 n
=1 =1

(2.10) >
k=1
If X = H,aninner product space, then, fir () = (z, ex) , where{e. },_1; is an orthonor-
mal family in /. i.e., (e;, ¢;) = 6;;, 1,7 € {1,...,k}, &;; is Kronecker delta, the conditioh (2.7)
may be replaced by

(2.11) 0 < rgllz|| < Re(zy,ex), i=1,....n, k=1,...,m;

)

2
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implying the following reverse of the generalised triangle inequality

1
(2.12) (Z r,3> S ol < > @
k=1 i=1 i=1

where the equality holds if and only if

)

m
=1

(2.13) sz = (Z ||$z||> Zﬁc@k-
=1 =1 k
The aim of the following sections is to present recent reverses of the triangle inequality ob-
tained by the author in [5] andl[6]. New results are established for the general case of normed
spaces. Their versions in inner product spaces are analyzed and applications for complex num-
bers are given as well.
For various classical inequalities related to the triangle inequality, see Chapter XVII of the
book [20] and the references therein.

3. INEQUALITIES OF DIAZ-METCALF TYPE FOR m FUNCTIONALS

3.1. The Case of Normed SpacesThe following result may be stated [5].

Theorem 3.1(Dragomir, 2004) Let (X, ||-||) be a normed linear space over the real or complex
number fieldK and £}, : X — K, k£ € {1,...,m} continuous linear functionals oX. If

x; € X\{0},7 € {1,...,n} are such that there exists the constants> 0, & € {1,...,m}
with > |, 7, > 0 and

(3.1) Re Fy (x;) > ry |||
foreachi € {1,...,n}andk € {1,...,m}, then
- Ik Bl ||
3.2) el <SS —— || D_ =i -
; D ket Th ;

The case of equality holds in (8.2) if both

(3.3) (Z Fk> (Z x) = (Z m) e
k=1 =1 k=1 =1

and

(3.4) (Z Fk> (Z x) =
k=1 i=1

Proof. Utilising the hypothesig (3]1) and the properties of the modulus, we have

(32) (557 (52) ().

k=1

i=1 k=1 i=1

m

2B

k=1

n

Z;ll -
1

1=

(3.5) = > [Re

n

m
k=1 i=1
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On the other hand, by the continuity propertyff £ € {1,..., m} we obviously have

Making use of[(3.5) and (3.6), we deduce the desired inequglity (3.2).
Now, if (3.3) and [(3.4) are valid, then, obviously, the case of equality holds true in the in-

equality [3.2).
Conversely, if the case of equality holds[in (3.2), then it must hold in all the inequalities used
to prove [3.2). Therefore we have

(3.7) Re Fy (x;) = ry |||
foreachi € {1,...,n}, ke {l,...,m};

(3.8) ZIka (Z x1> =0
k=1 =1
and
(3.9) > ReF, (Z g;> =D _F
k=1 =1 k=1
Note that, from[(3]7), by summation oveandk, we get

) )] ()5

Since [3.8) and[ (3.10) imply (3.3), while (8.9) and (3.10) imgly [(3.4) hence the theorem is
proved. O

(3.6) = <

n
E ZTill -
i=1

(3.10) Re

Remark 3.2. If the norms||Fy||, k € {1,...,m} are easier to find, then, froth (B.2), one may
get the (coarser) inequality that might be more useful in practice:

n mﬁ F
(3.11) >l < St 10
=1

n

S

=1

Dokt T

3.2. The Case of Inner Product SpacesThe case of inner product spaces, in which we may
provide a simpler condition for equality, is of interest in applications [5].

Theorem 3.3 (Dragomir, 2004) Let (H;(-,-)) be an inner product space over the real or
complex number fiel&K, e, x; € H\{0}, k € {1,...,m}, i € {1,....,n}. If rp > 0,
ke{l,...,m}with"" r, > 0 satisfy

(3.12) Re (x, ex) > i |||
foreachi e {1,... ,n}andk € {1,...,m}, then
- 12y exll ||
(3.13) lzill < S || D_ =i| -
; D ket Th ;

The case of equality holds in (3]13) if and only if

(3.14) ix - % <i H.mH) iek.
1> k=1 exll

i=1 i=1 k=1
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Proof. By the properties of inner product and by (3.12), we have

i (S S

i=1 k=1 k=1

S <z>
ZRe (w;, e) > <Z rk> Z ||| > 0.

Observe also that, b5):;”:1 ex # 0.
On utilising Schwarz’s inequality in the inner product spage (-, -)) for > | x;, > 7" ex,
we have

IIM§ Il

m

S 2

k=1

(3.16)

Yoo [ 2 (B )|

Making use of[(3.15) andl (3.16), we can conclude that {3.13) holds.
Now, if (3.14) holds true, then, by taking the norm, we have

_ () X iH

2

Hkalek“ k=1
Zk ) ZH
TS el &

i.e., the case of equality holds in (3]13).
Conversely, if the case of equality holds jn (3.13), then it must hold in all the inequalities
used to prove (3.13). Therefore, we have

(3.17) Re (i, ex) = ¢ [|24]]

foreachi € {1,...,n} andk € {1,...,m},
=1 k=1
and

> e
(3.19) Im< ” xi,zm:ek> =0.

k=1
From (3.17), on summing oveérandk, we get

820 he <ZZ> - (Z ) S e

=1 k=1 k=1 =1

By (3.19) and[(3.20), we have
(3.21) <Z$“Z > = (i”?) z”: [l

k=1 k=1 i=1

n

D

=1

n

(3.18)
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On the other hand, by the use of the following identity in inner product spaces
2

(3.22) B T T
lv]® v

the relation[(3.18) holds if and only if
- <Z’-L_1xi,2km_1ek> =

(3.23) 7y = ei=l T Sk e
; I35 exll” kz

Finally, on utilising [3.2]1) and (3.23), we deduce that the condifion [3.14) is necessary for the
equality case i (3.13).

Before we give a corollary of the above theorem, we need to state the following lemma that
has been basically obtained in [4]. For the sake of completeness, we provide a short proof here
as well.

Lemma 3.4(Dragomir, 2004) Let(H; (-, -)) be an inner product space over the real or complex
number fieldK andx,a € H, r > 0 such that:

(3.24) |z —al <r<|al.
Then we have the inequality

(3.25) [l (Jlal* = #*)* < Re (z, a)

or, equivalently

(3.26) l[* la]* = [Re (z,a)]* < #* [|=]|*.
The case of equality holds in (3]25) (or jn (3.26)) if and only if
(3.27) |z —al =7 and ||z|]*> +r? = ||a|®.
Proof. From the first part of (3.24), we have

(3.28) Iz||” + ||a]|® — 7* < 2Re (z,a) .

By the second part olf(EM) we ha(l@”2 — 7,2)% > 0, therefore, by|(3.28), we may state that

2
(3.29) o< — 20 (e = )F < 2Re@a)
aj. —r al|*—r
(lal* —r2)? (llafl* = 72)*

Utilising the elementary inequality

1
—q+ap=>2pg, a>0,p>0qg=0;
(6%

with equality if and only ifa = \/g, we may state (fore = (||a|® — )%, p =1, ¢ = ||z
that

1
— A+ (Jal* = )"
(lal? = r2)*

The inequality[(3.25) follows now by (3.29) arjd (3.30).
From the above argument, it is clear that the equality holds in}(3.25) if and only if it holds

in (3.29) and[(3.30). However, the equality holds[in (8.29) if and onljxif- a|| = r and in
3.30) if and only if(|ja||” — r2)* = ||z .
The proof is thus completed. O

(3.30) 2 ||z]| <
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We may now state the following corollary![5].

Corollary 3.5. Let(H;(-,-)) be an inner product space over the real or complex number field
K, er,x; € H\{0}, ke {1,...,m},ie{l,....,n}. fpp, >0,k € {1,...,m} with

(3.31) i = exll < pr < llexll

foreachi e {1,...,n} andk € {1,...,m}, then

n m_ e
(3.32) > llill < — HZ’HZ dl

Sy (lexll” = p3)?
The case of equality holds in (3]32) if and only if

S N e
S (Z” ’”)Z

i=1 i=1

S

=1

Proof. Utilising Lemmg 3.4, we have from (3.31) that

lzill (llexll* = p7)* < Re (@i, ex)
foreachk € {1,...,m}andi € {1,...,n}.
Applying Theoreny 33 for
T = (||ek||2 — pi)E , ked{l,...,m},
we deduce the desired result. O

.....

n

>

=1

(>he HekHQ)E
(3.33) Z”
i=1 Zk 1(Hek|| _Pk:)

with equality if and only if

N|=

1

> Z’“Z(i'i’“” 2<Z|| ||)Zek.

i=1

-----

|z —ex]| < pp forke{l,..., m},ie{l,...,n}
wherep, € [0,1) for k € {1,...,m}, then

>

=1

l\)\»—l

(3.34) >l <
=1

Zk 1(1_Pk

with equality if and only if

Z _E o) (Zm) Y e

The following lemma may be stated as well [3].
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Lemma 3.7(Dragomir, 2004) Let(H; (-, -)) be an inner product space over the real or complex
number fieldK, z,y € H andM > m > 0. If

(3.35) Re (My — x,z — my) >0
or, equivalently,

m —|— M
(3.36) . H Lr—my
then

1 M+m

(3.37) iyl < 3 - Wi Re (z,y) .
The equality holds irf (3.37) if and only if the case of equality holds in[3.35) and
(3.38) ]| = VmM |[y|.

Proof. Obviously,
Re (My — &,z —my) = (M +m)Re (z,y) — |[«|* = mM |ly||*.
Then [3.3%) is clearly equivalent to

||xH2 s _ M+4+m
3.39 +vmM < Re (x,y) .
(3:39) Vinag VM s T Re el
Since, obviously,
[Edl
(3.40) 2 ||z lyll < +vVmM |yl
vmM

with equality iff ||| = v/mM ||y||, hence|(3.39) and (3.40) imply (3137).

The case of equality is obvious and we omit the details. O

Finally, we may state the following corollary of Theorgm|3.3, sée [5].

Corollary 3.8. Let(H;(-,-)) be an inner product space over the real or complex number field
K, ex,z; € H\{0}, k € {1,...,m},i e {1,...,n}. f My > ux >0,k € {1,...,m} are
such that either

(3.41) Re (Myey, — x;, x; — pgeg) >0

or, equivalently,

Mk+uk
. B

foreachk € {1,...,m} andi {1,...,n},then

122k el

Yy 2T e

The case of equality holds in (3]42) if and only if

n

Zx

(3.42) Z [EA=

. Zk 1 QMki]Mk H k”
2= ZH%HZ@«
p 12251 e i1
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Proof. Utilising Lemmd 3.7, by[(3.41) we deduce

2 - /g My,
T a % <R I3
YA lzill llex|] < Re (i, ex)
foreachk € {1,...,m}andi € {1,...,n}.
Applying Theoreny 33 for
2 -/ My,
= ., ke{l,...,m},
o= =P el ke {1 m)
we deduce the desired result. O

4. DIAZ-METCALF INEQUALITY FOR SEMI-INNER PRODUCTS

In 1961, G. Lumer([17] introduced the following concept.

Definition 4.1. Let X be a linear space over the real or complex number ¥el@he mapping
[,-]: X x X — Kiis called asemi-inner producotn X if the following properties are satisfied
(see alsa[3, p. 17]):

(1) [t+y, 2] =[x, 2]+ [y, 2] forall x,y, 2 € X;

(i) [Az,y] = A [z,y] forall z,y € X and\ € K;
(13i) [z,2] > 0forallxz € X and[z,z] = 0 impliesz = 0;
(iv) |l 9] < [z, 2] [y,y] forall z,y € X;

(v) [z, \y] = Az, 9] forall 7,y € X and\ € K.

Itis well known that the mapping > x — [:c,:c}% € RisanormonX and foranyy € X,
the functionalX > = % [z,y] € K is a continuous linear functional ok endowed with the
norm||-|| generated by, -] . Moreover, one haly, || = ||ly|| (see for instance [3, p. 17]).

Let (X, ||-||) be a real or complex normed spaceJIf X — ,X* is thenormalised duality
mappingdefined onX, i.e., we recall that (see for instance [3, p. 1])

J () ={p € X7p () = llelllzll, llell = =}, =€ X,

then we may state the following representation result (see for instance [3, p. 18]):
Each semi-inner produdt, ] : X x X — K that generates the norift|| of the normed
linear space( X, ||-||) over the real or complex number fiekl is of the form

5] = (J(y),x) forany z,y€ X,

where.J is a selection of the normalised duality mapping dndzx) := ¢ (z) for p € X* and
r e X.

Utilising the concept of semi-inner products, we can state the following particular case of the
Diaz-Metcalf inequality.

Corollary 4.1. Let(X, ||-||) be a normed linear spaceg, -] : X x X — K a semi-inner product
generating the nornj-|| ande € X, |le|| = 1. If z; € X, i € {1,...,n} andr > 0 such that

4.1) r|lz;|| < Relz;,e] foreach: e {1,...,n},

then we have the inequality

(4.2) ry ] <
=1

n
2@
i=1
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The case of equality holds in (4.2) if and only if both

(4.3) S miel =rY |
Li=1 J i=1

and

(4.4) ixi,e = ixz .
Li=1 i i=1

The proof is obvious from the Diaz-Metcalf theorem [2, Theorem 3] applied for the continu-
ous linear functionaF, (z) = [z,¢|, x € X.

Before we provide a simpler necessary and sufficient condition of equallty in (4.2), we need
to recall the concept of strictly convex normed spaces and a classical characterisation of these
spaces.

Definition 4.2. A normed linear spacéX, ||-||) is said to be strictly convex if for every, y
from X with z # y and||z|| = ||y|| = 1, we have||Az + (1 — \) y|| < 1 forall A € (0,1).

The following characterisation of strictly convex spaces is useful in what follows [(See [1],
[13], or [3, p. 21]).

Theorem 4.2. Let (X, ||-]|) be a normed linear space ové& and |-, -] a semi-inner product
generating its norm. The following statements are equivalent:

(7) (X, ||-||) is strictly convex;
(17) For everyz,y € X, x,y # 0 with [z,y] = ||z|||ly|l, there exists a > 0 such that
= M\y.

The following result may be stated.

Corollary 4.3. Let(X, ||-||) be a strictly convex normed linear spa¢e;] a semi-inner product
generating the norm ane, z; (i € {1,...,n}) as in Corollary[4.1. Then the case of equality
holds in [4.2) if and only if

(4.5) Z% =T <Z ||$z||) €.

Proof. If (¢.5) holds true, then, obviously

n n n
S (z uxiu) el =3 il
=1 =1 =1

which is the equality case i (4.2).
Conversely, if the equality holds if (4.2), then by Corollary 4.1, we have[that (4.3) and (4.4)
hold true. Utilising Theorerpn 4]2, we conclude that there exigts-a0 such that

=1
Inserting this in[(4.3) we get

n
2
pllel* =7 llaill
i=1

J. Inequal. Pure and Appl. Math6(5) Art. 129, 2005 http://jipam.vu.edu.au/
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giving
(4.7) p=ry .
=1
Finally, by (4.6) and[(4]7) we dedude (4.5) and the corollary is proved. O

5. OTHER MULTIPLICATIVE REVERSES FORm FUNCTIONALS

Assume thaty, k € {1,..., m} are bounded linear functionals defined on the normed linear
spaceX.
Forp € [1, 00), define

(¢p) Cp 1= Sup
z#0

{z;"_l |Fi <x>r”] z

"

and forp = oo,

(o) Coo = SUP { max { | ()] H )
z0 [15k=m | |z

Then, by the fact thatF, (z)| < ||Fx|| ||«| for anyz € X, where||Fy|| is the norm of the
functional F},, we have that

1
m P
cﬁ(ZHFknp) , p21
k=1

and

Coo < max || Fl -
1<k<m

We may now state and prove a new reverse inequality for the generalised triangle inequality
in normed linear spaces.

Theorem5.1.Letx;, ry, Fr, k € {1,...,m},i € {1,...,n} be asin the hypothesis of Theorem
[3.1. Then we have the inequalities

max || F;
(5.1) (1<) > iy Izl < Coo e | Fl
. < = < -
Il ™, e\ e,

The case of equality holds in (5.1) if and only if

(5.2) Re | F, (Z xl)] = rkZ |z;|| foreachk e {1,...,m}
=1 =1

and

(5.3) lrér}gag};lRe E (2 x,)] = Cso X;xz

Proof. Since, by the definition of,, we have

>
Coo [l2ll 2 max [Fy (2)], forany z € X,
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then we can state, far=>"" | ;, that

(5.4) Coo le 1%221 (Z xl> 1r<r}€agn Re F}, (Z a:Z) ]
> 12}2571 ReZ;Fk (x;)| = 1I<r}€a<>;:n ZReFk x;)

Utilising the hypothesig (3]1) we obviously have

ZReFk ()| > max. {Tk} ZH%H

Also, " | z; # 0, because, by the initial assumptions, notr@lhndxi with £ € {1,...,m}
andi € {1,...,n} are allowed to be zero. Hence the desired inequality (5.1) is obtained.
Now, if (5.2) is valid, then, taking the maximum over {1, ...,m} in this equality we get

which, together with[(5]3) provides the equality cas (5.1).

Now, if the equality holds in[(5]1), it must hold in all the inequalities used to priove (5.1),
therefore, we have

(5.5) Re Fy, (z;) = ri||z;|| foreachie {1,...,n} and ke {1,...,m}
and, from|[(5.4),

=1
which is [5.3).

From [5.5), on summing overe {1,...,n}, we get[(5.2), and the theorem is proved.

max
1<k<m

max Re

1<k<m ’

= max Re
1<k<m

Coo

n
D
i=1

The following result in normed spaces also holds.

Theorem5.2.Letx;, ry, Fy, k € {1,...,m},i € {1,...,n} be asinthe hypothesis of Theorem
[3.1. Then we have the inequality

iz 1l Cp ( D ke 1||Fk||p)
1> 1$z|| O, )P T

(5.6) (1<)

wherep > 1.
The case of equality holds in (.6) if and only if

(5.7) F, (Z xl>] =r, Y _|lzil| foreachk e {1,...,m}
=1 i=1
and
n p
(5.8) Z Re F}, (Z xz>] =c sz
k=1 =1

Proof. By the definition ofc,, p > 1, we have

&z’ =Y |F ()l foranyz € X,
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p m n
k=1 =1
k=1 i=1

Utilising the hypothesig (3]1), we obviously have that

5.10) > ZZ[ZTH\%H] 227"53( H%H) :
k=1 Li=1 k=1 =1

k=1

Making use of[(5.9) and (5.10), we deduce

S5 5

which implies the desired inequality (5.6).
If (6.7) holds true, then, taking the powerand summing ovet € {1,...,m}, we deduce

- e ()] S (Se).

k=1
which, together with[(5]8) shows that the equality case holds trdie in (5.6).
Conversely, if the case of equality holds [in {5.6), then it must hold in all inequalities needed
to prove [5.6), therefore, we must have:

(5.11) Re Fy (x;) = i ||x;|| foreachi e {1,...,n} andk € {1,...,m}
and, from|[(5.9),

implying that

p p

n

PE
i=1

NE

(5.9) & >

Re F}, (i xz>
i=1

> Re Fy (x:)

=1

1

i

m p

-3

k=1

n

1

%

Re

n p m n p
i=1 k=1 =1

which is exactly[(5.B).
From (5.11), on summing oveéfrom 1 to n, we deduce (5]7), and the theorem is proved!

6. AN ADDITIVE REVERSE FOR THE TRIANGLE INEQUALITY

6.1. The Case of One Functional.In the following we provide an alternative of the Diaz-
Metcalf reverse of the generalised triangle inequality [6].

Theorem 6.1(Dragomir, 2004) Let (X, ||-||) be a normed linear space over the real or complex
number fieldK and F : X — K a linear functional with the property thaf’ (z)| < ||z|| for
anyr € X. Ifz; € X, k; > 0,7 € {1,...,n} are such that

(6.1) (0 <) ||zi|]| — Re F (z;) < k; foreachi e {1,...,n},
then we have the inequality
(6.2) (0<) Z @il — sz < Zkz

=1 i=1 =1

The equality holds irf (6]2) if and only if both

J. Inequal. Pure and Appl. Math6(5) Art. 129, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

16 S.S. RAGOMIR

Proof. If we sum in [6.1) ovei from 1 to n, then we get

i=1 =1

Taking into account thgdf” (z)| < ||z|| for eachz € X, then we may state that

(S| = per (3

“Jr(5)

Now, making use of (6]4) anfl (6.5), we deduce]|(6.2).
Obviously, if (6.3) is valid, then the case of equality[in {6.2) holds true.
Conversely, if the equality holds ip (6.2), then it must hold in all the inequalities used to prove

(6.2), therefore we have
ZszH =Re | F (le> +Zki
i=1 i—1 =
=1 i=1 i=1
which imply (6.3). -
The following corollary may be stated![6].

(6.4) > llaill < Re
=1

(6.5) Re

n

S .

i=1

<

Re

Y

Corollary 6.2. Let(X, ||-||) be a normed linear spacg, -] : X x X — K a semi-inner product
generating the nornj-|| ande € X, |le|]| = 1. If z; € X, k; > 0, i € {1,...,n} are such that

(6.6) (0 <) ||z]| — Re[zq,e] < k; foreachi e {1,...,n},
then we have the inequality

(6.7) (0=<) > llill =

The equality holds irf (6] 7) if and only if both

(6.8) [z": xi,e] = zn:xz and [zn:xi,e] = z": ||| — zn:k;,
i=1 i=1 i=1 i=1 i=1

Moreover, if(X, ||-||) is strictly convex, then the case of equality hold§ in|(6.7) if and only if

(6.9) S lwill =D ki
=1 i=1

and

(6.10) Zaz = <Z||a:i|] —Zk) e

Proof. The first part of the corollary is obvious by Theorem 6.1 applied for the continuous linear
functional of unit normF,, F, (z) = [z,e], x € X. The second part may be shown on utilising
a similar argument to the one from the proof of Corollary 4.3. We omit the details. [

n
>
i=1

=1
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Remark 6.3.I1f X = H, (H; (-,-)) is aninner product space, then from Corolfany 6.2 we deduce
the additive reverse inequality obtained in Theorem 7 of [12]. For further similar results in inner
product spaces, see€ [4] and[12].

6.2. The Case ofm Functionals. The following result generalising Theor¢m|6.1 may be stated
[6].

Theorem 6.4(Dragomir, 2004) Let (X, ||-||) be a normed linear space over the real or complex

number fieldk. If F, k € {1,..., m} are bounded linear functionals defined &randzx; € X,
M;, > 0fori e {1,...,n}, k € {1,...,m} are such that

foreachi € {1,...,n}, k€ {1,...,m}, then we have the inequality

1 m n 1 m n

k=1 i=1
The case of equality holds in (6]12) if both

(6.13) % > F (Z x) —
k=1 =1

(6.12) > il <
=1

m

P

n

T
k=1 i=1
and
k=1 i=1 i=1 k=1 j=1

Proof. If we sum [6.11) ovet from 1 to n, then we deduce

> llwill = Re Fy <Z x> <> My
=1 =1 =1

foreachk € {1,...,m}.
Summing these inequalities ovefrom 1 to m, we deduce

(6.15) > il < %ZRe Fy (Z x) + % D> My
i=1 k i=1

=1 ) k=1 =1

Utilising the continuity property of the functionals, and the properties of the modulus, we
have

k=1 i=1 k=1 i=1
k=1 =1
k=1 =1

Now, by (6.1%) and (6.16), we dedu¢e (§.12).
Obviously, if (6.13) and (6.14) hold true, then the case of equality is val{d in](6.12).
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Conversely, if the case of equality holds jn (§.12), then it must hold in all the inequalities
used to prove (6.12). Therefore we have

> il = %ZReFk (Z%) +%ZZM7;I§7
i=1 k=1 i—1 k=1 i=1

m

SR

k=1

k=1 i=1

n
D
i=1

and

iIka (i a:,) =0.
k=1 i=1

These imply thatf (6.13) anfd (6/14) hold true, and the theorem is completely proved. O

Remark 6.5. If Fy,, k € {1,...,m} are of unit norm, then, fron{ (6.12), we deduce the
inequality

n

PR
=1

i=1

n
D

i=1

(6.17) >l <
=1

which is obviously coarser thah (6]12), but perhaps more useful for applications.

6.3. The Case of Inner Product SpacesThe case of inner product spaces, in which we may
provide a simpler condition of equality, is of interest in applications [6].

Theorem 6.6(Dragomir, 2004) Let (X, ||-||) be an inner product space over the real or complex
number fieldK, ey, z; € H\{0}, k € {1,....m}, i € {1,...,n}. If My, > 0fori €
{1,...,n},{1,...,n} such that

(6.18) |z — Re (x;, ex) < My

foreachi e {1,...,n}, k€ {1,...,m}, then we have the inequality

1 m n 1 m n
k=1 =1 k=1 i=1
The case of equality holds in (6]19) if and only if

(6.20) > il > % > My
=1

k=1 i=1

(6.19) >l <
=1

and

3 m (i llill = 5 350 2 Ma)
(6.21) ;= U i i er.
; [py ekH2 ;
Proof. As in the proof of Theorern .4, we have

m n

(6.22) >l < Re<%zek,zﬂfi> +%Z M,
i=1 k=1 i=1

k=1 i=1

andd " ep #0.
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On utilising the Schwarz inequality in the inner product spaée(-, -)) for > 7" | 2;, > /" ey,
we have

(6.23) Zek <Z$hzek>‘
k=1 i=1 k=1
> |Re <le, Zek>‘
i=1 k=1
> Re <Zn: X, Zm:ek>
i=1 k=1
By (6.22) and[(6.23) we dedude (6]19).

Taking the norm in[(6.21) and using (6]20), we have

S~ |2 S el - T T M)
-
IS0 el |

=1
showing that the equality holds in (6]19).

Conversely, if the case of equality holds jn (§.19), then it must hold in all the inequalities
used to prove (6.19). Therefore we have

(6.24) |z:]| = Re (x;, ex) + My
foreachi € {1,...,n}, k€ {1,...,m},

(6.25) E T E e |<E X, E ek>|
i=1 k=1 i=1
and

(6.26) <sz, Zek>

i=1 k=1
From [6.24), on summing overndk, we get

(6.27) <Zla:26k> mZHmZH —ZZM,k

k=1 =1

On the other hand, by the use of the |den.22), the reldftion](6.25) holds if and only if

zn: T — (2ot Tis D ey k) f: er
7 P ’
12 k=1 exl

=1 k=1
giving, from (6.26) and (6.27), that
zn:%' _ m Y iyl = > 121 1 Mk Z er.
i=1 [y ekH
If the inequality holds in[(6.79), then obviously (6]20) is valld, and the theorem is provedl.

Remark 6.7. If in the above theorem the vectofs; },_;, are assumed to be orthogonal, then

(6.19) becomes:

n m % m n
(6.28) > lill < % (Z ||ek||2> +%ZZMM.
1=1 k=1

k=1 i=1
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Moreover, if{e;. },_1-, is an orthonormal family, thef (6.28) becomes

+%22Mm,

k=1 i=1

(6.29) Z o] < X2

which has been obtained in [12].

Before we provide some natural consequences of Theprgm 6.6, we need some preliminary
results concerning another reverse of Schwarz’s inequality in inner product spaces (see for in-
stancel[4, p. 27]).

Lemma 6.8(Dragomir, 2004) Let (X, ||-||) be an inner product space over the real or complex
number fieldK andz,a € H, r > 0. If ||z — a|| < r, then we have the inequality

1
(6.30) Izl lal| — Re (z,a) < 5r*
The case of equality holds in (6]30) if and only if
(6.31) |z —all = and [[z]| = |laf|.

Proof. The condition||x — a|| < r is clearly equivalent to

(6.32) ||| + lla|® < 2Re (z,a) + 72
Since
(6.33) 2|zl fall < ll=* + llall*,
with equality if and only if||z|| = ||a|| , hence by[(6.32) andl (6.33) we deduice (p.30).
The case of equality is obvious. O

Utilising the above lemma we may state the following corollary of Thedrein 6.6 [6].

Corollary 6.9. Let (H;(-,-)), ex, z; be as in Theorerth 6.6. H;, > 0,7 € {1,...,n}, k €
{1,...,m} such that

(6.34) |lz; —ex]| < ry foreachie {1,...,n} andk € {1,...,m},

then we have the inequality

(6.35) >l <
=1

1 m
m

k=1
The equality holds irf (6.35) if and only if

Z [ls]| = —ZZW

k=1 =1

N
k=1 i=1

and

Xn::v _m (Z?:l || — ﬁ Z?:l Z?:l Tzzk) Xm: e
[ 2 .
i=1 ”ZZL:I ekH k=1

The following lemma may provide another sufficient condition ffor (5.18) to hold (see also [4,
p. 28]).
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Lemma 6.10(Dragomir, 2004) Let (H; (-, -)) be an inner product space over the real or com-
plex number fiel&K andx,y € H, M > m > 0. If either

(6.36) Re (My —x,x —my) >0

or, equivalently,

m + M
(6.37) o= 22 < S0r-m .
holds, then
1 (M—m)” m)?
(6.38) 1yl = Re (e} < 5 - = ol
The case of equality holds in (6]38) if and only if the equality case is realiséd irj (6.36) and
M + m
]l = lyll-

The proof is obvious by Lemnja 6.8 far= @y andr = 1 (M —m) ||yl
Finally, the following corollary of Theorefn §.6 may be stated [6].

Corollary 6.11. Assume that#, (-,-)) , e, z; are as in Theoretn 6/.6. [¥/;, > m;; > 0 satisfy
the condition

Re (Myer, — x4, 2y — ppeg) > 0
foreachi € {1,...,n} andk € {1,...,m}, then

Zumr S ESSElIHE

k=1 =1
7. OTHER ADDITIVE REVERSES FORm FUNCTIONALS

1 = (Mik_mik)2 2
+— Y > " le?.

A different approach in obtaining other additive reverses for the generalised triangle inequal-
ity is incorporated in the following new result:

Theorem 7.1.Let (X, ||-||) be a normed linear space over the real or complex number Held
Assumel, , k € {1,...,m}, are bounded linear functionals on the normed linear space
andz; € X,ie{l,....,n}, My >0,ie{l,...,n}, ke {l,...,m} are such that

foreachi e {1,...,n} and k € {1,...,m}.
(i) If cw is defined byid.), then we have the inequality

n 1 m n

k=1 i=1
(i) If ¢, is defined by|d) for p > 1, then we have the inequality:

(7.3) S il < S ﬁzzm.
=1 1=1

k=1 i=1
Proof. (i) Since

(7.2) D il <
=1

max [P (@)] < e o] foranya € X,
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() s ()
i=1 i=1

Using (6.16), we may state that

%éReFk (;n;xz> < Coo Zzn;xz

which, together with[(6.15) imply the desired inequality [7.2).
(i) Using the fact that, obviously

then we have

>

k=1

< m max

< Ml
1<k<m

n
2@
i=1

)

P

(Z | E, (x)|p> <¢|z| foranyz e X,
k=1

then, by Holder’s inequality fop > 1, % + é =1, we have

which, combined with[(6.15) anfl (6/16) will give the desired inequdlity] (7.3).
The case = 1 goes likewise and we omit the details. O

Remark 7.2. Since, obviously,, < max ||F||, then from ) we have
1<k<m

DI

k=1 i=1

| < .
(7.4 >l < g (FI)

>
=1
Finally, sincec, < (37, | Fx|")? ,p > 1, hence by|(7}3) we have

1
- > e 1 FRl”Y l ¢~ v
(7.5) >l < (’“T +EZZMM.
=1

k=1 =1
The following corollary for semi-inner products may be stated as well.

n

S

=1

Corollary 7.3. Let (X, ||-||) be a real or complex normed space ajpd] : X x X — K a
semi-inner product generating the notp)| . Assumey,, z; € H andM;, > 0,i € {1,...,n},
k € {1,...,m} are such that

(76) ||ZL‘I|| — Re [ZL‘i,Gk] S ]\4“€7
foranyi € {1,...,n}, ke {l,...,m}.

(i) If
dso = SUpP {maxlgkgn |[x,ek]\} (< max HekH) )

20 ] T isksn
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then
(7.7) D il < doo || +%ZZM
=1 =1 k=1 i=1
<< max llex| - +%;;Mm> ;
(ii) If

1

S el u v
d, = sup{khT < ZH@ka )
k=1

x#0

n

wherep > 1, then
e

(7.8) Z ]| <
S el 7 |
(s( il s,

8. APPLICATIONS FOR COMPLEX NUMBERS

n

M

3

1 m n
+EZZ 1Mik)-

k=1 1=

Let C be the field of complex numbers. #f= Rez + iIm z, then by|-[, : C — [0, 00),
p € [1, o] we define theg—modulusof = as
max {|Rez|, |[Imz|} if p= oo,
2], = 1
(|Rez|? + [Im z|")r if p € [1,00),
where|a|, a € R is the usual modulus of the real number
Forp = 2, we recapture the usual modulus of a complex number, i.e.,

2, = y/IRe 2 + [zl = 2|, ze€C,

It is well known that(C, |-|p> ,p € [1,00] is a Banach space over theal number fieldR.

Consider the Banach spa¢€, |-|,) andF : C — C, F(z) = az witha € C, a # 0.
Obviously, F' is linear onC. Forz # 0, we have

F(2)| lal]z| ldl VIRe 2 + [m 2
2[4 2], [Re z| + [Im z|

<lal.

Since, forzy = 1, we have|F' (z0)| = |a| and|z|, = 1, hence
F(z
p g,
27#0 ’ ‘1
showing thatt" is a bounded linear functional 4, |-|,) and|| F||, = |a] .

We can apply Theorem 3.1 to state the following reverse of the generalised triangle inequality
for complex numbers [5].

11 =

Proposition 8.1. Letay, z; € C, k € {1,...,m} andj € {1,...,n}. If there exist the
constantsy, > 0, k € {1,...,m} with>;"  r, > 0 and

(8.1) ri [[Rex;| + [Imz;|] < Reay - Rex; — Imay - Im x;
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foreachj € {1,...,n} andk € {1,...,m}, then

- |Z7kn—1ak|
8.2 Rex; Imaz,|| < =4 —
®2) Y [IRem|+ [hmey) < v

Z:lk

] |

n
E Rex;
Jj=1

n
E Imx;
j=1

j=1

The case of equality holds in (8.2) if both

(5 (1) (S (5
_ (zm: m) S [Res | + [im

k=1 j=1
m n n

= Zak ZRexj + Zlmxj].
k=1 j=1 Jj=1

The proof follows by Theoremn 3.1 applied for the Banach sgété|,) andFy, (z) = axz,
k € {1,...,m} on taking into account that:

1

Now, consider the Banach spa@, |-| ) . If F'(z) = dz, then forz # 0 we have

P d| \/|Re 2 + |Im 2
|<z)\_ydy|zy:||\/l "+ | |<\/§|d|_

2l lele  max{|[Rez|,[Imz} ~

Since, forzy = 1 + i, we havelF (20)| = v2|d|, |20|,, = 1, hence

Il = sup o = VB,

ZO|‘<>0

showing that/" is a bounded linear functional 4, |-|__) and|| F||, = v2|d|.
If we apply Theorem 3]1, then we can state the following reverse of the generalised triangle
inequality for complex number5s[[5].

Proposition 8.2. Leta, z; € C, k € {1,...,m} andj € {1,...,n}. If there exist the
constants, > 0,k € {1,...,m}with}";* r, > 0and

rymax {|Rez;|, |Imz;|} <Reay-Rex; —Imay - Imz;
foreachj € {1,...,n}andk € {1,...,m}, then

ZR@ZEJ‘

j=1

)

- |sz ak|
8.3 g max{|Rez;|, |Imz;|} < V2. k=l T max
(8.3) < {l il | i} S

n
5 Im z;
j=1

} |

J. Inequal. Pure and Appl. Math6(5) Art. 129, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

REVERSES OF THETRIANGLE INEQUALITY 25

The case of equality holds in (8.3) if both

TEET
_ (im> S max {|Re |, |m |}

k=1 j=1
=2 i Z Rex; i Im x;
k=1 j=1

n
aj| max
= j=1

Y

} |

Finally, consider the Banach spaé@, H2p) with p > 1.
Let F: C — C, F (z) = cz. By Holder’s inequality, we have

F () lely/IRez + |imzf?
P (|Rez|2p+ |Tm 2| ) w

<2575 ¢,

Since, forzy = 1 + i we havel F (z)| = 22 || , 2004, = 2% (p>1), hence

F(z 1_1
[Pl = sup - — o135

270 ’ ‘2p

showing that# is a bounded linear functional diC, |-|,, ) , p > 1 and||F||,, = 227 |c|.
If we apply Theorem 3]1, then we can state the following proposition [5].
Proposition 8.3. Letay, z; € C, k € {1,...,m} andj € {1,...,n}. If there exist the
constants, > 0,k € {1,...,m}with)";" r, > 0and
1
Tk [|Remj|2p + |Imxj|2p} * <Reay-Rez; —Imay - Imx;
foreachj € {1,...,n}andk € {1,...,m}, then
|z | K
Qg

8.4 [[Re ;[ + |Tm ;| < 9bd 12k Ul
®4) 3 [[Rea,* + [l S

7j=1

The case of equality holds in (8.4) if both:

NN RN

- (Z ) S [IRea; [ + [tm ;7]
k=1 Jj=1
1
2p 2p

— 227

Z Z Rex;| + i Imx;
k=1 Jj=1

Remark 8.4. If in the above proposition we choope: 1, then we have the following reverse
of the generalised triangle inequality for complex numbers

|Zk 1ak|
<
Z| J| Zkflrk ]Zl J
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providedz;, a;, j € {1,...,n}, k € {1,...,m} satisfy the assumption
e |2 < Reay - Rex; — Imay - Im a;

foreachj € {1,...,n}, k € {1,...,m}. Here|-| is the usual modulus of a complex number
andr, > 0, k € {1,...,m} are given.

We can apply Theorem 6.4 to state the following reverse of the generalised triangle inequality
for complex numbers [6].

Proposition 8.5. Leta, z; € C, k € {1,...,m} andj € {1,...,n}. If there exist the
constantsM,, > 0,k € {1,...,m},j € {1,...,n} such that

(8.5) |Rez;| + |Imz;| <Reay - Rex; —Imay - Imz; + My,
foreachj € {1,...,n}andk € {1,...,m}, then

(8.6) > [[Rea;| + [Tmay]]
j=1

>
=1

k=

n

n
E Rex; E Imx;
j=1 j=1

The proof follows by Theorein 6.4 applied for the Banach sgété|,) and F, (z) = axz,
k € {1,...,m} on taking into account that:

m n

1
> D M

k=1 j=1

< +

1
m

1

If we apply Theore@4 for the Banach spd€g |-|_ ), then we can state the following
reverse of the generalised triangle inequality for complex numbers [6].

Proposition 8.6. Leta;, z; € C, k € {1,...,m} andj € {1,...,n}. If there exist the
constants\/;, > 0,k € {1,...,m},j € {1,...,n} such that

max {|Rex;|, [Imz;|} <Reay-Rex; —Imay - Imz; + M

foreachj € {1,...,n}andk € {1,...,m}, then

(8.7) ZmaxﬂRea:j] | Ima;|}
j=1
2 m n n 1 m n
§£ Zak maX{ZRexj , Zlmxj}—i——z My,
m m
k=1 j=1 j=1 k=1 j=1

Finally, if we apply Theore@4, for the Banach sp{@ |-|2p> with p > 1, then we can
state the following proposition [6].

Proposition 8.7. Letay, x;, M;;, be as in Propositiof 86. If

1
[[Rez;[” + [Imx;|*"]* < Reay, - Rew; — Imay - Ima; + My,
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foreachj € {1,...,n} andk € {1,...,m}, then

(8.8) Z [|Rexj|2p+ \Imxj]%ﬁ”

J=1

wherep > 1.

Remark 8.8. If in the above proposition we chooge= 1, then we have the following reverse
of the generalised triangle inequality for complex numbers

j2_;|$j|§ Ezak +EZZMj’“

k=1 k=1 j=1
providedz;, a;, j € {1,...,n}, k € {1,...,m} satisfy the assumption

n

L
1

j=

|z;] <Reay - Rex; —Imay - Imax; + My,
foreachj € {1,...,n}, k € {1,...,m}. Here|| is the usual modulus of a complex number
andM;, > 0,5 € {1,...,n}, ke {1,...,m} are given.
9. KARAMATA TYPE INEQUALITIES IN HILBERT SPACES

Let f : [a,b] — K, K = C or R be a Lebesgue integrable function. The following inequality,
which is the continuous version of th@angle inequality

[1@als [rwle,

plays a fundamental role in Mathematical Analysis and its applications.
It appears, see [20, p. 492], that the first reverse inequality fof (9.1) was obtained by J.
Karamata in his book from 1949, [14]. It can be stated as

(9.2) cos@/b|f(:v)|d:v§ /bf($)d:1:

provided
—0 <argf(z) <6, x€a,b

(9.1)

for givend € (0,%).
This result has recently been extended by the author for the case of Bochner integrable func-
tions with values in a Hilbert spadé (see also [10]):

Theorem 9.1(Dragomir, 2004) If f € L ([a,b]; H) (this means thaf : [a,b] — H is strongly
measurable ofu, b] and the Lebesgue integrﬁ’ | f (t)]] dt is finite), then

b b
9.9 [wronasw| [ s,
provided thatf satisfies the condition
(9.4) IIf ()] < KRe(f(t),e) fora.e.tela,bl,

wheree € H, |le| = 1and K > 1 are given.
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The case of equality holds in (9.4) if and only if

9.5) [ = ([urna)-.

As some natural consequences of the above results, we have noticed in [10]tr&f0ifl)
andf € L ([a,b]; H) are such that

(9.6) IIf (t) —e|]| <p fora.e.t € la,b],

then
b
[ro

9.7) M/abnf(t)udt < ‘
/abf(t)dtz ﬂ(/ IF Ol ) -e.

with equality if and only if
Also, fore as above and i/ > m > 0, f € L ([a,b]; H) such that either

(9.8) Re(Me— f(t),f(t) —me) >0
or, equivalently,
M4+m 1
0.9) Hf(t)— o < - m)
fora.e.t € [a,b], then
b M +m b
(9.10) [rwia< 28] roa),

with equality if and only if

/abf(t)dt— ﬂ(/ab\]f(t)udt) e

The main aim of the following sections is to extend the integral inequalities mentioned above
for the case of Banach spaces. Applications for Hilbert spaces and for complex-valued functions
are given as well.

10. MULTIPLICATIVE REVERSES OF THE CONTINUOUS TRIANGLE |INEQUALITY

10.1. The Case of One Functional.Let (X, ||-||) be a Banach space over the real or complex
number field. Then one has the following reverse of the continuous triangle inequality [11].

Theorem 10.1(Dragomir, 2004) Let F' be a continuous linear functional of unit norm én
Suppose that the functigh: [a, b] — X is Bochner integrable ofu, b] and there exists a > 0
such that

(10.12) r||f @) <ReF|[f(t)] fora.e.te€ [a,b].

Then
b b
(10.2) r / I (0)] dt < / f (1)t

where equality holds irj (10.2) if and only if both

(10.3) F (/abf(t) dt) - / 1F (0] dt
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and

(10.4) F ( / ’ F) dt) =

Proof. Since the norm of" is one, then
|F (z)| < ||z|| forany z e X.

.

Applying this inequality for the vectof: f (t)dt, we get

R
> ReF(/abf(t)dt)':

Now, by integration of{(10]1), we obtain

(10.5)

/bReF(f(t))dt'.

a

(10.6) [ rer(r@dezr [ @i

and by (10.p) and (10.6) we deduce the desired inequlity]|(10.2).

Obviously, if (10.3) and (10]4) hold true, then the equality case holds in|(10.2).

Conversely, if the case of equality holds jn (10.2), then it must hold in all the inequalities
used before in proving this inequality. Therefore, we must have

(10.7) rl|f ()] =ReF (f(t)) fora.e.te [a,l],
(10.8) Im F (/bf ) dt) ~0
and

b
(10.9) ‘ 0 dtH _ReF (/ £ dt) |
Integrating[(10.]7) ore, b] , we get
(10.10) r/be(t)Hdt:ReF(/bf(t)dt).

On utilising [Tﬂp) and (1018), we deduge (10.3) wHile (]10.9) and (1.0.10) would |- mply (10.4),

and the theorem is proved.

Corollary 10.2. Let (X, ||-||) be a Banach spacg;,-| : X x X — R a semi-inner product
generating the nornjf-|| ande € X, |le|| = 1. Suppose that the functiof : [a,b] — X is
Bochner integrable ofu, b] and there exists a > 0 such that

(10.11) r||f (@) <Relf(t),e] fora.e.t € a,b.

Then
b b
(10.12) r/ If ()]l dt < /f(t)dtH
where equality holds irj (10.1.2) if and only if both
b b
(10.13) [ rwae] = [0l
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and

(10.14) Uabf(t) dt,e} = ‘ /abf(t) dt

The proof follows from Theorern 10.1 for the continuous linear functidnat) = [z, ¢],
x € X, and we omit the details.
The following corollary of Theorern 10.1 may be stated [8].

Corollary 10.3. Let(X, ||-||) be a strictly convex Banach spac¢e;] : X x X — Ka semi-inner
product generating the nortit|| ande € X, |le|]| = 1. If f : [a,b] — X is Bochner integrable
on|[a, b] and there exists a > 0 such that[(10.11) holds true, thgn (10.12) is valid. The case of
equality holds in[(10.12) if and only if

(10.15) /abf(t) dt = r (/;Hf(t)Hdt) ‘.

Proof. If (0.15) holds true, then, obviously

[ rera = ([irona)ier=r [1r o

which is the equality case if (10]12).

Conversely, if the equality holds if (10]12), then, by Corolfary [10.2, we must have (10.13)
and [10.14). Utilising Theoren 4.2, by (10,14) we can conclude that there exists @such
that

b
(10.16) / f ) dt = pe.
Replacing this in[(10.13), we get

b
plell = v [ 1f @),

giving
b
(1017) p=r [ @)
Utilising (10.16) and[(10.17) we deduge (10.15) and the proof is completed. O

10.2. The Case ofm Functionals. The following result may be stated [8]:

Theorem 10.4(Dragomir, 2004) Let (X, ||-||) be a Banach space over the real or complex
number fieldK and F;, : X — K, & € {1,...,m} continuous linear functionals oX. If

f : [a,b] — X is a Bochner integrable function da, b and there exists, > 0,k € {1,...,m}
with >~" . > 0 and

(10.18) e l[f @Ol < Re Fy [f (¢)]
foreachk € {1,...,m} and a.et € [a,b], then
12252y Fill ‘ ' H
S /a f(t)dt|l .
The case of equality holds in (10]19) if both
m b m b
(10.20) (Z F) ([ roa)- (Z ) [ s
k=1 @ k=1 a

b
(10.19) [irla < il
a
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and

(10.21) (g Fk> (/abf (t) dt) =

Proof. Utilising the hypothesig (10.18), we have
m b m

= ZFk(/f(t)dt) > ZFk(/f dt)”
k=1 @ k=1

Sn ([ rwa)| -3 ([ rernsa)

> e |- | f (@) dt.
()

On the other hand, by the continuity propertyfgf k£ € {1,...,m}, we obviously have

(ng> (/abf(t)dt) < ng

Making use of[(10.22) andl (10.23), we dedyce (1)0.19).
Now, obviously, if [10.2D) and[ (10.21) are valid, then the case of equality holds true in

(10.19).
Conversely, if the equality holds in the inequality (10.19), then it must hold in all the inequal-

ities used to provg (10.19), therefore we have

(10.24) rellf (D = Re Fi [f (1))
foreachk € {1,...,m} anda.et € [a,b],

(10.25) m (zm: Fk> ( / " r) dt) o,
(10.26) Re (i Fk> ( / " r ) dt) _

Note that, by|(10.24), on integrating ¢m b] and summing ovek € {1,...,m}, we get

(10.27) Re (i Fk> (/:f(w dt) - (irk) /ab||f(t)||dt.

Now, (10.2%) and[(10.27) imply (10.R0) while (10/25) ahd (I1D.26) imply (10.21), therefore the

theorem is proved. O

t) dtH.

(10.22) Re

> Re

(10.23) I=

t) dtH.

t) dtH.

The following new results may be stated as well:

Theorem 10.5.Let (X, ||-||) be a Banach space over the real or complex number Kelhd
F. : X — K, k € {1,...,m} continuous linear functionals oX. Also, assume thaf :
la,b] — X is a Bochner integrable function dn, b] and there exists, > 0, k € {1,...,m}
with >~" . > 0 and

e |[f @O < Re Fi [f (£)]

foreachk € {1,...,m} and a.et € [a,}].
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(i) If c is defined byd.), then we have the inequality
LS @lde e (< MAXi hm ||Fk|y)

(10.28) (1<) Hfabf(t) dtH T maXicg<m{rr} \T maXick<m{ri}

with equality if and only if

Re (Fi) (/abf(t) dt) =rk/ab||f<t>||dt

for eachk € {1,...,m} and

e [wee) ([ rwar)| = e [1rn

(i) If c,,p > 1, is defined by{) , then we have the inequality
b m 1
Loy elf @l e, (< T4 HFkup)p
|2y~ o AT X

with equality if and only if

Re (Fi) (/abf(t) dt) =rk/ab||f<t>||dt

for eachk € {1,...,m} and
b
|

The proof is similar to the ones from Theorems 5.1} 5.2[and 10.4 and we omit the details.
The case of Hilbert spaces for Theorem 10.4, which provides a simpler condition for equality,
is of interest for applications [8].

m

$ o ([ 00)] -

k=1

p

wherep > 1.

Theorem 10.6(Dragomir, 2004) Let (X, ||-||) be a Hilbert space over the real or complex
number fieldK ande, € H\ {0}, k € {1,...,m}.If f: [a,b] — H is a Bochner integrable
function andr, > 0,k € {1,...,m}and}";" r, > 0 satisfy

(10.29) e |lf ()N < Re (f (), ex)
foreachk € {1,...,m} and for a.eit € [a,b], then
b m b
(10.30) [t < E o Froa).
a Zk:l Tk a
The case of equality holds in (10]30) f6e£ 0 a.e. on[a, b] if and only if
b m b m
t)|| dt
(10.31) / f@t)dt = (i Tkznfa ”f2( )l > e
a 12 k= exll k=1
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Proof. Utilising the hypothesig (10.29) and the modulus properties, we have

</abf(t>dt,iek>

> kzz;Re</abf(t)dt,ek> ZgRe</abf(t)dt7ek>

i/abReU(t) ex) d z( m)/Hf ()| dt.

By Schwarz’s inequality in Hilbert spaces applied fgrf (t) dt andzk’":1 er, We have

A2 (fronde)]

Making use of[(10.32) anqil_(TO"]SB) we dedyce (10.30).

Now, if f # 0 a.e. on[a, 0] thenf If ()|l dt # 0 and bymzjk L ex # 0. Obviously,
if (10.37) is valid, then taklng the norm we have

() [N f (1)) dt
IS exll?

Zk 1Tk d
Y u/”f ) dt

i.e., the case of equality holds true jn (10.30).
Conversely, if the equality case holds true[in (10.30), then it must hold in all the inequalities
used to prove (10.30), therefore we have

(10.34) Re (f (t), ex) =& |lf (D)

foreachk € {1,...,m} anda.et € [a,b],
| o)
and

>
k=1
b m
(10.36) Im </ f(t)dt, Zek> = 0.
@ k=1

From (10.34) on integrating dn, b] and summing ovek from 1 to m, we get

(10.37) Re< / f<t>dt,zek> - (Z) s @

and then, by{(10.36) and (10]37), we have

b m m b
(10.38) < / f<t>dt,2ek> - <Z> [ s
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On the other hand, by the use of the identfity (8.22), the reldtion ([L0.35) holds true if and only
if

b (2 F @) dt S ) o
(10.39) / F(t)dt = o er.
a k=1 k=1
inally, by (10.38) an .39) we deduce that (IP.31) is also necessary for the equality case in
Finally, by (10.38) and (10.39) we deduce that (ID.31) is al for th l i
(10.30) and the theorem is proved. O
Remark 10.7. If {ex},c(,. .y @re orthogonal, theO) can be replaced by
b
(10.40) [ur@na < Z’le "ei! ) di
a k=1
with equality if and only if
Zk 1 ”ekH k=1

-----

(10.42 [raas / Foa,
with equality if and only if

(10.43) /abf(t) it — % (Zi: rk> (/b I @) dt) Zj:ek.

The following corollary of Theorern 10.6 may be stated as well [8].

vm
D ket Tk

Corollary 10.8. Let(H; (-, -)) be a Hilbert space over the real or complex number fi€ldnd
e, € H\{0}, ke {1,...,m}.If f:[a,b] — H is a Bochner integrable function dn, | and
pr >0,k e {l,...,m} with

(10.44) 1 (&) = exll < pr < lexl

foreachk € {1,...,m} anda.et € [a,b], then

b m
(10.45) [irnas el ) [y
“ D ke 1(H€k|| _,0 2
The case of equality holds in (10}45) if and onIy if

(10.46) /abf@dt:Z?”lgl:le kH’)k (/ I (¢ Hdt)

Proof. Utilising Lemmd 3.4, we have from (10}44) that
IF 1 (lexll® = pi)* < Re (f (1) ,ex)

foranyk € {1,...,m}and a.et € [a,b].
Applying Theorenj 10]6 for

1
ri = (el —pi)®, ke{l,....m},
we deduce the desired result. O
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Remark 10.9. If {ex},., ., are orthogonal, the5) becomes

(Zk 1 ||6k|| / F(8) dt
with equality if and only if

S (lel’? —pﬁ
b S (el = o2 5( )
(10.48) /f(t)dt T / If ()] dt

b
(10.47) / |f (@) dt <

-----

If () —exll < pr fora.e.tela,b],
wherepy, € [0,1), k € {1,...,m}, then
[ s ar.

(10.49) 1f (6)]] dt < 1
/ Zk 1 1_Pk 5
b %
(10.50) / Ftyae = 2=l ( / I (¢ Hdt)

with equality iff
Finally, we may state the following corollary of Theorém 10.6 [11].

Corollary 10.10. Let(H; (-, -)) be a Hilbert space over the real or complex number fi€land
e, € H\{0},k e {l,....m}.If f:[a,b] — H is a Bochner integrable function dn, b| and
My, > ux > 0,k € {1,...,m} are such that either

(10.51) Re (Mye, — f (1), f (t) — pwex) =0

or, equivalently,

Mi+p || o1
€k

(10.52) ft) - 5 =3 (Mg — pure) [[ex|
foreachk € {1,...,m} and a.et € [a, b] , then
€
(1053 [Irola < i wa].
Zk 1 Mﬁ-Mk |

The case of equality holds if and only if
Zk 1 2o

/abf(t) HZZktMZHH i (/ £ ||dt)

Proof. Utilising Lemmd 3.7, by[(10.51) we deduce

2.4/
I 012 e < Re (1), 1)
foreachk € {1,...,m} and a.et € [a,b] :
Applying Theorenj 10J6 for
2/ My
= , ked{l, ...,
rei= S el ke {1 m)
we deduce the desired result. O

J. Inequal. Pure and Appl. Math6(5) Art. 129, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

36 S.S. RAGOMIR

11. ADDITIVE REVERSES OF THE CONTINUOUS TRIANGLE INEQUALITY

11.1. The Case of One Functional. The aim of this section is to provide a different approach
to the problem of reversing the continuous triangle inequality. Namely, we are interested in
finding upper bounds for the positive difference

/ I (0)] e -

under various assumptions for the Bochner integrable fungtioja, ] — X.
In the following we provide an additive reverse for the continuous triangle inequality that has
been established in[[8].

t) dt

Theorem 11.1(Dragomir, 2004) Let (X, ||-||) be a Banach space over the real or complex
number fieldK and F' : X — K be a continuous linear functional of unit norm éh Suppose
that the functionf : [a,b] — X is Bochner integrable ofu, b] and there exists a Lebesgue
integrable functiork : [a, b] — [0, 00) such that

(11.1) IF (DI = Re F[f (t)] < k (t)
fora.e.t € [a,b]. Then we have the inequality
b b
(11.2) (0 g)/ I ()l dt — ) dtH < / k(1) dt.

The equality holds irf (11.2) if and only if both

(11.3) F(f N0 i) -

and

(a1.4) F([rwa)= [isena- [coa

Proof. Since the norm of’ is unity, then
|F (z)| < ||z|| forany z e X.

o

Applying this inequality for the vectofbf t) dt, we get

oo ([ r0m) e ([ 05)

_ / ReF[f()]dt‘_/ Re F [f (1)) dt.

a a

(11.5)

Integrating [(11.11), we have

(11.6) /:Hf(t)Hdt—ReF(/abf(t)dt) g/abk(t)dt.

Now, making use of (11]5) anf (11.6), we deddce (11.2).

Obviously, if the equality hold irf (11].3) and (11..4), then it holdg in (JL1.2) as well. Conversely,
if the equality holds in[(11]2), then it must hold in all the inequalities used to pfove]| (11.2).
Therefore, we have

/abe(t)Hdt:Re {F </abf(t>dt)1 +/abk(t)dt.
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and

ol ([ 108)] | ([ o) | 0
which imply (11.3) and (11]4). O

Corollary 11.2. Let (X, ||-||) be a Banach spacg;,-| : X x X — K a semi-inner product
which generates its norm. éfe€ X is such that|e|| = 1, f : [a,b] — X is Bochner integrable
on [a, b] and there exists a Lebesgue integrable functioria, b] — [0, oo) such that

(11.7) O NF O —Relf (1), e] <k (1),
fora.e.t € [a,b], then
b b b
(119 0 [r@na-| [ row| < [coa
where equality holds irj (11].8) if and only if both
b b

(11.9) U f(t)dt,e}: /f(t)dtH
and

b b b
(11.10) U f(t)dt,e] :’/ f(t)dt' —/ k(t) dt.

The proof is obvious by Theorem 11.1 applied for the continuous linear functional of unit
normfr, : X — K, F, (z) = [z,¢].
The following corollary may be stated.

Corollary 11.3. Let(X, ||-||) be a strictly convex Banach space, dnd| , e, f, k as in Corollary
[11.2. Then the case of equality holds[in (11.8) if and only if

b b
(11.11) /Hf(t)||dt2/ () dt

and

(11.12) /abf(t)dt: (/ab||f(t)||dt—/abk(t)dt) ‘.

Proof. Suppose thaf (11.]11) arjd (111.12) are valid. Taking the norrp on (11.12) we have

/abf(t)dt‘ /ab||f(t)||dt—/abk(t)dt ||€||:/abe(t)Hdt—/abk(t)dt,

and the case of equality holds true[in (11.8).
Now, if the equality case holds ifi (11.8), then obviou$ly (I]L.11) is valid, and by Corollary

[/abf@)dt,e]: /abf(t)dt‘

Utilising Theorenj 4.2, we get
b
(11.13) / f(t)dt = Xe with X\ > 0.

lefl

Replacingfab f (t) dt with \e in the second equation of (11.9) we deduce

b b
(11.14) A:/ ||f(t)||dt—/ o
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and by (11.1IB) and (11.14) we deduce (11.12). O

Remark 11.4.1f X = H, (H; (-,-)) is a Hilbert space, then from Corollgry 1[L.3 we deduce the
additive reverse inequality obtained in [7]. For further similar results in Hilbert spaces, see [7]
and [9].

11.2. The Case ofm Functionals. The following result may be stated [8]:

Theorem 11.5(Dragomir, 2004) Let (X, ||-||) be a Banach space over the real or complex
number fieldK and Fj, : X — K, k£ € {1,...,m} continuous linear functionals oX. If f :
la,b] — X is a Bochner integrable function da, b] and A}, : [a,b] — [0,00), k € {1,...,m}
are Lebesgue integrable functions such that

(11.15) I1f (Ol = Re Fy [f ()] < My (t)

foreachk € {1,...,m} and a.eit € [a,b], then

b

(11.16) / £ ()] dt < ZFk ‘ dtH Z M, (t) dt.
k 1v@
The case of equality holds in (11}16) if and onIy if both
(11.17) —ZFk ( / f(t dt> dtH
and
(11.18) < f(t dt) I|f (¢ Hdt——
[ row)= [urona-2s, [u

Proof. If we integrate oda, b] and sum ovek from 1 to m, we deduce

(11.19) /abuf(wudté%gf{e[ﬂ(/jmdtﬂ Z

M= Ja
Utilising the continuity property of the functionals, and the properties of the modulus, we

' ([ r0w)]

(11.20) S ReF, ( / " r ) dt) <[> e
ng (/abf(t)dt)

Now, by (11.19) and (11.20) we dedu¢e (11.16).
Obviously, if (I1.1y) and (11.18) hold true, then the case of equality is valid in (11.16).

Conversely, if the case of equality holds [n (11.16), then it must hold in all the inequalities
used to prove (11.16). Therefore, we have

[rsona= 3w [n ([ roa)] 2> [

kl“

IN

<

.
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> re[ri ([ s = | [ s e

glm {Fk (/abf(t)dt)} = 0.

These imply thaf (11.17) anfd (11]18) hold true, and the theorem is completely proved]

Remark 11.6. If Fy, k € {1,...,m} are of unit norm, then, from (11.16) we deduce the
inequality

b
(11.21) JAIIE \

>R
k=1

and

/abf(t)dtH+%§: " My (8)

k=1v¢

which is obviously coarser thah (11]16) but, perhaps more useful for applications.
The following new result may be stated as well:

Theorem 11.7.Let (X, ||-||) be a Banach space over the real or complex number Ke&hd
F, : X — K, k € {1,...,m} continuous linear functionals oX. Assume also thaf :
[a,b] — X is a Bochner integrable function da, b] and M, : [a,b] — [0,00), k € {1,...,m}
are Lebesgue integrable functions such that

(11.22) 1f (Ol = Re Fy. [f (£)] < My (¢)

foreachk € {1,...,m}and a.et € [a, b].
(i) If c is defined byd.), then we have the inequality
1
+— > | Mi(t)a.

b
/a roa) 3 |

(i) If c,,p > 1, is defined by{) , then we have the inequality

/abe(t)Hdt < H/abf(t) dtH iy M (1)t

k=17
The proof is similar to the ones from Theorgm|7.1 and]11.5 and we omit the details.

The case of Hilbert spaces for Theorem 11.5, in which one may provide a simpler condition
for equality, is of interest in applications|[8].

m b

b
(11.23) / If (0]l dt < coo‘

Theorem 11.8(Dragomir, 2004) Let (H, (-, -)) be a Hilbert space over the real or complex
number fieldK ande, € H, k € {1,...,m}.If f: [a,b] — H is a Bochner integrable function
onla,b], f(t) # 0 fora.e.t € [a,b] and M}, : [a,b] — [0,00), k € {1,...,m} is a Lebesgue
integrable function such that

(11.24) 1F (DI = Re (f (1), ex) < My (1)
foreachk € {1,...,m} and for a.et € [a, 0], then

b 1 m b 1 m b

(11.25) / If ()] dt < EZek ’/ f(t) dtH +EZ M, (t) dt.
a k=1 a k=1Y¢

The case of equality holds in (11]25) if and only if

b 1 m b
(11.26) JNIGIEERS oy RTAY

k=1v¢%
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and

3

/f m (S @l de = & S0y J7 My () )

[y ek” k=1
Proof. As in the proof of Theorein 11.5, we have

b m b m b
(11.28) / I (8)]| dt < Re<%26k,/ a0 dt> +%Z M, (t) dt
a k=1 a

k=174
and) ;" ex # 0.
On utilising Schwarz’s inequality in Hilbert spa¢#, (-, -)) for f ft)dtandy ;" ey, we
have

(11.27)

m

>

k=1

(11.29)

0

AV
=
@D
T
\
KH
“&
M:
D
~

By (11.28) and[(11.29), we deduge (11.25).
Taking the norm o[ (11.27) and usirg (11.26), we have

o (0 Ol = 3 S ) M (1) )
IS el ’

showing that the equality holds in (11]25).
Conversely, if the equality case holds|in (11.25), then it must hold in all the inequalities used
to prove [(11.2p). Therefore we have

(11.30) IF @Ol = Re (f (t), ex) + My (t)

for eachk € {1, ... ,m} and for a.et € [a, b],
AL ron)
and

b m
(11.32) Im </ f () dt,Zek> = 0.
a k=1

From (11.30) on integrating da, b} and summing ovet, we get

(11.33) Re</f S ek>—m/ If (#)]] de — M, (t) dt.

kl“

On the other hand, by the use of the identity (B.22), the reldtion ([L1.31) holds if and only if
b m

b S F@)dt, 3 e )

[ 1w it >z

IS ell® =
giving, from (11.32) and (11.33), that (11]27) holds true.

(11.31)

(>

€k,

J. Inequal. Pure and Appl. Math6(5) Art. 129, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

REVERSES OF THETRIANGLE INEQUALITY 41

If the equality holds in[(11.25), then obviously (11].26) is valid and the theorem is proied.
Remark 11.9. If in the above theorem, the vectofs; },.(,

then [11.2p) becomes
. AL ) 3
(11.34) / I @ldt < — (Z llex ] ) t) dtH Z
a 1 k 1v@

my 1S an orthonormal family, the4) becomes

dtH Z

k:la

) @re assumed to be orthogonal,

.....

Moreover, if{ex},

-----

b
(11.35) / I (®)]d

which has been obtained in [4].
The following corollaries are of interest.

Corollary 11.10. Let (H;(-,)), ex, & € {1,...,m} and f be as in Theorem 11.8. If
ry : la,b] — [0,00), k € {1,...,m} are such that, € L?[a,b], k € {1,...,m} and

(11.36) 1 (&) —exll <7 (2),
foreachk € {1,...,m}and a.et € [a b] then

€k

dtH Z/ 2 (t) dt.

(11.37) /||f e < || X

The case of equality holds |E(E]37) |f and onIy if

/ T ||dt>—2/a

; m (S 1F @l dt = 55 Y [)rd (@) dt) =
a 122k exll Pt
Finally, the following corollary may be stated.
Corollary 11.11. Let (H; (-,-)), ey, k € {1,...,m} and f be as in Theorefn 11.8. I}, 11, :

la,b] — R are such that\/;, > u;, > 0 a.e. onja, b|, % € La,b] and

Re (M. (t)ex — f (), f (1) — pu (t) ex) = 0
for eachk € {1,...,m} and for a.et € [a,b], then

[ sl < Zek\ dtH+—Zueku/ M (1 Wff)]

12. APPLICATIONS FOR COMPLEX -VALUED FUNCTIONS

and

We now give some examples of inequalities for complex-valued functions that are Lebesgue
integrable on using the general result obtained in Seftipn 10.
Consider the Banach spa(g, |-|,) over the real fiel®R andF' : C — C, F (z) = ez with

e =a+ifandle|’ = a® + 5% = 1, thenF is linear onC. Forz # 0, we have

P fellsl _ /IRe = + [tm =P
Bl Res] [l
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Since, forzy, = 1, we have|F' ()| = 1 and|z|, = 1, hence

[F ()]
[£ly = su
270 | |1
showing thatt" is a bounded linear functional 4, |-|,).

Therefore we can apply Theorgm 10.1 to state the following result for complex-valued func-
tions.

=1,

Proposition 12.1.Leta, 3 € Rwitha? + 3> = 1, f : [a,b] — C be a Lebesgue integrable
function on[a, b] andr > 0 such that

(12.1) r{Re f ()] + [Im f ()]] < aRe f(t) = B1Im [ (1)

fora.e.t € [a,b]. Then

(12.2) [/ |Re f (¢ |dt—i—/ |Im f (¢ |dt}

b
/ Im f (t) dt‘ :
The equality holds irff (12.2) if and only if both

a/abRef(t)dt—ﬂ/abImf(t)dt:r{/ab]Ref(t)|dt+/ab|lmf(t)|dt1
/Ref dt—ﬁ/ Im f(t /Ref dt‘

Now, consider the Banach spa@@, |-|_) . If F(z) = dz with d = v +4d and|d| = 2, i.e.,
v? + 6% = 1, thenF is linear onC. Forz # 0 we have

P _ el _ V2 y/Resl’ + e

2l 12l 2 max{|Rez|,[Imz[} =

Ref (1) dt’ +

and

Imf (t) dt‘ :

Since, forzy = 1 + ¢, we have|F' (z)| = 1, |2|,, = 1, hence
F
1P = sup LEEN 4

ZO||OO

showing thatF" is a bounded linear functional of unit norm ¢, |-| ).
Therefore, we can apply Theorgm 1)0.1, to state the following result for complex-valued
functions.

)

Proposition 12.2. Lety,0 € R with7? + 6% = 3, f : [a,b] — C be a Lebesgue integrable
function onfa, b andr > 0 such that

rmax {[Re f (¢)[, [Im f (£)|} <y Re f(¢) =6 Im f(#)

fora.e.t € [a,b]. Then

(12.3) r/bmax{|Ref(t)|,|Imf(t)\}dt§max{/bRef(t)dt | /blmf(t)dt‘}.
The equality holds irff (12.3) if and only if both
b b
v [ Refyar—s [ g /max{|Ref<>|,|1mf<t>|}dt
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and

7/:Ref(t)dt—5/ab1mf(t)dt:max{ /abRef(t)dt , /ablmf(t)dt‘}.

Now, consider the Banach spaé@, |-|2p> withp > 1. Let F : C — C, F (z) = cz with

lc| = 2% 7 (p > 1). Obviously, F is linear and by Hélder’s inequality

F(z)] 2*75\/|Rez| + [Im 2|

2], (IRe 2| + |Im z|*) Z

Since, forzo = 1+ i we have{F (z)| = 27, |2, = 2% (p > 1), hence

F
|1l = sup ]
27#0 |Z|2p

=1,
showing thatF" is a bounded linear functional of unit norm (€K€, |-|2p> ,(p > 1). Therefore

on using Theorern 10.1, we may state the following result.

1

Proposition 12.3. Let o, ¢ € R with 2 + ¢? = 2% 2 (p>1), f:[a,b] — C be a Lebesgue
integrable function orja, b] andr > 0 such that

r[IRe f (O] + [Tm f (£)7]% < pRe f (£) — ¢Tm f ()

fora.e.t € [a,b], then

b 1
(12.4) 7’/ [[Re £ (&) + | £ (1) ] dt

/:Ref(t)dt

b
/ I f (1) dt
where equality holds irj (12.4) if and only if both

b b b 1
o [ Resdt—o [tmf@yd=r [ [[Ref @)+ mf )] d

2p ﬁ
@/bRef(t)dt—¢/bImf(t)dt: /bRef(t)dt —i—/bImf(t)dt ] :

Remark 12.4.If p = 1 above, and
r|f () <¢Ref(t)—¢Imf(t) fora.e.te€ [a,b],

providedy, ¥ € R andy? + 9% = 1,7 > 0, then we have a reverse of the classical continuous

triangle inequality for modulus:

rlﬂﬂMﬁs
/Ref £) dt — w/lmf /\f )| di
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and

go/abRef(t)dt—z/J/abImf(t)dt: /abf(t)dt

If we apply Theoren 11]1, then, in a similar manner we can prove the following result for
complex-valued functions.

Proposition 12.5.Let o, 8 € R with o> + 3> = 1, f,k : [a,0] — C Lebesgue integrable
functions such that

[Re f(£)] + [Im f (¢)] < aRe f(t) = Slm f () + & (¢)

fora.e.t € [a,b]. Then
/b I £ (1) dtH

b
< /  (t) dt.
Applying Theorenf 11]1, fofC, |-| ) we may state:

Proposition 12.6.Lety,6 € R with 4% + 6> = 1, f,k : [a,b] — C Lebesgue integrable
functions ora, b] such that

max {|Re f ()], [Im f ()|} < yRe f(t) —Im f (¢) + k (1)

fora.e.t € [a,b]. Then
/bRef(t)dt' : /ablmf(t)dt'}

“ g/abk(t)dt.

Finally, utilising Theorem 11|1, fo((C, H2p) with p > 1, we may state that:

/bRef(t)dt‘ +

a

0) [ Resar+ [y

b
(0 §)/ max {|Re f (¢)|, |Im f (¢)|} dt — max{

[NIES

Proposition 12.7. Letp, ¢ € R with ©? + ¢* = 2%
integrable functions such that

[[Re £ (1) + [Im f (D] < pRe f (£) — ¢Tm f (£) + k (£)
fora.e.t € [a,b]. Then

(p>1), f,k:a,b] — Cbe Lebesgue

©2) [ [IRes OFF + s (0] at

2p
+

/ablmf(t)dt

2p ﬁ b
] < / k(1) dt.
Remark 12.8. If p = 1 in the above proposition, then, from
f@)] <pRef(t)—¢Imf(t)+k(t) fora.e.tela,bl,
providedy, v € R andy? + ¥? = 1, we have the additive reverse of the classical continuous

triangle inequality
b b
/f(t)dt‘g/ k(t)dt.
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