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ABSTRACT. Recent reverses for the discrete generalised triangle inequality and its continuous
version for vector-valued integrals in Banach spaces are surveyed. New results are also obtained.
Particular instances of interest in Hilbert spaces and for complex numbers and functions are
pointed out as well.
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1. I NTRODUCTION

Thegeneralised triangle inequality, namely∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

‖xi‖ ,

provided(X, ‖.‖) is a normed linear space over the real or complex fieldK = R, C andxi, i ∈
{1, ..., n} are vectors inX plays a fundamental role in establishing various analytic and geo-
metric properties of such spaces.

With no less importance, thecontinuousversion of it, i.e.,

(1.1)

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≤ ∫ b

a

‖f (t)‖ dt,

wheref : [a, b] ⊂ R → X is a strongly measurable function on the compact interval[a, b]
with values in the Banach spaceX and‖f (·)‖ is Lebesgue integrable on[a, b] , is crucial in the
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2 S.S. DRAGOMIR

Analysis of vector-valued functions with countless applications in Functional Analysis, Opera-
tor Theory, Differential Equations, Semigroups Theory and related fields.

Surprisingly enough, the reverses of these, i.e., inequalities of the following type
n∑

i=1

‖xi‖ ≤ C

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
∫ b

a

‖f (t)‖ dt ≤ C

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with C ≥ 1, which we callmultiplicative reverses, or

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+M,

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+M,

with M ≥ 0, which we calladditive reverses, under suitable assumptions for the involved
vectors or functions, are far less known in the literature.

It is worth mentioning though, the following reverse of the generalised triangle inequality for
complex numbers

cos θ
n∑

k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ,
provided the complex numberszk, k ∈ {1, . . . , n} satisfy the assumption

a− θ ≤ arg (zk) ≤ a+ θ, for any k ∈ {1, . . . , n} ,

wherea ∈ R andθ ∈
(
0, π

2

)
was first discovered by M. Petrovich in 1917, [22] (see [20, p.

492]) and subsequently was rediscovered by other authors, including J. Karamata [14, p. 300
– 301], H.S. Wilf [23], and in an equivalent form by M. Marden [18]. Marden and Wilf have
outlined in their work the important fact that reverses of the generalised triangle inequality may
be successfully applied to the location problem for the roots of complex polynomials.

In 1966, J.B. Diaz and F.T. Metcalf [2] proved the following reverse of the triangle inequality
in the more general case of inner product spaces:

Theorem 1.1(Diaz-Metcalf, 1966). Leta be a unit vector in the inner product space(H; 〈·, ·〉)
over the real or complex number fieldK. Suppose that the vectorsxi ∈ H\ {0} , i ∈ {1, . . . , n}
satisfy

0 ≤ r ≤ Re 〈xi, a〉
‖xi‖

, i ∈ {1, . . . , n} .

Then

r

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if

n∑
i=1

xi = r

(
n∑

i=1

‖xi‖

)
a.

A generalisation of this result for orthonormal families is incorporated in the following result
[2].

Theorem 1.2(Diaz-Metcalf, 1966). Let a1, . . . , an be orthonormal vectors inH. Suppose the
vectorsx1, . . . , xn ∈ H\ {0} satisfy

0 ≤ rk ≤
Re 〈xi, ak〉
‖xi‖

, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} .
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REVERSES OF THETRIANGLE INEQUALITY 3

Then (
m∑

k=1

r2
k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if

n∑
i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkak.

Similar results valid for semi-inner products may be found in [15], [16] and [19].
Now, for the scalar continuous case.
It appears, see [20, p. 492], that the first reverse inequality for (1.1) in the case of complex

valued functions was obtained by J. Karamata in his book from 1949, [14]. It can be stated as

cos θ

∫ b

a

|f (x)| dx ≤
∣∣∣∣∫ b

a

f (x) dx

∣∣∣∣
provided

−θ ≤ arg f (x) ≤ θ, x ∈ [a, b]

for givenθ ∈
(
0, π

2

)
.

This result has recently been extended by the author for the case of Bochner integrable func-
tions with values in a Hilbert spaceH. If by L ([a, b] ;H) , we denote the space of Bochner
integrable functions with values in a Hilbert spaceH, i.e., we recall thatf ∈ L ([a, b] ;H) if and
only if f : [a, b] → H is strongly measurable on[a, b] and the Lebesgue integral

∫ b

a
‖f (t)‖ dt is

finite, then

(1.2)
∫ b

a

‖f (t)‖ dt ≤ K

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
provided thatf satisfies the condition

‖f (t)‖ ≤ K Re 〈f (t) , e〉 for a.e.t ∈ [a, b] ,

wheree ∈ H, ‖e‖ = 1 andK ≥ 1 are given. The case of equality holds in (1.2) if and only if∫ b

a

f (t) dt =
1

K

(∫ b

a

‖f (t)‖ dt
)
e.

The aim of the present paper is to survey some of the recent results concerning multiplicative
and additive reverses for both the discrete and continuous version of the triangle inequalities in
Banach spaces. New results and applications for the important case of Hilbert spaces and for
complex numbers and complex functions have been provided as well.

2. DIAZ -M ETCALF TYPE I NEQUALITIES

In [2], Diaz and Metcalf established the following reverse of the generalised triangle inequal-
ity in real or complex normed linear spaces.

Theorem 2.1 (Diaz-Metcalf, 1966). If F : X → K, K = R,C is a linear functional of a
unit norm defined on the normed linear spaceX endowed with the norm‖·‖ and the vectors
x1, . . . , xn satisfy the condition

(2.1) 0 ≤ r ≤ ReF (xi) , i ∈ {1, . . . , n} ;
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4 S.S. DRAGOMIR

then

(2.2) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if both

(2.3) F

(
n∑

i=1

xi

)
= r

n∑
i=1

‖xi‖

and

(2.4) F

(
n∑

i=1

xi

)
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
If X = H, (H; 〈·, ·〉) is an inner product space andF (x) = 〈x, e〉 , ‖e‖ = 1, then the

condition (2.1) may be replaced with the simpler assumption

(2.5) 0 ≤ r ‖xi‖ ≤ Re 〈xi, e〉 , i = 1, . . . , n,

which implies the reverse of the generalised triangle inequality (2.2). In this case the equality
holds in (2.2) if and only if [2]

(2.6)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
e.

Theorem 2.2(Diaz-Metcalf, 1966). Let F1, . . . , Fm be linear functionals onX, each of unit
norm. As in[2], let consider the real numberc defined by

c = sup
x 6=0

[∑m
k=1 |Fk (x)|2

‖x‖2

]
;

it then follows that1 ≤ c ≤ m. Suppose the vectorsx1, . . . , xn wheneverxi 6= 0, satisfy

(2.7) 0 ≤ rk ‖xi‖ ≤ ReFk (xi) , i = 1, . . . , n, k = 1, . . . ,m.

Then one has the following reverse of the generalised triangle inequality[2]

(2.8)

(∑m
k=1 r

2
k

c

) 1
2

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if both

(2.9) Fk

(
n∑

i=1

xi

)
= rk

n∑
i=1

‖xi‖ , k = 1, . . . ,m

and

(2.10)
m∑

k=1

[
Fk

(
n∑

i=1

xi

)]2

= c

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

If X = H, an inner product space, then, forFk (x) = 〈x, ek〉 ,where{ek}k=1,n is an orthonor-
mal family inH, i.e.,〈ei, ej〉 = δij, i, j ∈ {1, . . . , k} , δij is Kronecker delta, the condition (2.7)
may be replaced by

(2.11) 0 ≤ rk ‖xi‖ ≤ Re 〈xi, ek〉 , i = 1, . . . , n, k = 1, . . . ,m;
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REVERSES OF THETRIANGLE INEQUALITY 5

implying the following reverse of the generalised triangle inequality

(2.12)

(
m∑

k=1

r2
k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where the equality holds if and only if

(2.13)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkek.

The aim of the following sections is to present recent reverses of the triangle inequality ob-
tained by the author in [5] and [6]. New results are established for the general case of normed
spaces. Their versions in inner product spaces are analyzed and applications for complex num-
bers are given as well.

For various classical inequalities related to the triangle inequality, see Chapter XVII of the
book [20] and the references therein.

3. I NEQUALITIES OF DIAZ -M ETCALF TYPE FOR m FUNCTIONALS

3.1. The Case of Normed Spaces.The following result may be stated [5].

Theorem 3.1(Dragomir, 2004). Let(X, ‖·‖) be a normed linear space over the real or complex
number fieldK and Fk : X → K, k ∈ {1, . . . ,m} continuous linear functionals onX. If
xi ∈ X\ {0} , i ∈ {1, . . . , n} are such that there exists the constantsrk ≥ 0, k ∈ {1, . . . ,m}
with

∑m
k=1 rk > 0 and

(3.1) ReFk (xi) ≥ rk ‖xi‖

for each i ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(3.2)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 Fk‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (3.2) if both

(3.3)

(
m∑

k=1

Fk

)(
n∑

i=1

xi

)
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖

and

(3.4)

(
m∑

k=1

Fk

)(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Proof. Utilising the hypothesis (3.1) and the properties of the modulus, we have

I :=

∣∣∣∣∣
(

m∑
k=1

Fk

)(
n∑

i=1

xi

)∣∣∣∣∣ ≥
∣∣∣∣∣Re

[(
m∑

k=1

Fk

)(
n∑

i=1

xi

)]∣∣∣∣∣(3.5)

≥
m∑

k=1

ReFk

(
n∑

i=1

xi

)
=

m∑
k=1

n∑
i=1

ReFk (xi)

≥

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .
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6 S.S. DRAGOMIR

On the other hand, by the continuity property ofFk, k ∈ {1, . . . ,m} we obviously have

(3.6) I =

∣∣∣∣∣
(

m∑
k=1

Fk

)(
n∑

i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Making use of (3.5) and (3.6), we deduce the desired inequality (3.2).

Now, if (3.3) and (3.4) are valid, then, obviously, the case of equality holds true in the in-
equality (3.2).

Conversely, if the case of equality holds in (3.2), then it must hold in all the inequalities used
to prove (3.2). Therefore we have

(3.7) ReFk (xi) = rk ‖xi‖

for each i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} ;

(3.8)
m∑

k=1

ImFk

(
n∑

i=1

xi

)
= 0

and

(3.9)
m∑

k=1

ReFk

(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Note that, from (3.7), by summation overi andk, we get

(3.10) Re

[(
m∑

k=1

Fk

)(
n∑

i=1

xi

)]
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

Since (3.8) and (3.10) imply (3.3), while (3.9) and (3.10) imply (3.4) hence the theorem is
proved. �

Remark 3.2. If the norms‖Fk‖ , k ∈ {1, . . . ,m} are easier to find, then, from (3.2), one may
get the (coarser) inequality that might be more useful in practice:

(3.11)
n∑

i=1

‖xi‖ ≤
∑m

k=1 ‖Fk‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
3.2. The Case of Inner Product Spaces.The case of inner product spaces, in which we may
provide a simpler condition for equality, is of interest in applications [5].

Theorem 3.3 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space over the real or
complex number fieldK, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If rk ≥ 0,
k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 satisfy

(3.12) Re 〈xi, ek〉 ≥ rk ‖xi‖

for each i ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(3.13)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (3.13) if and only if

(3.14)
n∑

i=1

xi =

∑m
k=1 rk

‖
∑m

k=1 ek‖2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.
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REVERSES OF THETRIANGLE INEQUALITY 7

Proof. By the properties of inner product and by (3.12), we have∣∣∣∣∣
〈

n∑
i=1

xi,

m∑
k=1

ek

〉∣∣∣∣∣ ≥
∣∣∣∣∣

m∑
k=1

Re

〈
n∑

i=1

xi, ek

〉∣∣∣∣∣(3.15)

≥
m∑

k=1

Re

〈
n∑

i=1

xi, ek

〉

=
m∑

k=1

n∑
i=1

Re 〈xi, ek〉 ≥

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ > 0.

Observe also that, by (3.15),
∑m

k=1 ek 6= 0.
On utilising Schwarz’s inequality in the inner product space(H; 〈·, ·〉) for

∑n
i=1 xi,

∑m
k=1 ek,

we have

(3.16)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣ .
Making use of (3.15) and (3.16), we can conclude that (3.13) holds.

Now, if (3.14) holds true, then, by taking the norm, we have∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =
(
∑m

k=1 rk)
∑n

i=1 ‖xi‖
‖
∑m

k=1 ek‖2

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
=

(
∑m

k=1 rk)

‖
∑m

k=1 ek‖

n∑
i=1

‖xi‖ ,

i.e., the case of equality holds in (3.13).
Conversely, if the case of equality holds in (3.13), then it must hold in all the inequalities

used to prove (3.13). Therefore, we have

(3.17) Re 〈xi, ek〉 = rk ‖xi‖

for each i ∈ {1, . . . , n} andk ∈ {1, . . . ,m} ,

(3.18)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
and

(3.19) Im

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
= 0.

From (3.17), on summing overi andk, we get

(3.20) Re

〈
n∑

i=1

xi,

m∑
k=1

ek

〉
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

By (3.19) and (3.20), we have

(3.21)

〈
n∑

i=1

xi,

m∑
k=1

ek

〉
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .
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8 S.S. DRAGOMIR

On the other hand, by the use of the following identity in inner product spaces

(3.22)

∥∥∥∥u− 〈u, v〉 v
‖v‖2

∥∥∥∥2

=
‖u‖2 ‖v‖2 − |〈u, v〉|2

‖v‖2 , v 6= 0,

the relation (3.18) holds if and only if

(3.23)
n∑

i=1

xi =
〈
∑n

i=1 xi,
∑m

k=1 ek〉
‖
∑m

k=1 ek‖2

m∑
k=1

ek.

Finally, on utilising (3.21) and (3.23), we deduce that the condition (3.14) is necessary for the
equality case in (3.13). �

Before we give a corollary of the above theorem, we need to state the following lemma that
has been basically obtained in [4]. For the sake of completeness, we provide a short proof here
as well.

Lemma 3.4(Dragomir, 2004). Let(H; 〈·, ·〉) be an inner product space over the real or complex
number fieldK andx, a ∈ H, r > 0 such that:

(3.24) ‖x− a‖ ≤ r < ‖a‖ .
Then we have the inequality

(3.25) ‖x‖
(
‖a‖2 − r2

) 1
2 ≤ Re 〈x, a〉

or, equivalently

(3.26) ‖x‖2 ‖a‖2 − [Re 〈x, a〉]2 ≤ r2 ‖x‖2 .

The case of equality holds in (3.25) (or in (3.26)) if and only if

(3.27) ‖x− a‖ = r and ‖x‖2 + r2 = ‖a‖2 .

Proof. From the first part of (3.24), we have

(3.28) ‖x‖2 + ‖a‖2 − r2 ≤ 2 Re 〈x, a〉 .

By the second part of (3.24) we have
(
‖a‖2 − r2

) 1
2 > 0, therefore, by (3.28), we may state that

(3.29) 0 <
‖x‖2(

‖a‖2 − r2
) 1

2

+
(
‖a‖2 − r2

) 1
2 ≤ 2 Re 〈x, a〉(

‖a‖2 − r2
) 1

2

.

Utilising the elementary inequality

1

α
q + αp ≥ 2

√
pq, α > 0, p > 0, q ≥ 0;

with equality if and only ifα =
√

q
p
, we may state (forα =

(
‖a‖2 − r2

) 1
2 , p = 1, q = ‖x‖2)

that

(3.30) 2 ‖x‖ ≤ ‖x‖2(
‖a‖2 − r2

) 1
2

+
(
‖a‖2 − r2

) 1
2 .

The inequality (3.25) follows now by (3.29) and (3.30).
From the above argument, it is clear that the equality holds in (3.25) if and only if it holds

in (3.29) and (3.30). However, the equality holds in (3.29) if and only if‖x− a‖ = r and in

(3.30) if and only if
(
‖a‖2 − r2

) 1
2 = ‖x‖ .

The proof is thus completed. �
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We may now state the following corollary [5].

Corollary 3.5. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If ρk ≥ 0, k ∈ {1, . . . ,m} with

(3.31) ‖xi − ek‖ ≤ ρk < ‖ek‖

for each i ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(3.32)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (3.32) if and only if

n∑
i=1

xi =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

‖
∑m

k=1 ek‖2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

Proof. Utilising Lemma 3.4, we have from (3.31) that

‖xi‖
(
‖ek‖2 − ρ2

k

) 1
2 ≤ Re 〈xi, ek〉

for eachk ∈ {1, . . . ,m} andi ∈ {1, . . . , n} .
Applying Theorem 3.3 for

rk :=
(
‖ek‖2 − ρ2

k

) 1
2 , k ∈ {1, . . . ,m} ,

we deduce the desired result. �

Remark 3.6. If {ek}k∈{1,...,m} are orthogonal, then (3.32) becomes

(3.33)
n∑

i=1

‖xi‖ ≤
(∑m

k=1 ‖ek‖2) 1
2∑m

k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
with equality if and only if

n∑
i=1

xi =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2∑m

k=1 ‖ek‖2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

Moreover, if{ek}k∈{1,...,m} is assumed to be orthonormal and

‖xi − ek‖ ≤ ρk for k ∈ {1, . . . ,m} , i ∈ {1, . . . , n}

whereρk ∈ [0, 1) for k ∈ {1, . . . ,m} , then

(3.34)
n∑

i=1

‖xi‖ ≤
√
m∑m

k=1 (1− ρ2
k)

1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
with equality if and only if

n∑
i=1

xi =

∑m
k=1 (1− ρ2

k)
1
2

m

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

The following lemma may be stated as well [3].

J. Inequal. Pure and Appl. Math., 6(5) Art. 129, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Lemma 3.7(Dragomir, 2004). Let(H; 〈·, ·〉) be an inner product space over the real or complex
number fieldK, x, y ∈ H andM ≥ m > 0. If

(3.35) Re 〈My − x, x−my〉 ≥ 0

or, equivalently,

(3.36)

∥∥∥∥x− m+M

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ ,

then

(3.37) ‖x‖ ‖y‖ ≤ 1

2
· M +m√

mM
Re 〈x, y〉 .

The equality holds in (3.37) if and only if the case of equality holds in (3.35) and

(3.38) ‖x‖ =
√
mM ‖y‖ .

Proof. Obviously,

Re 〈My − x, x−my〉 = (M +m) Re 〈x, y〉 − ‖x‖2 −mM ‖y‖2 .

Then (3.35) is clearly equivalent to

(3.39)
‖x‖2

√
mM

+
√
mM ‖y‖2 ≤ M +m√

mM
Re 〈x, y〉 .

Since, obviously,

(3.40) 2 ‖x‖ ‖y‖ ≤ ‖x‖2

√
mM

+
√
mM ‖y‖2 ,

with equality iff ‖x‖ =
√
mM ‖y‖ , hence (3.39) and (3.40) imply (3.37).

The case of equality is obvious and we omit the details. �

Finally, we may state the following corollary of Theorem 3.3, see [5].

Corollary 3.8. Let (H; 〈·, ·〉) be an inner product space over the real or complex number field
K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If Mk > µk > 0, k ∈ {1, . . . ,m} are
such that either

(3.41) Re 〈Mkek − xi, xi − µkek〉 ≥ 0

or, equivalently, ∥∥∥∥xi −
Mk + µk

2
ek

∥∥∥∥ ≤ 1

2
(Mk − µk) ‖ek‖

for eachk ∈ {1, . . . ,m} andi ∈ {1, . . . , n} , then

(3.42)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (3.42) if and only if

n∑
i=1

xi =

∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

‖
∑m

k=1 ek‖2

n∑
i=1

‖xi‖
m∑

k=1

ek.
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Proof. Utilising Lemma 3.7, by (3.41) we deduce

2 ·
√
µkMk

µk +Mk

‖xi‖ ‖ek‖ ≤ Re 〈xi, ek〉

for eachk ∈ {1, . . . ,m} andi ∈ {1, . . . , n} .
Applying Theorem 3.3 for

rk :=
2 ·
√
µkMk

µk +Mk

‖ek‖ , k ∈ {1, . . . ,m} ,

we deduce the desired result. �

4. DIAZ -M ETCALF I NEQUALITY FOR SEMI -I NNER PRODUCTS

In 1961, G. Lumer [17] introduced the following concept.

Definition 4.1. LetX be a linear space over the real or complex number fieldK. The mapping
[·, ·] : X ×X → K is called asemi-inner productonX, if the following properties are satisfied
(see also [3, p. 17]):

(i) [x+ y, z] = [x, z] + [y, z] for all x, y, z ∈ X;
(ii) [λx, y] = λ [x, y] for all x, y ∈ X andλ ∈ K;

(iii) [x, x] ≥ 0 for all x ∈ X and[x, x] = 0 impliesx = 0;
(iv) |[x, y]|2 ≤ [x, x] [y, y] for all x, y ∈ X;
(v) [x, λy] = λ̄ [x, y] for all x, y ∈ X andλ ∈ K.

It is well known that the mappingX 3 x 7−→ [x, x]
1
2 ∈ R is a norm onX and for anyy ∈ X,

the functionalX 3 x
ϕy7−→ [x, y] ∈ K is a continuous linear functional onX endowed with the

norm‖·‖ generated by[·, ·] . Moreover, one has‖ϕy‖ = ‖y‖ (see for instance [3, p. 17]).
Let (X, ‖·‖) be a real or complex normed space. IfJ : X → 2X

∗ is thenormalised duality
mappingdefined onX, i.e., we recall that (see for instance [3, p. 1])

J (x) = {ϕ ∈ X∗|ϕ (x) = ‖ϕ‖ ‖x‖ , ‖ϕ‖ = ‖x‖} , x ∈ X,

then we may state the following representation result (see for instance [3, p. 18]):
Each semi-inner product[·, ·] : X × X → K that generates the norm‖·‖ of the normed

linear space(X, ‖·‖) over the real or complex number fieldK, is of the form

[x, y] =
〈
J̃ (y) , x

〉
for any x, y ∈ X,

whereJ̃ is a selection of the normalised duality mapping and〈ϕ, x〉 := ϕ (x) for ϕ ∈ X∗ and
x ∈ X.

Utilising the concept of semi-inner products, we can state the following particular case of the
Diaz-Metcalf inequality.

Corollary 4.1. Let (X, ‖·‖) be a normed linear space,[·, ·] : X×X → K a semi-inner product
generating the norm‖·‖ ande ∈ X, ‖e‖ = 1. If xi ∈ X, i ∈ {1, . . . , n} andr ≥ 0 such that

(4.1) r ‖xi‖ ≤ Re [xi, e] for each i ∈ {1, . . . , n} ,

then we have the inequality

(4.2) r

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
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The case of equality holds in (4.2) if and only if both

(4.3)

[
n∑

i=1

xi, e

]
= r

n∑
i=1

‖xi‖

and

(4.4)

[
n∑

i=1

xi, e

]
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The proof is obvious from the Diaz-Metcalf theorem [2, Theorem 3] applied for the continu-

ous linear functionalFe (x) = [x, e] , x ∈ X.
Before we provide a simpler necessary and sufficient condition of equality in (4.2), we need

to recall the concept of strictly convex normed spaces and a classical characterisation of these
spaces.

Definition 4.2. A normed linear space(X, ‖·‖) is said to be strictly convex if for everyx, y
fromX with x 6= y and‖x‖ = ‖y‖ = 1, we have‖λx+ (1− λ) y‖ < 1 for all λ ∈ (0, 1) .

The following characterisation of strictly convex spaces is useful in what follows (see [1],
[13], or [3, p. 21]).

Theorem 4.2. Let (X, ‖·‖) be a normed linear space overK and [·, ·] a semi-inner product
generating its norm. The following statements are equivalent:

(i) (X, ‖·‖) is strictly convex;
(ii) For everyx, y ∈ X, x, y 6= 0 with [x, y] = ‖x‖ ‖y‖ , there exists aλ > 0 such that

x = λy.

The following result may be stated.

Corollary 4.3. Let (X, ‖·‖) be a strictly convex normed linear space,[·, ·] a semi-inner product
generating the norm ande, xi (i ∈ {1, . . . , n}) as in Corollary 4.1. Then the case of equality
holds in (4.2) if and only if

(4.5)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
e.

Proof. If (4.5) holds true, then, obviously∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = r

(
n∑

i=1

‖xi‖

)
‖e‖ = r

n∑
i=1

‖xi‖ ,

which is the equality case in (4.2).
Conversely, if the equality holds in (4.2), then by Corollary 4.1, we have that (4.3) and (4.4)

hold true. Utilising Theorem 4.2, we conclude that there exists aµ > 0 such that

(4.6)
n∑

i=1

xi = µe.

Inserting this in (4.3) we get

µ ‖e‖2 = r

n∑
i=1

‖xi‖
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giving

(4.7) µ = r
n∑

i=1

‖xi‖ .

Finally, by (4.6) and (4.7) we deduce (4.5) and the corollary is proved. �

5. OTHER M ULTIPLICATIVE REVERSES FORm FUNCTIONALS

Assume thatFk, k ∈ {1, . . . ,m} are bounded linear functionals defined on the normed linear
spaceX.

Forp ∈ [1,∞), define

(cp) cp := sup
x 6=0

[∑m
k=1 |Fk (x)|p

‖x‖p

] 1
p

and forp = ∞,

(c∞) c∞ := sup
x 6=0

[
max

1≤k≤m

{
|Fk (x)|
‖x‖

}]
.

Then, by the fact that|Fk (x)| ≤ ‖Fk‖ ‖x‖ for any x ∈ X, where‖Fk‖ is the norm of the
functionalFk, we have that

cp ≤

(
m∑

k=1

‖Fk‖p

) 1
p

, p ≥ 1

and

c∞ ≤ max
1≤k≤m

‖Fk‖ .

We may now state and prove a new reverse inequality for the generalised triangle inequality
in normed linear spaces.

Theorem 5.1.Letxi, rk, Fk, k ∈ {1, . . . ,m}, i ∈ {1, . . . , n} be as in the hypothesis of Theorem
3.1. Then we have the inequalities

(5.1) (1 ≤)

∑n
i=1 ‖xi‖

‖
∑n

i=1 xi‖
≤ c∞

max
1≤k≤m

{rk}

≤ max
1≤k≤m

‖Fk‖

max
1≤k≤m

{rk}

 .

The case of equality holds in (5.1) if and only if

(5.2) Re

[
Fk

(
n∑

i=1

xi

)]
= rk

n∑
i=1

‖xi‖ for each k ∈ {1, . . . ,m}

and

(5.3) max
1≤k≤m

Re

[
Fk

(
n∑

i=1

xi

)]
= c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
Proof. Since, by the definition ofc∞, we have

c∞ ‖x‖ ≥ max
1≤k≤m

|Fk (x)| , for any x ∈ X,
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then we can state, forx =
∑n

i=1 xi, that

c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≥ max
1≤k≤m

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≥ max
1≤k≤m

[∣∣∣∣∣ReFk

(
n∑

i=1

xi

)∣∣∣∣∣
]

(5.4)

≥ max
1≤k≤m

[
Re

n∑
i=1

Fk (xi)

]
= max

1≤k≤m

[
n∑

i=1

ReFk (xi)

]
.

Utilising the hypothesis (3.1) we obviously have

max
1≤k≤m

[
n∑

i=1

ReFk (xi)

]
≥ max

1≤k≤m
{rk} ·

n∑
i=1

‖xi‖ .

Also,
∑n

i=1 xi 6= 0, because, by the initial assumptions, not allrk andxi with k ∈ {1, . . . ,m}
andi ∈ {1, . . . , n} are allowed to be zero. Hence the desired inequality (5.1) is obtained.

Now, if (5.2) is valid, then, taking the maximum overk ∈ {1, . . . ,m} in this equality we get

max
1≤k≤m

Re

[
Fk

(
n∑

i=1

xi

)]
= max

1≤k≤m
{rk}

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
which, together with (5.3) provides the equality case in (5.1).

Now, if the equality holds in (5.1), it must hold in all the inequalities used to prove (5.1),
therefore, we have

(5.5) ReFk (xi) = rk ‖xi‖ for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}
and, from (5.4),

c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = max
1≤k≤m

Re

[
Fk

(
n∑

i=1

xi

)]
,

which is (5.3).
From (5.5), on summing overi ∈ {1, . . . , n} , we get (5.2), and the theorem is proved.�

The following result in normed spaces also holds.

Theorem 5.2.Letxi, rk, Fk, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} be as in the hypothesis of Theorem
3.1. Then we have the inequality

(5.6) (1 ≤)

∑n
i=1 ‖xi‖

‖
∑n

i=1 xi‖
≤ cp

(
∑m

k=1 r
p
k)

1
p

(
≤
∑m

k=1 ‖Fk‖p∑m
k=1 r

p
k

) 1
p

,

wherep ≥ 1.
The case of equality holds in (5.6) if and only if

(5.7) Re

[
Fk

(
n∑

i=1

xi

)]
= rk

n∑
i=1

‖xi‖ for each k ∈ {1, . . . ,m}

and

(5.8)
m∑

k=1

[
ReFk

(
n∑

i=1

xi

)]p

= cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

.

Proof. By the definition ofcp, p ≥ 1, we have

cpp ‖x‖
p ≥

m∑
k=1

|Fk (x)|p for any x ∈ X,
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implying that

cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

≥
m∑

k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣
p

≥
m∑

k=1

∣∣∣∣∣ReFk

(
n∑

i=1

xi

)∣∣∣∣∣
p

(5.9)

≥
m∑

k=1

[
ReFk

(
n∑

i=1

xi

)]p

=
m∑

k=1

[
n∑

i=1

ReFk (xi)

]p

.

Utilising the hypothesis (3.1), we obviously have that

(5.10)
m∑

k=1

[
n∑

i=1

ReFk (xi)

]p

≥
m∑

k=1

[
n∑

i=1

rk ‖xi‖

]p

=
m∑

k=1

rp
k

(
n∑

i=1

‖xi‖

)p

.

Making use of (5.9) and (5.10), we deduce

cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

≥

(
m∑

k=1

rp
k

)(
n∑

i=1

‖xi‖

)p

,

which implies the desired inequality (5.6).
If (5.7) holds true, then, taking the powerp and summing overk ∈ {1, . . . ,m} , we deduce

m∑
k=1

[
Re

[
Fk

(
n∑

i=1

xi

)]]p

=
m∑

k=1

rp
k

(
n∑

i=1

‖xi‖

)p

,

which, together with (5.8) shows that the equality case holds true in (5.6).
Conversely, if the case of equality holds in (5.6), then it must hold in all inequalities needed

to prove (5.6), therefore, we must have:

(5.11) ReFk (xi) = rk ‖xi‖ for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}
and, from (5.9),

cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

=
m∑

k=1

[
ReFk

(
n∑

i=1

xi

)]p

,

which is exactly (5.8).
From (5.11), on summing overi from 1 ton,we deduce (5.7), and the theorem is proved.�

6. AN ADDITIVE REVERSE FOR THE TRIANGLE I NEQUALITY

6.1. The Case of One Functional.In the following we provide an alternative of the Diaz-
Metcalf reverse of the generalised triangle inequality [6].

Theorem 6.1(Dragomir, 2004). Let(X, ‖·‖) be a normed linear space over the real or complex
number fieldK andF : X → K a linear functional with the property that|F (x)| ≤ ‖x‖ for
anyx ∈ X. If xi ∈ X, ki ≥ 0, i ∈ {1, . . . , n} are such that

(6.1) (0 ≤) ‖xi‖ − ReF (xi) ≤ ki for each i ∈ {1, . . . , n} ,
then we have the inequality

(6.2) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (6.2) if and only if both

(6.3) F

(
n∑

i=1

xi

)
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ and F

(
n∑

i=1

xi

)
=

n∑
i=1

‖xi‖ −
n∑

i=1

ki.
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Proof. If we sum in (6.1) overi from 1 to n, then we get

(6.4)
n∑

i=1

‖xi‖ ≤ Re

[
F

(
n∑

i=1

xi

)]
+

n∑
i=1

ki.

Taking into account that|F (x)| ≤ ‖x‖ for eachx ∈ X, then we may state that

Re

[
F

(
n∑

i=1

xi

)]
≤

∣∣∣∣∣ReF

(
n∑

i=1

xi

)∣∣∣∣∣(6.5)

≤

∣∣∣∣∣F
(

n∑
i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Now, making use of (6.4) and (6.5), we deduce (6.2).

Obviously, if (6.3) is valid, then the case of equality in (6.2) holds true.
Conversely, if the equality holds in (6.2), then it must hold in all the inequalities used to prove

(6.2), therefore we have
n∑

i=1

‖xi‖ = Re

[
F

(
n∑

i=1

xi

)]
+

n∑
i=1

ki

and

Re

[
F

(
n∑

i=1

xi

)]
=

∣∣∣∣∣F
(

n∑
i=1

xi

)∣∣∣∣∣ =

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
which imply (6.3). �

The following corollary may be stated [6].

Corollary 6.2. Let (X, ‖·‖) be a normed linear space,[·, ·] : X×X → K a semi-inner product
generating the norm‖·‖ ande ∈ X, ‖e‖ = 1. If xi ∈ X, ki ≥ 0, i ∈ {1, . . . , n} are such that

(6.6) (0 ≤) ‖xi‖ − Re [xi, e] ≤ ki for each i ∈ {1, . . . , n} ,
then we have the inequality

(6.7) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (6.7) if and only if both

(6.8)

[
n∑

i=1

xi, e

]
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ and

[
n∑

i=1

xi, e

]
=

n∑
i=1

‖xi‖ −
n∑

i=1

ki.

Moreover, if(X, ‖·‖) is strictly convex, then the case of equality holds in (6.7) if and only if

(6.9)
n∑

i=1

‖xi‖ ≥
n∑

i=1

ki

and

(6.10)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
n∑

i=1

ki

)
· e.

Proof. The first part of the corollary is obvious by Theorem 6.1 applied for the continuous linear
functional of unit normFe, Fe (x) = [x, e] , x ∈ X. The second part may be shown on utilising
a similar argument to the one from the proof of Corollary 4.3. We omit the details. �
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Remark 6.3. If X = H, (H; 〈·, ·〉) is an inner product space, then from Corollary 6.2 we deduce
the additive reverse inequality obtained in Theorem 7 of [12]. For further similar results in inner
product spaces, see [4] and [12].

6.2. The Case ofm Functionals. The following result generalising Theorem 6.1 may be stated
[6].

Theorem 6.4(Dragomir, 2004). Let(X, ‖·‖) be a normed linear space over the real or complex
number fieldK. If Fk, k ∈ {1, . . . ,m} are bounded linear functionals defined onX andxi ∈ X,
Mik ≥ 0 for i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} are such that

(6.11) ‖xi‖ − ReFk (xi) ≤Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , then we have the inequality

(6.12)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

The case of equality holds in (6.12) if both

(6.13)
1

m

m∑
k=1

Fk

(
n∑

i=1

xi

)
=

∥∥∥∥∥ 1

m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
and

(6.14)
1

m

m∑
k=1

Fk

(
n∑

i=1

xi

)
=

n∑
i=1

‖xi‖ −
1

m

m∑
k=1

n∑
j=1

Mik.

Proof. If we sum (6.11) overi from 1 to n, then we deduce

n∑
i=1

‖xi‖ − ReFk

(
n∑

i=1

xi

)
≤

n∑
i=1

Mik

for eachk ∈ {1, . . . ,m} .
Summing these inequalities overk from 1 tom, we deduce

(6.15)
n∑

i=1

‖xi‖ ≤
1

m

m∑
k=1

ReFk

(
n∑

i=1

xi

)
+

1

m

m∑
k=1

n∑
i=1

Mik.

Utilising the continuity property of the functionalsFk and the properties of the modulus, we
have

m∑
k=1

ReFk

(
n∑

i=1

xi

)
≤

∣∣∣∣∣
m∑

k=1

ReFk

(
n∑

i=1

xi

)∣∣∣∣∣(6.16)

≤

∣∣∣∣∣
m∑

k=1

Fk

(
n∑

i=1

xi

)∣∣∣∣∣
≤

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Now, by (6.15) and (6.16), we deduce (6.12).

Obviously, if (6.13) and (6.14) hold true, then the case of equality is valid in (6.12).
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Conversely, if the case of equality holds in (6.12), then it must hold in all the inequalities
used to prove (6.12). Therefore we have

n∑
i=1

‖xi‖ =
1

m

m∑
k=1

ReFk

(
n∑

i=1

xi

)
+

1

m

m∑
k=1

n∑
i=1

Mik,

m∑
k=1

ReFk

(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
and

m∑
k=1

ImFk

(
n∑

i=1

xi

)
= 0.

These imply that (6.13) and (6.14) hold true, and the theorem is completely proved. �

Remark 6.5. If Fk, k ∈ {1, . . . ,m} are of unit norm, then, from (6.12), we deduce the
inequality

(6.17)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik,

which is obviously coarser than (6.12), but perhaps more useful for applications.

6.3. The Case of Inner Product Spaces.The case of inner product spaces, in which we may
provide a simpler condition of equality, is of interest in applications [6].

Theorem 6.6(Dragomir, 2004). Let(X, ‖·‖) be an inner product space over the real or complex
number fieldK, ek, xi ∈ H\ {0} , k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If Mik ≥ 0 for i ∈
{1, . . . , n} , {1, . . . , n} such that

(6.18) ‖xi‖ − Re 〈xi, ek〉 ≤Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , then we have the inequality

(6.19)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

The case of equality holds in (6.19) if and only if

(6.20)
n∑

i=1

‖xi‖ ≥
1

m

m∑
k=1

n∑
i=1

Mik

and

(6.21)
n∑

i=1

xi =
m
(∑n

i=1 ‖xi‖ − 1
m

∑m
k=1

∑n
i=1Mik

)
‖
∑m

k=1 ek‖2

m∑
k=1

ek.

Proof. As in the proof of Theorem 6.4, we have

(6.22)
n∑

i=1

‖xi‖ ≤ Re

〈
1

m

m∑
k=1

ek,

n∑
i=1

xi

〉
+

1

m

m∑
k=1

n∑
i=1

Mik,

and
∑m

k=1 ek 6= 0.
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On utilising the Schwarz inequality in the inner product space(H; 〈·, ·〉) for
∑n

i=1 xi,
∑m

k=1 ek,
we have ∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈

n∑
i=1

xi,

m∑
k=1

ek

〉∣∣∣∣∣(6.23)

≥

∣∣∣∣∣Re

〈
n∑

i=1

xi,

m∑
k=1

ek

〉∣∣∣∣∣
≥ Re

〈
n∑

i=1

xi,

m∑
k=1

ek

〉
.

By (6.22) and (6.23) we deduce (6.19).
Taking the norm in (6.21) and using (6.20), we have∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ =
m
(∑n

i=1 ‖xi‖ − 1
m

∑m
k=1

∑n
i=1Mik

)
‖
∑m

k=1 ek‖
,

showing that the equality holds in (6.19).
Conversely, if the case of equality holds in (6.19), then it must hold in all the inequalities

used to prove (6.19). Therefore we have

(6.24) ‖xi‖ = Re 〈xi, ek〉+Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,

(6.25)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
and

(6.26) Im

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
= 0.

From (6.24), on summing overi andk, we get

(6.27) Re

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
= m

n∑
i=1

‖xi‖ −
m∑

k=1

n∑
i=1

Mik.

On the other hand, by the use of the identity (3.22), the relation (6.25) holds if and only if
n∑

i=1

xi =
〈
∑n

i=1 xi,
∑m

k=1 ek〉
‖
∑m

k=1 ek‖2

m∑
k=1

ek,

giving, from (6.26) and (6.27), that
n∑

i=1

xi =
m
∑n

i=1 ‖xi‖ −
∑m

k=1

∑n
i=1Mik

‖
∑m

k=1 ek‖2

m∑
k=1

ek.

If the inequality holds in (6.19), then obviously (6.20) is valid, and the theorem is proved.�

Remark 6.7. If in the above theorem the vectors{ek}k=1,m are assumed to be orthogonal, then
(6.19) becomes:

(6.28)
n∑

i=1

‖xi‖ ≤
1

m

(
m∑

k=1

‖ek‖2

) 1
2
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

J. Inequal. Pure and Appl. Math., 6(5) Art. 129, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


20 S.S. DRAGOMIR

Moreover, if{ek}k=1,m is an orthonormal family, then (6.28) becomes

(6.29)
n∑

i=1

‖xi‖ ≤
√
m

m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik,

which has been obtained in [12].

Before we provide some natural consequences of Theorem 6.6, we need some preliminary
results concerning another reverse of Schwarz’s inequality in inner product spaces (see for in-
stance [4, p. 27]).

Lemma 6.8(Dragomir, 2004). Let (X, ‖·‖) be an inner product space over the real or complex
number fieldK andx, a ∈ H, r > 0. If ‖x− a‖ ≤ r, then we have the inequality

(6.30) ‖x‖ ‖a‖ − Re 〈x, a〉 ≤ 1

2
r2.

The case of equality holds in (6.30) if and only if

(6.31) ‖x− a‖ = r and ‖x‖ = ‖a‖ .

Proof. The condition‖x− a‖ ≤ r is clearly equivalent to

(6.32) ‖x‖2 + ‖a‖2 ≤ 2 Re 〈x, a〉+ r2.

Since

(6.33) 2 ‖x‖ ‖a‖ ≤ ‖x‖2 + ‖a‖2 ,

with equality if and only if‖x‖ = ‖a‖ , hence by (6.32) and (6.33) we deduce (6.30).
The case of equality is obvious. �

Utilising the above lemma we may state the following corollary of Theorem 6.6 [6].

Corollary 6.9. Let (H; 〈·, ·〉) , ek, xi be as in Theorem 6.6. Ifrik > 0, i ∈ {1, . . . , n} , k ∈
{1, . . . ,m} such that

(6.34) ‖xi − ek‖ ≤ rik for each i ∈ {1, . . . , n} andk ∈ {1, . . . ,m} ,

then we have the inequality

(6.35)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

2m

m∑
k=1

n∑
i=1

r2
ik.

The equality holds in (6.35) if and only if

n∑
i=1

‖xi‖ ≥
1

2m

m∑
k=1

n∑
i=1

r2
ik

and
n∑

i=1

xi =
m
(∑n

i=1 ‖xi‖ − 1
2m

∑m
k=1

∑n
i=1 r

2
ik

)
‖
∑m

k=1 ek‖2

m∑
k=1

ek.

The following lemma may provide another sufficient condition for (6.18) to hold (see also [4,
p. 28]).
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Lemma 6.10(Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space over the real or com-
plex number fieldK andx, y ∈ H, M ≥ m > 0. If either

(6.36) Re 〈My − x, x−my〉 ≥ 0

or, equivalently,

(6.37)

∥∥∥∥x− m+M

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ ,

holds, then

(6.38) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

4
· (M −m)2

m+M
‖y‖2 .

The case of equality holds in (6.38) if and only if the equality case is realised in (6.36) and

‖x‖ =
M +m

2
‖y‖ .

The proof is obvious by Lemma 6.8 fora = M+m
2
y andr = 1

2
(M −m) ‖y‖ .

Finally, the following corollary of Theorem 6.6 may be stated [6].

Corollary 6.11. Assume that(H, 〈·, ·〉) , ek, xi are as in Theorem 6.6. IfMik ≥ mik > 0 satisfy
the condition

Re 〈Mkek − xi, xi − µkek〉 ≥ 0

for each i ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

4m

m∑
k=1

n∑
i=1

(Mik −mik)
2

Mik +mik

‖ek‖2 .

7. OTHER ADDITIVE REVERSES FORm FUNCTIONALS

A different approach in obtaining other additive reverses for the generalised triangle inequal-
ity is incorporated in the following new result:

Theorem 7.1.Let (X, ‖·‖) be a normed linear space over the real or complex number fieldK.
AssumeFk , k ∈ {1, . . . ,m} , are bounded linear functionals on the normed linear spaceX
andxi ∈ X, i ∈ {1, . . . , n} , Mik ≥ 0, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} are such that

(7.1) ‖xi‖ − ReFk (xi) ≤Mik

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} .
(i) If c∞ is defined by (c∞), then we have the inequality

(7.2)
n∑

i=1

‖xi‖ ≤ c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

(ii) If cp is defined by (cp) for p ≥ 1, then we have the inequality:

(7.3)
n∑

i=1

‖xi‖ ≤
1

m
1
p

cp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

Proof. (i) Since
max

1≤k≤m
‖Fk (x)‖ ≤ c∞ ‖x‖ for anyx ∈ X,
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then we have
m∑

k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤ m max
1≤k≤m

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤ mc∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
Using (6.16), we may state that

1

m

m∑
k=1

ReFk

(
n∑

i=1

xi

)
≤ c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
which, together with (6.15) imply the desired inequality (7.2).
(ii) Using the fact that, obviously(

m∑
k=1

|Fk (x)|p
) 1

p

≤ cp ‖x‖ for anyx ∈ X,

then, by Hölder’s inequality forp > 1, 1
p

+ 1
q

= 1, we have

m∑
k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤ m
1
q

(
m∑

k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣
p) 1

p

≤ cpm
1
q

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
which, combined with (6.15) and (6.16) will give the desired inequality (7.3).

The casep = 1 goes likewise and we omit the details. �

Remark 7.2. Since, obviouslyc∞ ≤ max
1≤k≤m

‖Fk‖ , then from (7.2) we have

(7.4)
n∑

i=1

‖xi‖ ≤ max
1≤k≤m

{‖Fk‖} ·

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

Finally, sincecp ≤ (
∑m

k=1 ‖Fk‖p)
1
p , p ≥ 1, hence by (7.3) we have

(7.5)
n∑

i=1

‖xi‖ ≤
(∑m

k=1 ‖Fk‖p

m

) 1
p

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik.

The following corollary for semi-inner products may be stated as well.

Corollary 7.3. Let (X, ‖·‖) be a real or complex normed space and[·, ·] : X × X → K a
semi-inner product generating the norm‖·‖ . Assumeek, xi ∈ H andMik ≥ 0, i ∈ {1, . . . , n} ,
k ∈ {1, . . . ,m} are such that

(7.6) ‖xi‖ − Re [xi, ek] ≤Mik,

for anyi ∈ {1, . . . , n} , k ∈ {1, . . . ,m} .
(i) If

d∞ := sup
x 6=0

{
max1≤k≤n |[x, ek]|

‖x‖

}(
≤ max

1≤k≤n
‖ek‖

)
,
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then
n∑

i=1

‖xi‖ ≤ d∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik(7.7) (
≤ max

1≤k≤n
‖ek‖ ·

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik

)
;

(ii) If

dp := sup
x6=0

{∑m
k=1 |[x, ek]|p

‖x‖p

} 1
p

≤ ( m∑
k=1

‖ek‖p

) 1
p

 ,

wherep ≥ 1, then
n∑

i=1

‖xi‖ ≤
1

m
1
p

dp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik(7.8) (
≤
(∑m

k=1 ‖ek‖p

m

) 1
p

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1

m

m∑
k=1

n∑
i=1

Mik

)
.

8. APPLICATIONS FOR COMPLEX NUMBERS

Let C be the field of complex numbers. Ifz = Re z + i Im z, then by|·|p : C → [0,∞),

p ∈ [1,∞] we define thep−modulusof z as

|z|p :=


max {|Re z| , |Im z|} if p = ∞,

(|Re z|p + |Im z|p)
1
p if p ∈ [1,∞),

where|a| , a ∈ R is the usual modulus of the real numbera.
Forp = 2, we recapture the usual modulus of a complex number, i.e.,

|z|2 =

√
|Re z|2 + |Im z|2 = |z| , z ∈ C.

It is well known that
(
C, |·|p

)
, p ∈ [1,∞] is a Banach space over thereal number fieldR.

Consider the Banach space(C, |·|1) andF : C → C, F (z) = az with a ∈ C, a 6= 0.
Obviously,F is linear onC. Forz 6= 0, we have

|F (z)|
|z|1

=
|a| |z|
|z|1

=
|a|
√
|Re z|2 + |Im z|2

|Re z|+ |Im z|
≤ |a| .

Since, forz0 = 1, we have|F (z0)| = |a| and|z0|1 = 1, hence

‖F‖1 := sup
z 6=0

|F (z)|
|z|1

= |a| ,

showing thatF is a bounded linear functional on(C, |·|1) and‖F‖1 = |a| .
We can apply Theorem 3.1 to state the following reverse of the generalised triangle inequality

for complex numbers [5].

Proposition 8.1. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there exist the
constantsrk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

(8.1) rk [|Rexj|+ |Im xj|] ≤ Re ak · Rexj − Im ak · Im xj
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for eachj ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(8.2)
n∑

j=1

[|Rexj|+ |Im xj|] ≤
|
∑m

k=1 ak|∑m
k=1 rk

[∣∣∣∣∣
n∑

j=1

Rexj

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
]
.

The case of equality holds in (8.2) if both

Re

(
m∑

k=1

ak

)
Re

(
n∑

j=1

xj

)
− Im

(
m∑

k=1

ak

)
Im

(
n∑

j=1

xj

)

=

(
m∑

k=1

rk

)
n∑

j=1

[|Rexj|+ |Im xj|]

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
[∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
]
.

The proof follows by Theorem 3.1 applied for the Banach space(C, |·|1) andFk (z) = akz,
k ∈ {1, . . . ,m} on taking into account that:∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
1

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣ .
Now, consider the Banach space(C, |·|∞) . If F (z) = dz, then forz 6= 0 we have

|F (z)|
|z|∞

=
|d| |z|
|z|∞

=
|d|
√
|Re z|2 + |Im z|2

max {|Re z| , |Im z|}
≤
√

2 |d| .

Since, forz0 = 1 + i, we have|F (z0)| =
√

2 |d| , |z0|∞ = 1, hence

‖F‖∞ := sup
z 6=0

|F (z)|
|z|∞

=
√

2 |d| ,

showing thatF is a bounded linear functional on(C, |·|∞) and‖F‖∞ =
√

2 |d| .
If we apply Theorem 3.1, then we can state the following reverse of the generalised triangle

inequality for complex numbers [5].

Proposition 8.2. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there exist the
constantsrk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

rk max {|Rexj| , |Im xj|} ≤ Re ak · Rexj − Im ak · Im xj

for eachj ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(8.3)
n∑

j=1

max {|Rexj| , |Im xj|} ≤
√

2 · |
∑m

k=1 ak|∑m
k=1 rk

max

{∣∣∣∣∣
n∑

j=1

Rexj

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
}
.
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The case of equality holds in (8.3) if both

Re

(
m∑

k=1

ak

)
Re

(
n∑

j=1

xj

)
− Im

(
m∑

k=1

ak

)
Im

(
n∑

j=1

xj

)

=

(
m∑

k=1

rk

)
n∑

j=1

max {|Rexj| , |Im xj|}

=
√

2

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣max

{∣∣∣∣∣
n∑

j=1

Rexj

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
}
.

Finally, consider the Banach space
(
C, |·|2p

)
with p ≥ 1.

Let F : C → C, F (z) = cz. By Hölder’s inequality, we have

|F (z)|
|z|2p

=
|c|
√
|Re z|2 + |Im z|2(

|Re z|2p + |Im z|2p) 1
2p

≤ 2
1
2
− 1

2p |c| .

Since, forz0 = 1 + i we have|F (z0)| = 2
1
2 |c| , |z0|2p = 2

1
2p (p ≥ 1) , hence

‖F‖2p := sup
z 6=0

|F (z)|
|z|2p

= 2
1
2
− 1

2p |c| ,

showing thatF is a bounded linear functional on
(
C, |·|2p

)
, p ≥ 1 and‖F‖2p = 2

1
2
− 1

2p |c| .
If we apply Theorem 3.1, then we can state the following proposition [5].

Proposition 8.3. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there exist the
constantsrk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

rk

[
|Rexj|2p + |Im xj|2p] 1

2p ≤ Re ak · Rexj − Im ak · Im xj

for eachj ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(8.4)
n∑

j=1

[
|Rexj|2p + |Im xj|2p] 1

2p ≤ 2
1
2
− 1

2p
|
∑m

k=1 ak|∑m
k=1 rk

∣∣∣∣∣
n∑

j=1

Rexj

∣∣∣∣∣
2p

+

∣∣∣∣∣
n∑

j=1

Im xj

∣∣∣∣∣
2p
 1

2p

.

The case of equality holds in (8.4) if both:

Re

(
m∑

k=1

ak

)
Re

(
n∑

j=1

xj

)
− Im

(
m∑

k=1

ak

)
Im

(
n∑

j=1

xj

)

=

(
m∑

k=1

rk

)
n∑

j=1

[
|Rexj|2p + |Im xj|2p] 1

2p

= 2
1
2
− 1

2p

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣
2p

+

∣∣∣∣∣
n∑

j=1

Im xj

∣∣∣∣∣
2p
 1

2p

.

Remark 8.4. If in the above proposition we choosep = 1, then we have the following reverse
of the generalised triangle inequality for complex numbers

n∑
j=1

|xj| ≤
|
∑m

k=1 ak|∑m
k=1 rk

∣∣∣∣∣
n∑

j=1

xj

∣∣∣∣∣
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providedxj, ak, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} satisfy the assumption

rk |xj| ≤ Re ak · Rexj − Im ak · Im xj

for eachj ∈ {1, . . . , n}, k ∈ {1, . . . ,m} . Here|·| is the usual modulus of a complex number
andrk > 0, k ∈ {1, . . . ,m} are given.

We can apply Theorem 6.4 to state the following reverse of the generalised triangle inequality
for complex numbers [6].

Proposition 8.5. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there exist the
constantsMjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such that

(8.5) |Rexj|+ |Im xj| ≤ Re ak · Rexj − Im ak · Im xj +Mjk

for eachj ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(8.6)
n∑

j=1

[|Rexj|+ |Im xj|]

≤ 1

m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
[∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
]

+
1

m

m∑
k=1

n∑
j=1

Mjk.

The proof follows by Theorem 6.4 applied for the Banach space(C, |·|1) andFk (z) = akz,
k ∈ {1, . . . ,m} on taking into account that:∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
1

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣ .
If we apply Theorem 6.4 for the Banach space(C, |·|∞), then we can state the following

reverse of the generalised triangle inequality for complex numbers [6].

Proposition 8.6. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there exist the
constantsMjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such that

max {|Rexj| , |Im xj|} ≤ Re ak · Rexj − Im ak · Im xj +Mjk

for eachj ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(8.7)
n∑

j=1

max {|Rexj| , |Im xj|}

≤
√

2

m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣max

{∣∣∣∣∣
n∑

j=1

Rexj

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
j=1

Im xj

∣∣∣∣∣
}

+
1

m

m∑
k=1

n∑
j=1

Mjk.

Finally, if we apply Theorem 6.4, for the Banach space
(
C, |·|2p

)
with p ≥ 1, then we can

state the following proposition [6].

Proposition 8.7. Letak, xj, Mjk be as in Proposition 8.6. If[
|Rexj|2p + |Im xj|2p] 1

2p ≤ Re ak · Rexj − Im ak · Im xj +Mjk
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for eachj ∈ {1, . . . , n} andk ∈ {1, . . . ,m} , then

(8.8)
n∑

j=1

[
|Rexj|2p + |Im xj|2p] 1

2p

≤ 2
1
2
− 1

2p

m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣
2p

+

∣∣∣∣∣
n∑

j=1

Im xj

∣∣∣∣∣
2p
 1

2p

+
1

m

m∑
k=1

n∑
j=1

Mjk.

wherep ≥ 1.

Remark 8.8. If in the above proposition we choosep = 1, then we have the following reverse
of the generalised triangle inequality for complex numbers

n∑
j=1

|xj| ≤

∣∣∣∣∣ 1

m

m∑
k=1

ak

∣∣∣∣∣
∣∣∣∣∣

n∑
j=1

xj

∣∣∣∣∣+ 1

m

m∑
k=1

n∑
j=1

Mjk

providedxj, ak, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} satisfy the assumption

|xj| ≤ Re ak · Rexj − Im ak · Im xj +Mjk

for eachj ∈ {1, . . . , n}, k ∈ {1, . . . ,m} . Here|·| is the usual modulus of a complex number
andMjk > 0, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} are given.

9. K ARAMATA TYPE I NEQUALITIES IN H ILBERT SPACES

Let f : [a, b] → K, K = C or R be a Lebesgue integrable function. The following inequality,
which is the continuous version of thetriangle inequality

(9.1)

∣∣∣∣∫ b

a

f (x) dx

∣∣∣∣ ≤ ∫ b

a

|f (x)| dx,

plays a fundamental role in Mathematical Analysis and its applications.
It appears, see [20, p. 492], that the first reverse inequality for (9.1) was obtained by J.

Karamata in his book from 1949, [14]. It can be stated as

(9.2) cos θ

∫ b

a

|f (x)| dx ≤
∣∣∣∣∫ b

a

f (x) dx

∣∣∣∣
provided

−θ ≤ arg f (x) ≤ θ, x ∈ [a, b]

for givenθ ∈
(
0, π

2

)
.

This result has recently been extended by the author for the case of Bochner integrable func-
tions with values in a Hilbert spaceH (see also [10]):

Theorem 9.1(Dragomir, 2004). If f ∈ L ([a, b] ;H) (this means thatf : [a, b] → H is strongly
measurable on[a, b] and the Lebesgue integral

∫ b

a
‖f (t)‖ dt is finite), then

(9.3)
∫ b

a

‖f (t)‖ dt ≤ K

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
provided thatf satisfies the condition

(9.4) ‖f (t)‖ ≤ K Re 〈f (t) , e〉 for a.e.t ∈ [a, b] ,

wheree ∈ H, ‖e‖ = 1 andK ≥ 1 are given.
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The case of equality holds in (9.4) if and only if

(9.5)
∫ b

a

f (t) dt =
1

K

(∫ b

a

‖f (t)‖ dt
)
e.

As some natural consequences of the above results, we have noticed in [10] that, ifρ ∈ [0, 1)
andf ∈ L ([a, b] ;H) are such that

(9.6) ‖f (t)− e‖ ≤ ρ for a.e.t ∈ [a, b] ,

then

(9.7)
√

1− ρ2

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
with equality if and only if∫ b

a

f (t) dt =
√

1− ρ2

(∫ b

a

‖f (t)‖ dt
)
· e.

Also, for e as above and ifM ≥ m > 0, f ∈ L ([a, b] ;H) such that either

(9.8) Re 〈Me− f (t) , f (t)−me〉 ≥ 0

or, equivalently,

(9.9)

∥∥∥∥f (t)− M +m

2
e

∥∥∥∥ ≤ 1

2
(M −m)

for a.e.t ∈ [a, b] , then

(9.10)
∫ b

a

‖f (t)‖ dt ≤ M +m

2
√
mM

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality if and only if∫ b

a

f (t) dt =
2
√
mM

M +m

(∫ b

a

‖f (t)‖ dt
)
· e.

The main aim of the following sections is to extend the integral inequalities mentioned above
for the case of Banach spaces. Applications for Hilbert spaces and for complex-valued functions
are given as well.

10. M ULTIPLICATIVE REVERSES OF THE CONTINUOUS TRIANGLE I NEQUALITY

10.1. The Case of One Functional.Let (X, ‖·‖) be a Banach space over the real or complex
number field. Then one has the following reverse of the continuous triangle inequality [11].

Theorem 10.1(Dragomir, 2004). LetF be a continuous linear functional of unit norm onX.
Suppose that the functionf : [a, b] → X is Bochner integrable on[a, b] and there exists ar ≥ 0
such that

(10.1) r ‖f (t)‖ ≤ ReF [f (t)] for a.e.t ∈ [a, b] .

Then

(10.2) r

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
where equality holds in (10.2) if and only if both

(10.3) F

(∫ b

a

f (t) dt

)
= r

∫ b

a

‖f (t)‖ dt
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and

(10.4) F

(∫ b

a

f (t) dt

)
=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
Proof. Since the norm ofF is one, then

|F (x)| ≤ ‖x‖ for any x ∈ X.

Applying this inequality for the vector
∫ b

a
f (t) dt, we get∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≥ ∣∣∣∣F (∫ b

a

f (t) dt

)∣∣∣∣(10.5)

≥
∣∣∣∣ReF

(∫ b

a

f (t) dt

)∣∣∣∣ =

∣∣∣∣∫ b

a

ReF (f (t)) dt

∣∣∣∣ .
Now, by integration of (10.1), we obtain

(10.6)
∫ b

a

ReF (f (t)) dt ≥ r

∫ b

a

‖f (t)‖ dt,

and by (10.5) and (10.6) we deduce the desired inequality (10.2).
Obviously, if (10.3) and (10.4) hold true, then the equality case holds in (10.2).
Conversely, if the case of equality holds in (10.2), then it must hold in all the inequalities

used before in proving this inequality. Therefore, we must have

(10.7) r ‖f (t)‖ = ReF (f (t)) for a.e.t ∈ [a, b] ,

(10.8) ImF

(∫ b

a

f (t) dt

)
= 0

and

(10.9)

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ = ReF

(∫ b

a

f (t) dt

)
.

Integrating (10.7) on[a, b] , we get

(10.10) r

∫ b

a

‖f (t)‖ dt = ReF

(∫ b

a

f (t) dt

)
.

On utilising (10.10) and (10.8), we deduce (10.3) while (10.9) and (10.10) would imply (10.4),
and the theorem is proved. �

Corollary 10.2. Let (X, ‖·‖) be a Banach space,[·, ·] : X × X → R a semi-inner product
generating the norm‖·‖ and e ∈ X, ‖e‖ = 1. Suppose that the functionf : [a, b] → X is
Bochner integrable on[a, b] and there exists ar ≥ 0 such that

(10.11) r ‖f (t)‖ ≤ Re [f (t) , e] for a.e.t ∈ [a, b] .

Then

(10.12) r

∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
where equality holds in (10.12) if and only if both

(10.13)

[∫ b

a

f (t) dt, e

]
= r

∫ b

a

‖f (t)‖ dt
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and

(10.14)

[∫ b

a

f (t) dt, e

]
=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The proof follows from Theorem 10.1 for the continuous linear functionalF (x) = [x, e] ,

x ∈ X, and we omit the details.
The following corollary of Theorem 10.1 may be stated [8].

Corollary 10.3. Let(X, ‖·‖) be a strictly convex Banach space,[·, ·] : X×X → K a semi-inner
product generating the norm‖·‖ ande ∈ X, ‖e‖ = 1. If f : [a, b] → X is Bochner integrable
on [a, b] and there exists ar ≥ 0 such that (10.11) holds true, then (10.12) is valid. The case of
equality holds in (10.12) if and only if

(10.15)
∫ b

a

f (t) dt = r

(∫ b

a

‖f (t)‖ dt
)
e.

Proof. If (10.15) holds true, then, obviously∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ = r

(∫ b

a

‖f (t)‖ dt
)
‖e‖ = r

∫ b

a

‖f (t)‖ dt,

which is the equality case in (10.12).
Conversely, if the equality holds in (10.12), then, by Corollary 10.2, we must have (10.13)

and (10.14). Utilising Theorem 4.2, by (10.14) we can conclude that there exists aµ > 0 such
that

(10.16)
∫ b

a

f (t) dt = µe.

Replacing this in (10.13), we get

µ ‖e‖2 = r

∫ b

a

‖f (t)‖ dt,

giving

(10.17) µ = r

∫ b

a

‖f (t)‖ dt.

Utilising (10.16) and (10.17) we deduce (10.15) and the proof is completed. �

10.2. The Case ofm Functionals. The following result may be stated [8]:

Theorem 10.4(Dragomir, 2004). Let (X, ‖·‖) be a Banach space over the real or complex
number fieldK and Fk : X → K, k ∈ {1, . . . ,m} continuous linear functionals onX. If
f : [a, b] → X is a Bochner integrable function on[a, b] and there existsrk ≥ 0, k ∈ {1, . . . ,m}
with

∑m
k=1 rk > 0 and

(10.18) rk ‖f (t)‖ ≤ ReFk [f (t)]

for eachk ∈ {1, . . . ,m} and a.e.t ∈ [a, b] , then

(10.19)
∫ b

a

‖f (t)‖ dt ≤ ‖
∑m

k=1 Fk‖∑m
k=1 rk

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (10.19) if both

(10.20)

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt
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and

(10.21)

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
Proof. Utilising the hypothesis (10.18), we have

I :=

∣∣∣∣∣
m∑

k=1

Fk

(∫ b

a

f (t) dt

)∣∣∣∣∣ ≥
∣∣∣∣∣Re

[
m∑

k=1

Fk

(∫ b

a

f (t) dt

)]∣∣∣∣∣(10.22)

≥ Re

[
m∑

k=1

Fk

(∫ b

a

f (t) dt

)]
=

m∑
k=1

(∫ b

a

ReFkf (t) dt

)

≥

(
m∑

k=1

rk

)
·
∫ b

a

‖f (t)‖ dt.

On the other hand, by the continuity property ofFk, k ∈ {1, . . . ,m} , we obviously have

(10.23) I =

∣∣∣∣∣
(

m∑
k=1

Fk

)(∫ b

a

f (t) dt

)∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
Making use of (10.22) and (10.23), we deduce (10.19).

Now, obviously, if (10.20) and (10.21) are valid, then the case of equality holds true in
(10.19).

Conversely, if the equality holds in the inequality (10.19), then it must hold in all the inequal-
ities used to prove (10.19), therefore we have

(10.24) rk ‖f (t)‖ = ReFk [f (t)]

for each k ∈ {1, . . . ,m} and a.e.t ∈ [a, b] ,

(10.25) Im

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
= 0,

(10.26) Re

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
Note that, by (10.24), on integrating on[a, b] and summing overk ∈ {1, . . . ,m} , we get

(10.27) Re

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt.

Now, (10.25) and (10.27) imply (10.20) while (10.25) and (10.26) imply (10.21), therefore the
theorem is proved. �

The following new results may be stated as well:

Theorem 10.5.Let (X, ‖·‖) be a Banach space over the real or complex number fieldK and
Fk : X → K, k ∈ {1, . . . ,m} continuous linear functionals onX. Also, assume thatf :
[a, b] → X is a Bochner integrable function on[a, b] and there existsrk ≥ 0, k ∈ {1, . . . ,m}
with

∑m
k=1 rk > 0 and

rk ‖f (t)‖ ≤ ReFk [f (t)]

for eachk ∈ {1, . . . ,m} and a.e.t ∈ [a, b] .
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(i) If c∞ is defined by (c∞), then we have the inequality

(10.28) (1 ≤)

∫ b

a
‖f (t)‖ dt∥∥∥∫ b

a
f (t) dt

∥∥∥ ≤ c∞
max1≤k≤m{rk}

(
≤ max1≤k≤m ‖Fk‖

max1≤k≤m{rk}

)

with equality if and only if

Re (Fk)

(∫ b

a

f (t) dt

)
= rk

∫ b

a

‖f (t)‖ dt

for eachk ∈ {1, . . . ,m} and

max
1≤k≤m

[
Re (Fk)

(∫ b

a

f (t) dt

)]
= c∞

∫ b

a

‖f (t)‖ dt.

(ii) If cp, p ≥ 1, is defined by (cp) , then we have the inequality

(1 ≤)

∫ b

a
‖f (t)‖ dt∥∥∥∫ b

a
f (t) dt

∥∥∥ ≤ cp

(
∑m

k=1 r
p
k)

1
p

(
≤
∑m

k=1 ‖Fk‖p∑m
k=1 r

p
k

) 1
p

with equality if and only if

Re (Fk)

(∫ b

a

f (t) dt

)
= rk

∫ b

a

‖f (t)‖ dt

for eachk ∈ {1, . . . ,m} and

m∑
k=1

[
ReFk

(∫ b

a

f (t) dt

)]p

= cpp

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥p

wherep ≥ 1.

The proof is similar to the ones from Theorems 5.1, 5.2 and 10.4 and we omit the details.
The case of Hilbert spaces for Theorem 10.4, which provides a simpler condition for equality,

is of interest for applications [8].

Theorem 10.6(Dragomir, 2004). Let (X, ‖·‖) be a Hilbert space over the real or complex
number fieldK andek ∈ H\ {0} , k ∈ {1, . . . ,m} . If f : [a, b] → H is a Bochner integrable
function andrk ≥ 0, k ∈ {1, . . . ,m} and

∑m
k=1 rk > 0 satisfy

(10.29) rk ‖f (t)‖ ≤ Re 〈f (t) , ek〉

for eachk ∈ {1, . . . ,m} and for a.e.t ∈ [a, b] , then

(10.30)
∫ b

a

‖f (t)‖ dt ≤ ‖
∑m

k=1 ek‖∑m
k=1 rk

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (10.30) forf 6= 0 a.e. on[a, b] if and only if

(10.31)
∫ b

a

f (t) dt =
(
∑m

k=1 rk)
∫ b

a
‖f (t)‖ dt

‖
∑m

k=1 ek‖2

m∑
k=1

ek.
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Proof. Utilising the hypothesis (10.29) and the modulus properties, we have∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣(10.32)

≥

∣∣∣∣∣
m∑

k=1

Re

〈∫ b

a

f (t) dt, ek

〉∣∣∣∣∣ ≥
m∑

k=1

Re

〈∫ b

a

f (t) dt, ek

〉

=
m∑

k=1

∫ b

a

Re 〈f (t) , ek〉 dt ≥

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt.

By Schwarz’s inequality in Hilbert spaces applied for
∫ b

a
f (t) dt and

∑m
k=1 ek, we have

(10.33)

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣ .
Making use of (10.32) and (10.33), we deduce (10.30).

Now, if f 6= 0 a.e. on[a, b] , then
∫ b

a
‖f (t)‖ dt 6= 0 and by (10.32)

∑m
k=1 ek 6= 0. Obviously,

if (10.31) is valid, then taking the norm we have∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =
(
∑m

k=1 rk)
∫ b

a
‖f (t)‖ dt

‖
∑m

k=1 ek‖2

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
=

∑m
k=1 rk

‖
∑m

k=1 ek‖

∫ b

a

‖f (t)‖ dt,

i.e., the case of equality holds true in (10.30).
Conversely, if the equality case holds true in (10.30), then it must hold in all the inequalities

used to prove (10.30), therefore we have

(10.34) Re 〈f (t) , ek〉 = rk ‖f (t)‖

for each k ∈ {1, . . . ,m} and a.e.t ∈ [a, b] ,

(10.35)

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣ ,
and

(10.36) Im

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
= 0.

From (10.34) on integrating on[a, b] and summing overk from 1 tom, we get

(10.37) Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt,

and then, by (10.36) and (10.37), we have

(10.38)

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt.
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On the other hand, by the use of the identity (3.22), the relation (10.35) holds true if and only
if

(10.39)
∫ b

a

f (t) dt =

〈∫ b

a
f (t) dt,

∑m
k=1 ek

〉
‖
∑m

k=1 ek‖

m∑
k=1

ek.

Finally, by (10.38) and (10.39) we deduce that (10.31) is also necessary for the equality case in
(10.30) and the theorem is proved. �

Remark 10.7. If {ek}k∈{1,...,m} are orthogonal, then (10.30) can be replaced by

(10.40)
∫ b

a

‖f (t)‖ dt ≤
(∑m

k=1 ‖ek‖2) 1
2∑m

k=1 rk

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality if and only if

(10.41)
∫ b

a

f (t) dt =
(
∑m

k=1 rk)
∫ b

a
‖f (t)‖ dt∑m

k=1 ‖ek‖2

m∑
k=1

ek.

Moreover, if{ek}k∈{1,...,m} are orthonormal, then (10.40) becomes

(10.42)
∫ b

a

‖f (t)‖ dt ≤
√
m∑m

k=1 rk

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality if and only if

(10.43)
∫ b

a

f (t) dt =
1

m

(
m∑

k=1

rk

)(∫ b

a

‖f (t)‖ dt
) m∑

k=1

ek.

The following corollary of Theorem 10.6 may be stated as well [8].

Corollary 10.8. Let (H; 〈·, ·〉) be a Hilbert space over the real or complex number fieldK and
ek ∈ H\ {0} , k ∈ {1, . . . ,m} . If f : [a, b] → H is a Bochner integrable function on[a, b] and
ρk > 0, k ∈ {1, . . . ,m} with

(10.44) ‖f (t)− ek‖ ≤ ρk < ‖ek‖
for each k ∈ {1, . . . ,m} and a.e.t ∈ [a, b] , then

(10.45)
∫ b

a

‖f (t)‖ dt ≤ ‖
∑m

k=1 ek‖∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds in (10.45) if and only if

(10.46)
∫ b

a

f (t) dt =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

‖
∑m

k=1 ek‖2

(∫ b

a

‖f (t)‖ dt
) m∑

k=1

ek.

Proof. Utilising Lemma 3.4, we have from (10.44) that

‖f (t)‖
(
‖ek‖2 − ρ2

k

) 1
2 ≤ Re 〈f (t) , ek〉

for anyk ∈ {1, . . . ,m} and a.e.t ∈ [a, b] .
Applying Theorem 10.6 for

rk :=
(
‖ek‖2 − ρ2

k

) 1
2 , k ∈ {1, . . . ,m} ,

we deduce the desired result. �
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Remark 10.9. If {ek}k∈{1,...,m} are orthogonal, then (10.45) becomes

(10.47)
∫ b

a

‖f (t)‖ dt ≤
(∑m

k=1 ‖ek‖2) 1
2∑m

k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality if and only if

(10.48)
∫ b

a

f (t) dt =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2∑m

k=1 ‖ek‖2

(∫ b

a

‖f (t)‖ dt
) m∑

k=1

ek.

Moreover, if{ek}k∈{1,...,m} is assumed to be orthonormal and

‖f (t)− ek‖ ≤ ρk for a.e.t ∈ [a, b] ,

whereρk ∈ [0, 1), k ∈ {1, . . . ,m}, then

(10.49)
∫ b

a

‖f (t)‖ dt ≤
√
m∑m

k=1 (1− ρ2
k)

1
2

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ,
with equality iff

(10.50)
∫ b

a

f (t) dt =

∑m
k=1 (1− ρ2

k)
1
2

m

(∫ b

a

‖f (t)‖ dt
) m∑

k=1

ek.

Finally, we may state the following corollary of Theorem 10.6 [11].

Corollary 10.10. Let(H; 〈·, ·〉) be a Hilbert space over the real or complex number fieldK and
ek ∈ H\ {0} , k ∈ {1, . . . ,m} . If f : [a, b] → H is a Bochner integrable function on[a, b] and
Mk ≥ µk > 0, k ∈ {1, . . . ,m} are such that either

(10.51) Re 〈Mkek − f (t) , f (t)− µkek〉 ≥ 0

or, equivalently,

(10.52)

∥∥∥∥f (t)− Mk + µk

2
ek

∥∥∥∥ ≤ 1

2
(Mk − µk) ‖ek‖

for eachk ∈ {1, . . . ,m} and a.e.t ∈ [a, b] , then

(10.53)
∫ b

a

‖f (t)‖ dt ≤ ‖
∑m

k=1 ek‖∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
The case of equality holds if and only if∫ b

a

f (t) dt =

∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

‖
∑m

k=1 ek‖2

(∫ b

a

‖f (t)‖ dt
)
·

m∑
k=1

ek.

Proof. Utilising Lemma 3.7, by (10.51) we deduce

‖f (t)‖ 2 ·
√
µkMk

µk +Mk

‖ek‖ ≤ Re 〈f (t) , ek〉

for eachk ∈ {1, . . . ,m} and a.e.t ∈ [a, b] .
Applying Theorem 10.6 for

rk :=
2 ·
√
µkMk

µk +Mk

‖ek‖ , k ∈ {1, . . . ,m}

we deduce the desired result. �
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11. ADDITIVE REVERSES OF THE CONTINUOUS TRIANGLE I NEQUALITY

11.1. The Case of One Functional.The aim of this section is to provide a different approach
to the problem of reversing the continuous triangle inequality. Namely, we are interested in
finding upper bounds for the positive difference∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
under various assumptions for the Bochner integrable functionf : [a, b] → X.

In the following we provide an additive reverse for the continuous triangle inequality that has
been established in [8].

Theorem 11.1(Dragomir, 2004). Let (X, ‖·‖) be a Banach space over the real or complex
number fieldK andF : X → K be a continuous linear functional of unit norm onX. Suppose
that the functionf : [a, b] → X is Bochner integrable on[a, b] and there exists a Lebesgue
integrable functionk : [a, b] → [0,∞) such that

(11.1) ‖f (t)‖ − ReF [f (t)] ≤ k (t)

for a.e.t ∈ [a, b] . Then we have the inequality

(11.2) (0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≤ ∫ b

a

k (t) dt.

The equality holds in (11.2) if and only if both

(11.3) F

(∫ b

a

f (t) dt

)
=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
and

(11.4) F

(∫ b

a

f (t) dt

)
=

∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt.

Proof. Since the norm ofF is unity, then

|F (x)| ≤ ‖x‖ for any x ∈ X.

Applying this inequality for the vector
∫ b

a
f (t) dt, we get∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≥ ∣∣∣∣F (∫ b

a

f (t) dt

)∣∣∣∣ ≥ ∣∣∣∣ReF

(∫ b

a

f (t) dt

)∣∣∣∣(11.5)

=

∣∣∣∣∫ b

a

ReF [f (t)] dt

∣∣∣∣ ≥ ∫ b

a

ReF [f (t)] dt.

Integrating (11.1), we have

(11.6)
∫ b

a

‖f (t)‖ dt− ReF

(∫ b

a

f (t) dt

)
≤
∫ b

a

k (t) dt.

Now, making use of (11.5) and (11.6), we deduce (11.2).
Obviously, if the equality hold in (11.3) and (11.4), then it holds in (11.2) as well. Conversely,

if the equality holds in (11.2), then it must hold in all the inequalities used to prove (11.2).
Therefore, we have∫ b

a

‖f (t)‖ dt = Re

[
F

(∫ b

a

f (t) dt

)]
+

∫ b

a

k (t) dt.
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and

Re

[
F

(∫ b

a

f (t) dt

)]
=

∣∣∣∣F (∫ b

a

f (t) dt

)∣∣∣∣ =

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
which imply (11.3) and (11.4). �

Corollary 11.2. Let (X, ‖·‖) be a Banach space,[·, ·] : X × X → K a semi-inner product
which generates its norm. Ife ∈ X is such that‖e‖ = 1, f : [a, b] → X is Bochner integrable
on [a, b] and there exists a Lebesgue integrable functionk : [a, b] → [0,∞) such that

(11.7) (0 ≤) ‖f (t)‖ − Re [f (t) , e] ≤ k (t) ,

for a.e.t ∈ [a, b] , then

(11.8) (0 ≤)

∫ b

a

‖f (t)‖ dt−
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ≤ ∫ b

a

k (t) dt,

where equality holds in (11.8) if and only if both

(11.9)

[∫ b

a

f (t) dt, e

]
=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
and

(11.10)

[∫ b

a

f (t) dt, e

]
=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥− ∫ b

a

k (t) dt.

The proof is obvious by Theorem 11.1 applied for the continuous linear functional of unit
normFe : X → K, Fe (x) = [x, e] .

The following corollary may be stated.

Corollary 11.3. Let(X, ‖·‖) be a strictly convex Banach space, and[·, ·] , e, f, k as in Corollary
11.2. Then the case of equality holds in (11.8) if and only if

(11.11)
∫ b

a

‖f (t)‖ dt ≥
∫ b

a

k (t) dt

and

(11.12)
∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt

)
e.

Proof. Suppose that (11.11) and (11.12) are valid. Taking the norm on (11.12) we have∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =

∣∣∣∣∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt

∣∣∣∣ ‖e‖ =

∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt,

and the case of equality holds true in (11.8).
Now, if the equality case holds in (11.8), then obviously (11.11) is valid, and by Corollary

11.2, [∫ b

a

f (t) dt, e

]
=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ ‖e‖ .
Utilising Theorem 4.2, we get

(11.13)
∫ b

a

f (t) dt = λe with λ > 0.

Replacing
∫ b

a
f (t) dt with λe in the second equation of (11.9) we deduce

(11.14) λ =

∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt,
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and by (11.13) and (11.14) we deduce (11.12). �

Remark 11.4. If X = H, (H; 〈·, ·〉) is a Hilbert space, then from Corollary 11.3 we deduce the
additive reverse inequality obtained in [7]. For further similar results in Hilbert spaces, see [7]
and [9].

11.2. The Case ofm Functionals. The following result may be stated [8]:

Theorem 11.5(Dragomir, 2004). Let (X, ‖·‖) be a Banach space over the real or complex
number fieldK andFk : X → K, k ∈ {1, . . . ,m} continuous linear functionals onX. If f :
[a, b] → X is a Bochner integrable function on[a, b] andMk : [a, b] → [0,∞), k ∈ {1, . . . ,m}
are Lebesgue integrable functions such that

(11.15) ‖f (t)‖ − ReFk [f (t)] ≤Mk (t)

for eachk ∈ {1, . . . ,m} and a.e.t ∈ [a, b] , then

(11.16)
∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1

m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

m

m∑
k=1

∫ b

a

Mk (t) dt.

The case of equality holds in (11.16) if and only if both

(11.17)
1

m

m∑
k=1

Fk

(∫ b

a

f (t) dt

)
=

∥∥∥∥∥ 1

m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
and

(11.18)
1

m

m∑
k=1

Fk

(∫ b

a

f (t) dt

)
=

∫ b

a

‖f (t)‖ dt− 1

m

m∑
k=1

∫ b

a

Mk (t) dt.

Proof. If we integrate on[a, b] and sum overk from 1 tom, we deduce

(11.19)
∫ b

a

‖f (t)‖ dt ≤ 1

m

m∑
k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]
+

1

m

m∑
k=1

∫ b

a

Mk (t) dt.

Utilising the continuity property of the functionalsFk and the properties of the modulus, we
have:

m∑
k=1

ReFk

(∫ b

a

f (t) dt

)
≤

∣∣∣∣∣
m∑

k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]∣∣∣∣∣(11.20)

≤

∣∣∣∣∣
m∑

k=1

Fk

(∫ b

a

f (t) dt

)∣∣∣∣∣
≤

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ .
Now, by (11.19) and (11.20) we deduce (11.16).

Obviously, if (11.17) and (11.18) hold true, then the case of equality is valid in (11.16).
Conversely, if the case of equality holds in (11.16), then it must hold in all the inequalities

used to prove (11.16). Therefore, we have∫ b

a

‖f (t)‖ dt =
1

m

m∑
k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]
+

1

m

m∑
k=1

∫ b

a

Mk (t) dt,

J. Inequal. Pure and Appl. Math., 6(5) Art. 129, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


REVERSES OF THETRIANGLE INEQUALITY 39

m∑
k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]
=

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
and

m∑
k=1

Im

[
Fk

(∫ b

a

f (t) dt

)]
= 0.

These imply that (11.17) and (11.18) hold true, and the theorem is completely proved.�

Remark 11.6. If Fk, k ∈ {1, . . . ,m} are of unit norm, then, from (11.16) we deduce the
inequality

(11.21)
∫ b

a

‖f (t)‖ dt ≤
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

m

m∑
k=1

∫ b

a

Mk (t) dt,

which is obviously coarser than (11.16) but, perhaps more useful for applications.

The following new result may be stated as well:

Theorem 11.7.Let (X, ‖·‖) be a Banach space over the real or complex number fieldK and
Fk : X → K, k ∈ {1, . . . ,m} continuous linear functionals onX. Assume also thatf :
[a, b] → X is a Bochner integrable function on[a, b] andMk : [a, b] → [0,∞), k ∈ {1, . . . ,m}
are Lebesgue integrable functions such that

(11.22) ‖f (t)‖ − ReFk [f (t)] ≤Mk (t)

for eachk ∈ {1, . . . ,m} and a.e.t ∈ [a, b] .
(i) If c∞ is defined by (c∞), then we have the inequality

(11.23)
∫ b

a

‖f (t)‖ dt ≤ c∞

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

m

m∑
k=1

∫ b

a

Mk (t) dt.

(ii) If cp, p ≥ 1, is defined by (cp) , then we have the inequality∫ b

a

‖f (t)‖ dt ≤ cp
m1/p

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

m

m∑
k=1

∫ b

a

Mk (t) dt.

The proof is similar to the ones from Theorem 7.1 and 11.5 and we omit the details.
The case of Hilbert spaces for Theorem 11.5, in which one may provide a simpler condition

for equality, is of interest in applications [8].

Theorem 11.8(Dragomir, 2004). Let (H, 〈·, ·〉) be a Hilbert space over the real or complex
number fieldK andek ∈ H, k ∈ {1, . . . ,m} . If f : [a, b] → H is a Bochner integrable function
on [a, b] , f (t) 6= 0 for a.e. t ∈ [a, b] andMk : [a, b] → [0,∞), k ∈ {1, . . . ,m} is a Lebesgue
integrable function such that

(11.24) ‖f (t)‖ − Re 〈f (t) , ek〉 ≤Mk (t)

for eachk ∈ {1, . . . ,m} and for a.e.t ∈ [a, b] , then

(11.25)
∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

m

m∑
k=1

∫ b

a

Mk (t) dt.

The case of equality holds in (11.25) if and only if

(11.26)
∫ b

a

‖f (t)‖ dt ≥ 1

m

m∑
k=1

∫ b

a

Mk (t) dt
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and

(11.27)
∫ b

a

f (t) dt =
m
(∫ b

a
‖f (t)‖ dt− 1

m

∑m
k=1

∫ b

a
Mk (t) dt

)
‖
∑m

k=1 ek‖2

m∑
k=1

ek.

Proof. As in the proof of Theorem 11.5, we have

(11.28)
∫ b

a

‖f (t)‖ dt ≤ Re

〈
1

m

m∑
k=1

ek,

∫ b

a

f (t) dt

〉
+

1

m

m∑
k=1

∫ b

a

Mk (t) dt

and
∑m

k=1 ek 6= 0.

On utilising Schwarz’s inequality in Hilbert space(H, 〈·, ·〉) for
∫ b

a
f (t) dt and

∑m
k=1 ek, we

have ∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣(11.29)

≥

∣∣∣∣∣Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣
≥ Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
.

By (11.28) and (11.29), we deduce (11.25).
Taking the norm on (11.27) and using (11.26), we have∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥ =
m
(∫ b

a
‖f (t)‖ dt− 1

m

∑m
k=1

∫ b

a
Mk (t) dt

)
‖
∑m

k=1 ek‖
,

showing that the equality holds in (11.25).
Conversely, if the equality case holds in (11.25), then it must hold in all the inequalities used

to prove (11.25). Therefore we have

(11.30) ‖f (t)‖ = Re 〈f (t) , ek〉+Mk (t)

for eachk ∈ {1, . . . ,m} and for a.e.t ∈ [a, b] ,

(11.31)

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣
and

(11.32) Im

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
= 0.

From (11.30) on integrating on[a, b] and summing overk, we get

(11.33) Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
= m

∫ b

a

‖f (t)‖ dt−
m∑

k=1

∫ b

a

Mk (t) dt.

On the other hand, by the use of the identity (3.22), the relation (11.31) holds if and only if∫ b

a

f (t) dt =

〈∫ b

a
f (t) dt,

∑m
k=1 ek

〉
‖
∑m

k=1 ek‖2

m∑
k=1

ek,

giving, from (11.32) and (11.33), that (11.27) holds true.
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If the equality holds in (11.25), then obviously (11.26) is valid and the theorem is proved.�

Remark 11.9. If in the above theorem, the vectors{ek}k∈{1,...,m} are assumed to be orthogonal,
then (11.25) becomes

(11.34)
∫ b

a

‖f (t)‖ dt ≤ 1

m

(
m∑

k=1

‖ek‖2

) 1
2 ∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

m

m∑
k=1

∫ b

a

Mk (t) dt.

Moreover, if{ek}k∈{1,...,m} is an orthonormal family, then (11.34) becomes

(11.35)
∫ b

a

‖f (t)‖ dt ≤ 1√
m

∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

m

m∑
k=1

∫ b

a

Mk (t) dt

which has been obtained in [4].

The following corollaries are of interest.

Corollary 11.10. Let (H; 〈·, ·〉), ek, k ∈ {1, . . . ,m} and f be as in Theorem 11.8. If
rk : [a, b] → [0,∞), k ∈ {1, . . . ,m} are such thatrk ∈ L2 [a, b] , k ∈ {1, . . . ,m} and

(11.36) ‖f (t)− ek‖ ≤ rk (t) ,

for eachk ∈ {1, . . . ,m} and a.e.t ∈ [a, b], then

(11.37)
∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

2m

m∑
k=1

∫ b

a

r2
k (t) dt.

The case of equality holds in (11.37) if and only if∫ b

a

‖f (t)‖ dt ≥ 1

2m

m∑
k=1

∫ b

a

r2
k (t) dt

and ∫ b

a

f (t) dt =
m
(∫ b

a
‖f (t)‖ dt− 1

2m

∑m
k=1

∫ b

a
r2
k (t) dt

)
‖
∑m

k=1 ek‖2

m∑
k=1

ek.

Finally, the following corollary may be stated.

Corollary 11.11. Let (H; 〈·, ·〉), ek, k ∈ {1, . . . ,m} andf be as in Theorem 11.8. IfMk, µk :

[a, b] → R are such thatMk ≥ µk > 0 a.e. on[a, b] , (Mk−µk)2

Mk+µk
∈ L [a, b] and

Re 〈Mk (t) ek − f (t) , f (t)− µk (t) ek〉 ≥ 0

for eachk ∈ {1, . . . ,m} and for a.e.t ∈ [a, b] , then∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1

m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∫ b

a

f (t) dt

∥∥∥∥+
1

4m

m∑
k=1

‖ek‖2

∫ b

a

[Mk (t)− µk (t)]2

Mk (t) + µk (t)
dt.

12. APPLICATIONS FOR COMPLEX -VALUED FUNCTIONS

We now give some examples of inequalities for complex-valued functions that are Lebesgue
integrable on using the general result obtained in Section 10.

Consider the Banach space(C, |·|1) over the real fieldR andF : C → C, F (z) = ez with
e = α+ iβ and|e|2 = α2 + β2 = 1, thenF is linear onC. Forz 6= 0, we have

|F (z)|
|z|1

=
|e| |z|
|z|1

=

√
|Re z|2 + |Im z|2

|Re z|+ |Im z|
≤ 1.

J. Inequal. Pure and Appl. Math., 6(5) Art. 129, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


42 S.S. DRAGOMIR

Since, forz0 = 1, we have|F (z0)| = 1 and|z0|1 = 1, hence

‖F‖1 := sup
z 6=0

|F (z)|
|z|1

= 1,

showing thatF is a bounded linear functional on(C, |·|1).
Therefore we can apply Theorem 10.1 to state the following result for complex-valued func-

tions.

Proposition 12.1. Let α, β ∈ R with α2 + β2 = 1, f : [a, b] → C be a Lebesgue integrable
function on[a, b] andr ≥ 0 such that

(12.1) r [|Re f (t)|+ |Im f (t)|] ≤ αRe f (t)− β Im f (t)

for a.e.t ∈ [a, b] . Then

(12.2) r

[∫ b

a

|Re f (t)| dt+

∫ b

a

|Im f (t)| dt
]
≤
∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣+ ∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣ .
The equality holds in (12.2) if and only if both

α

∫ b

a

Re f (t) dt− β

∫ b

a

Im f (t) dt = r

[∫ b

a

|Re f (t)| dt+

∫ b

a

|Im f (t)| dt
]

and

α

∫ b

a

Re f (t) dt− β

∫ b

a

Im f (t) dt =

∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣+ ∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣ .
Now, consider the Banach space(C, |·|∞) . If F (z) = dz with d = γ + iδ and|d| =

√
2

2
, i.e.,

γ2 + δ2 = 1
2
, thenF is linear onC. Forz 6= 0 we have

|F (z)|
|z|∞

=
|d| |z|
|z|∞

=

√
2

2
·

√
|Re z|2 + |Im z|2

max {|Re z| , |Im z|}
≤ 1.

Since, forz0 = 1 + i, we have|F (z0)| = 1, |z0|∞ = 1, hence

‖F‖∞ := sup
z 6=0

|F (z)|
|z|∞

= 1,

showing thatF is a bounded linear functional of unit norm on(C, |·|∞).
Therefore, we can apply Theorem 10.1, to state the following result for complex-valued

functions.

Proposition 12.2. Let γ, δ ∈ R with γ2 + δ2 = 1
2
, f : [a, b] → C be a Lebesgue integrable

function on[a, b] andr ≥ 0 such that

rmax {|Re f (t)| , |Im f (t)|} ≤ γ Re f (t)− δ Im f (t)

for a.e.t ∈ [a, b] . Then

(12.3) r

∫ b

a

max {|Re f (t)| , |Im f (t)|} dt ≤ max

{∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣ , ∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣} .
The equality holds in (12.3) if and only if both

γ

∫ b

a

Re f (t) dt− δ

∫ b

a

Im f (t) dt = r

∫ b

a

max {|Re f (t)| , |Im f (t)|} dt
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and

γ

∫ b

a

Re f (t) dt− δ

∫ b

a

Im f (t) dt = max

{∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣ , ∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣} .
Now, consider the Banach space

(
C, |·|2p

)
with p ≥ 1. Let F : C → C, F (z) = cz with

|c| = 2
1
2p
− 1

2 (p ≥ 1) . Obviously,F is linear and by Hölder’s inequality

|F (z)|
|z|2p

=
2

1
2p
− 1

2

√
|Re z|2 + |Im z|2(

|Re z|2p + |Im z|2p) 1
2p

≤ 1.

Since, forz0 = 1 + i we have|F (z0)| = 2
1
p , |z0|2p = 2

1
2p (p ≥ 1) , hence

‖F‖2p := sup
z 6=0

|F (z)|
|z|2p

= 1,

showing thatF is a bounded linear functional of unit norm on
(
C, |·|2p

)
, (p ≥ 1) . Therefore

on using Theorem 10.1, we may state the following result.

Proposition 12.3. Letϕ, φ ∈ R with ϕ2 + φ2 = 2
1
2p
− 1

2 (p ≥ 1) , f : [a, b] → C be a Lebesgue
integrable function on[a, b] andr ≥ 0 such that

r
[
|Re f (t)|2p + |Im f (t)|2p] 1

2p ≤ ϕRe f (t)− φ Im f (t)

for a.e.t ∈ [a, b] , then

(12.4) r

∫ b

a

[
|Re f (t)|2p + |Im f (t)|2p] 1

2p dt

≤

[∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣2p

+

∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣2p
] 1

2p

, (p ≥ 1)

where equality holds in (12.4) if and only if both

ϕ

∫ b

a

Re f (t) dt− φ

∫ b

a

Im f (t) dt = r

∫ b

a

[
|Re f (t)|2p + |Im f (t)|2p] 1

2p dt

and

ϕ

∫ b

a

Re f (t) dt− φ

∫ b

a

Im f (t) dt =

[∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣2p

+

∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣2p
] 1

2p

.

Remark 12.4. If p = 1 above, and

r |f (t)| ≤ ϕRe f (t)− ψ Im f (t) for a.e.t ∈ [a, b] ,

providedϕ, ψ ∈ R andϕ2 + ψ2 = 1, r ≥ 0, then we have a reverse of the classical continuous
triangle inequality for modulus:

r

∫ b

a

|f (t)| dt ≤
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ,
with equality iff

ϕ

∫ b

a

Re f (t) dt− ψ

∫ b

a

Im f (t) dt = r

∫ b

a

|f (t)| dt
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and

ϕ

∫ b

a

Re f (t) dt− ψ

∫ b

a

Im f (t) dt =

∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ .
If we apply Theorem 11.1, then, in a similar manner we can prove the following result for

complex-valued functions.

Proposition 12.5. Let α, β ∈ R with α2 + β2 = 1, f, k : [a, b] → C Lebesgue integrable
functions such that

|Re f (t)|+ |Im f (t)| ≤ αRe f (t)− β Im f (t) + k (t)

for a.e.t ∈ [a, b] . Then

(0 ≤)

∫ b

a

|Re f (t)| dt+

∫ b

a

|Im f (t)| dt−
[∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣+ ∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣]
≤
∫ b

a

k (t) dt.

Applying Theorem 11.1, for(C, |·|∞) we may state:

Proposition 12.6. Let γ, δ ∈ R with γ2 + δ2 = 1
2
, f, k : [a, b] → C Lebesgue integrable

functions on[a, b] such that

max {|Re f (t)| , |Im f (t)|} ≤ γ Re f (t)− δ Im f (t) + k (t)

for a.e.t ∈ [a, b] . Then

(0 ≤)

∫ b

a

max {|Re f (t)| , |Im f (t)|} dt−max

{∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣ , ∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣}
≤
∫ b

a

k (t) dt.

Finally, utilising Theorem 11.1, for
(
C, |·|2p

)
with p ≥ 1, we may state that:

Proposition 12.7.Letϕ, φ ∈ R with ϕ2 + φ2 = 2
1
2p
− 1

2 (p ≥ 1) , f, k : [a, b] → C be Lebesgue
integrable functions such that[

|Re f (t)|2p + |Im f (t)|2p] 1
2p ≤ ϕRe f (t)− φ Im f (t) + k (t)

for a.e.t ∈ [a, b] . Then

(0 ≤)

∫ b

a

[
|Re f (t)|2p + |Im f (t)|2p] 1

2p dt

−

[∣∣∣∣∫ b

a

Re f (t) dt

∣∣∣∣2p

+

∣∣∣∣∫ b

a

Im f (t) dt

∣∣∣∣2p
] 1

2p

≤
∫ b

a

k (t) dt.

Remark 12.8. If p = 1 in the above proposition, then, from

|f (t)| ≤ ϕRe f (t)− ψ Im f (t) + k (t) for a.e.t ∈ [a, b] ,

providedϕ, ψ ∈ R andϕ2 + ψ2 = 1, we have the additive reverse of the classical continuous
triangle inequality

(0 ≤)

∫ b

a

|f (t)| dt−
∣∣∣∣∫ b

a

f (t) dt

∣∣∣∣ ≤ ∫ b

a

k (t) dt.
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