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Abstract

Recent results involving bounds of the Ceby3ev functional to include means
over different intervals are extended to a measurable space setting. Sharp
bounds are obtained for the resulting expressions of the generalised Ceby3ev
functionals where the means are over different measurable sets.
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For two measurable functions g : [a,b] — R, define the functional, which is
known in the literature a€ebySev’s functional, by

(1.1) T(f,g):=M(fg)—M(f)MIg),
where the integral mean is given by 61 S Resulis (el dhe
Ceby3ev Functional and its
1 b Generalisations
(1.2) M(f) = m/a f(x)de. P. Cerone
The integrals in1.1) are assumed to exist. _
Further, the weighte@ebysev functional is defined by VLD LR
Contents
(1.3) T(f,9:p) == M(f.g;p) = M (f;p) M (g; D), « N
where the weighted integral mean is given by < >
b
D (x) f (x) dx Go Back
(1.4) M (fip) = J b ,
fa D (:L’) da’; Close
H b Quit
ith O d .
W = fap(x) T Page 3 of 40

We note that,

T(f,9:1)=T(f,9)
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and
M(f;1) = M(f).

It is worthwhile noting that a number of identities relating to Gebysev func-
tional already exist. The reader is referredtg][Chapters IX and X. Korkine’s
identity is well known, seell/, p. 296] and is given by

b b
(15) TU&%Z;@%;F/p/(f@%—f@»@@ﬁ—gwﬁﬂﬁﬁ

It is identity (1.5 that is often used to prove an inequality due to Gruss for

functions bounded above and below/].
The Griss inequality is given by

(1.6) T () < § (B~ 6) (2 6,).

where¢; < f(z) < &y forx € [a,b].
If we let S (f) be an operator defined by

(1.7) S(f) (@)= f(z) = M(f),

which shifts a function by its integral mean, then the following identity holds.
Namely,

(1.8) T(fig)=T(S(f),9)=T(f,S(9)=T(S(f),S(9)),

and so

(1.9)  T(f,9)=M(S(f)g)=M(fS(g9))=M(S(f)S(g))
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sinceM (S (f)) =M (S(g)) =0.

For the last term inX.8) or (1.9) only one of the functions needs to be shifted
by its integral mean. If the other were to be shifted by any other quantity, the
identities would still hold. A weighted version of Q) related to

(1.10) T(f,g9)=M((f(x)—~)S(g9))

for v arbitrary was given by Sonin.f] (see [L7, p. 246]).
The interested reader is also referred to Dragomi pnd Fink [L4] for

On Some Results Involving the

extensive treatments of the Gruss and related inequalities. Cebysev Functional and its
Identity (1.5) may also be used to prove tRebysev inequality which states Generalisations
that for f (-) andg (-) synchronous, namelyf (z) — f (y)) (¢ (z) — g (y)) > 0, P. Cerone
a.e.x,y € [a, b, then
Title P
(1.11) T(f, ) > 0. —
Contents
There are many identities involving tii&ebySev functionall(1) or more gen- « by
erally (1.3). Recently, Cerone’] obtained, forf, g : [a,b] — R wheref is of
bounded variation ang continuous ona, b] , the identity < 4
1 b Go Back
(L.12) T(9) = G [ PO W), Close
it
where £El
Page 5 of 40
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with

(1.14) G(c,d)—/ g (z)dz.

The following theorem was proved i][

Theorem 1.1.Let f, g : [a,b] — R, wheref is of bounded variation and is
continuous ona, b] . Then

On Some Results Involving the

(1.15) (b — a)2 |T (f7 g)‘ Cebysev Functional and its
. ) Generalisations
sup W} (t)| \/ (f) ) P. Cerone
tela,b] a
< : S Title Page
Lf 4 (¢)] dt, for f L — Lipschitzian,
Contents
f | ()| df (t) for f monotonic nondecreasing, <« by
where\/’ (f) is the total variation off on [a, b] . 4 >
An equivalent identity and theorem were also obtained for the weigbéed Go Back
bySev functional 1.3). 3 Close
The bounds for th€ebysSev functional were utilised to procure approxima- Quit
tions to moments and moment generating functions.
In [8], bounds were obtained for the approximations of moments although Page 6 of 40
the work in [/] places less stringent assumptions on the behaviour of the prob-
ablllty denS|ty fu nCtlon J. Ineq. Pure and Appl. Math. 4(3) Art. 55, 2003
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In a subsequent paper t[ Cerone and Dragomir] obtained a refinement
of the classicaCebysSev inequalityl(17).

Theorem 1.2.Let f : [a,b] — R be a monotonic nondecreasing function on
la,b] and g : [a,b] — R a continuous function ofw, b] so thaty (t) > 0 for
eacht € (a,b) . Then one has the inequality:

(1.16) T'(f,9)

> 0 —1a)2 /ab [(t—a) |G (t,b)]— (b—1)|G (a,t)|]df (t)| >0,
where
(1.17) p(t) = i(i,f) - G;(_a;s)

andG (¢, d) is as defined in}.14).

Bounds were also found f¢¥' (f, g)| in terms of the Lebesgue norrs|| ,,
p > 1 effectively utilising (L.15 and noting that) (t) = (t —a) (b—1t) ¢ (t) .

It should be mentioned here that the authorijdemonstrated relationships
between thef:ebyéev functional (f, g; a,b) , the generalised trapezoidal func-
tional GT (f; a, z,b) and the Ostrowski function® (f; a, x, b) defined by

T(f g;0,b) := M (fg;a,b) — M (f;a,b) M (g;a,b)
6 (fiaat) = (=2 ) £+ (5= ) F0) = M (Fia)
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and
@(f;a,m,b) :f(x)—M(f,a,b)

where the integral mean is defined by

b
(1.18) M (f;a,b) = bia/ f(z)dx.

This was made possible through the fact that b6th (f;a,x,b) and

© (f;a,z,b) satisfy identities like 1.12) involving appropriate Peano kernels. On Some Resullts Involving the
Ceby3Sev Functional and its

Namely’ Generalisations
b t— o P. Cerone
GT (f;a,z,b) :/ q(x,t)df (t), q(z,t)= —_— x,t € [a,b]
and Title Page
Contents
b t—a, tela,z
O (fianb)= [ patd (0, (G-wp) - “w . »
a t—>b, te(x,b < 4
respectively. Go Back
The reader is referred ta (], [ 13] and the references therein for applications Close
of these to numerical quadrature. _
For other Griss type inequalities, see the boak$dnd [ ], and the papers Quit
[9] — [14], where further references are given. Page 8 of 40
Recently, Cerone and Dragomii][have pointed out generalisations of the
above results for integrals defined on two different inter{ls] and|c, d] . 3. Ineq. Pure and Appl. Math. 4(3) Art. 55, 2003
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Define the functional (generalisélbbyéev functional)

(1.19) T(f,g:a,b,¢,d) := M (fg;a,b) + M (fg;c,d)
- M(f,a,b)M(g7c,d) - M(facad)M(gv(Z?b)
then Cerone and Dragomir][proved the following result.

Theorem 1.3.Let f,g : I € R — R be measurable o and the intervals
la,b], [c,d] C I. Assume that the integrals involved ih.19 exist. Then we
have the inequality

(1.20) |T'(f,g;a,b,c,d)|
< [T(f;0,0) + T (f;e,d) + (M (f;a,b) = M (f;c,d))*]?
x [T(g;a,b) + T (g;c,d) + (M (g;a,b) — M (g; ¢, d))’]

N

where

b b 2
(1.22) T(f;a,b) ::ﬁ/ f*(x)dx — <ﬁ/ f(x)dx) :

and the integrals involved in the right af. 0 existandM (f; a, b) is as defined
by (1.19.
They used a generalisation of the classical identity due to Korkine namely,

(1.22) T(f,g:a,b,c,d)

=m / / (f (@) — £ () (9 (&) — g (9)) dydz
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and the fact that
(1.23) T (f, f;a,b,c,d)
=T (f;a,0) + T (fie;d) + (M (f;a,b) = M (f;¢,d))*.

From the Griss inequalityL (6), then from (L.21) we obtain forf (and equiv-
alent expressions fay)
M2 — My ) 2

2
T(f;a,b)ﬁ(@) andT(f;c,d)§< 5

wherem, < f < M, a.e. onja,b] andmy < f < M, a.e. onc,d] .

Cerone and Dragomif] procured bounds for the generaliggdbySev func-
tional (1.19 in terms of the integral means and boundsf @ndg over the two
intervals.

The following result was obtained in][for f andg of Holder type involving
the generalise@ebysev functionall( 19 with (1.18.

Theorem 1.4.Let f,g : I € R — R be measurable o and the intervals
la,b], [c,d] C I. Further, suppose that and g are of Holder type so that for
x € |a,b],y € [e,d]

(1.24) [f(2) = fW| < Hilz—y[" and |g(z) —g(y)| < Ha |z —y[,
whereH;, H, > 0 andr,s € (0, 1] are fixed. The following inequality then
holds on the assumption that the integrals involved exist. Namely,
(1.25) (0+1)O0+2)|T(f, g;a,b,c,d)|
H1H,
“(b—a)(d-c)

a,@-&—? 7

|b_ C’6+2 . |b—d’9+2 + \d—a|9+2 i ‘C—
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whered = r + sandT (f, g;a,b, ¢, d) is as defined byl(19 and (1.18).

Another generalise€ebysev functional involving the mean of the product
of two functions, and the product of the means of each of the functions, where

one is over a different interval was examined ih [Namely,
(1.26) T(f,9:a,b,¢,d) == M (fg;a,b) — M (f;a,b) M (g;c,d),

which may be demonstrated to to satisfy the Kérkine like identity

b pd
a2 3 (fgiabed) = g [ [ 1@ (0@ ~gw)dyar

It may be noticed from1(.26) and (L.1) that2% (f, g;a,b;a,b) =T (f, g;a,b).
It may further be noticed thati (15 is related to {.19 by the identity

(1'28) T(f?g;a/7b7cﬂd> :S<f7g;a/7b7c7d>+S(g7f;c7d7a7b)

Theorem 1.5.Let f,g : I C R — R be measurable o and the intervals
la,b], [c,d] C I.Inaddition, letm; < f < M; andn; < g < N; a.e. on[a, b]
with n, < g < Ny a.e. on[c, d]. Then the following inequalities hold

(1.29) [T(f,g;a,b,¢c,d)]
< [T(f;a,b) + M (f;0a,b)]
x {T (g;a,b) + T (g: c.d) + [M (g;0,) — M (g; ¢, d))*}

N

N
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1
2

S (Ml — my

5 >2+M2(f;a,b)]

() ()

LM (g ab)— M (gic, ) }

=

On Some Results Involving the
whereT (f;a,b) is as given byX.21)) and M (f;a,b) by (1.19. Ceby3ev Functional and its

Generalisations
The generalise@ebysev functionall(26) and Theoreni.5was used in4]

P. Cerone
to obtain bounds for a generalised Steffensen functional. It is also possible as
demonstrated in/] to recapture the Ostrowski functiondl.() from (1.26) by "
using a limiting argument. Title Page
Contents
<44 44
< >
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Let (2, A, 1) be a measurable space consisting of &xset o — algebra4 of
parts of(2 and a countably additive and positive measun A with values in
RU{o0}.

For au—measurable functiow : Q@ — R, withw (z) > 0for p—a.e.x € Q,
consider the Lebesgue spatg (2, A, u) := {f : Q — R, fispu—measurable
and [, w (z) | f (x)| dp (x) < oo}. Assume[, w (z) dp (x) > 0.

If f,g:Q — R areu—measurable functions anlg, fg € L, (2, A, 1),
then we may consider theéebysev functional

(2.1) Ty (f,9) =Tw(f,9:Q)

= e L@ @@
1

- Jow @) dp(x) /Qw(“")f(@ dpu (x)

xfw@%M@/wmw@mw»
0] Q

Remark 2.1. We note that a new measuré¢x) may be defined such that (z) =
w (x) du (z) however, in the current article the weight(z) and measure: (x)
are separated.

The following result is known in the literature as the Griss inequality

22) T (£0)] < 1 (0 =) (A =3),
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provided

(2.3) —co<y< f(x)<T<o0, —0<d<g(r)<A<oo

for y—a.e.x € Q.

The constang is sharp in the sense that it cannot be replaced by a smaller
guantity.

With the above assumptions andfite L, (12, A, 1) then we may define

(2.4) Dy (f) = Doy (f)
1
_f (@) dyi (@ )/w@)

1

f(z) =

[w /Q w (y) f(y)du(y)| dp ().

The following fundamental result was proved .

Theorem 2.1. Letw f g : 2 — R bep—measurable functions withh > 0 p—
a.e. onQ and [, w (y)du(y) > 0.1f f, g, fg € L, (2, A, 1) and there exists

the constants, A such that
(2.5) —0<d<g(r)<A<oo for p—ae.xe

then we have the inequality

To (f,9)] < Dy (f).-

The constan% is sharp in the sense that it cannot be replaced by a smaller
quantity.

(2.6) | (A —6)

N | —
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For

F € Ly (9, A 1) = {f QR [ 0@ @ o) < oo},

1<p<ooand

f €L (A 1) :

we may also define

1
@ Dus = [y fy 0

|
fo) = Jow (y)du(y)

N i s,
 [fyw @) du (@)

where|-|, , is the usuab—norm onL,,,, (2, A, ;1) , namely,

hllq, = ( / wlhlpdu> Cl<p<oo

and onL, (2, A, )

X

/Q w (y) f (y) du(y)

1R ]lgo = esssup |h(x)] < oo.
’ xeQ)

Cerone and Dragomif] produced the following result.

p

{f Q=R fllge = esssgg|f(:v)| < oo},

du (x)]

3=
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Corollary 2.2. With the assumptions of Theoreni, we have

(2.8) |Tw (f,9)]
< L (A8 Du ()
%<A 8) Dy (f) ff € Luyp (A1), 1<p<oo;
1 .
§ (A —9) Hf T du/wfdu - if f e Lo (A p).

Remark 2.2. The inequalities in4.8) are in order of increasing coarseness. If
we assume thatoo < v < f(z) < T < oo for p—a.e.z € , then by the
Griss inequality foy = f we have fop = 2

JowfPdu Jowfdp 2] 2 1
[g}deu _(};wdu>] §(F )

By (2.8), we deduce the following sequence of inequalities

1
—/wfdu’du
wdp Jo

@10) [ (f0)l < 3-8 [ |-

(2.9)

o wideu_ wifdu ?)
=58 5)[ Jo wdn <fgwdu>]
< (=5 -7)
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for f,g : @ — R, p — measurable functions and so thato < v < f (z) <
['<oo,—c0<d<g(r) <A <ooforpu—a.e.x e Q. Thus the first inequal-
ity in (2.10 or (2.6) is a refinement of the third which is the Griss inequality
(2.2). Further, 2.6) is also a refinement of the second inequality4rni(). We
note that all the inequalities ir2(8) — (2.10 are sharp.

The second inequality ir2(10 under a less general setting was termed as
a pre-Gruss inequality by Matj P&aric and Ujeve [16]. Bounds for theCe-
bySev functional have been put to good use by a variety of authors in providing
perturbed numerical integration rules (see for example the bogk [
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Let the conditions of the previous section hold. Furtherylet be two mea-
surable subsets d@ and f, g : J
f,9,fg € L, (2, A, u) then consider the generalis€gbySev functional

B.1) T, (f, 9 x: %)
= My (fg;X) + M (fg; ) — Moy (f5X) - Mu (g; )
_Mw(97X) 'Mw(f;'%)7

where

(3.2) Mo (f;X) = [ w (xl) dp (z)

We note that ify = « = Q then, 7" (f,9;Q,Q) = 2T, (f, 9; ) .
The following theorem providing bounds 0&.{) then holds.

/w(w)f(w)du($)~

Theorem 3.1. Letw, f, g : 0 — R beu—measurable functions witlr > 0, u
—a.e.omand [ w(z)du(z) >0, [ w(z)du(x) > 0fory,x C Q. Further,

let f, g, f% 9% € Ly (0, A, 1) , then

(3.3) Ty (f, 95 % 5)| < [Buw (fi x5 5)]

where

(B4)  Bu(f;x.k) =Tu(fix) +Tu(fi5) + [Mu (f;x) — My (f; 5)]°

[N
[N

[Bw (9: X, K)]%

) — R be measurable functions such that
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which, from @.1)

35)  Tul(fix):=Tu(f fix) = Mu (f5x) = M (f; X))
and M, (f; x) is as defined by3(2).

Proof. Itis a straight forward matter to demonstrate the following Korkine type
identity for % (f, g; x, «) holds. Namely,

(3 6) T (f ) 1 On Some Results Involving the
: Xo R) = Cebysev Functional and i
T T e @) de (@) [ w () du ) Y Cenerarsaione
<[ [ @wm) (@ =76 66 -0 0) ) d )
Now, using the Cauchy-Buniakowski-Schwartz inequality for double integrals, Title Page
we have from 8.6) Contents
1 <44 >»
T, (f,g:x, k)" <
ol =T f ) « | >
«/ / £ = £ () dp ) du (@) Go Back
) Close
x / Jw@w @ - 9@ dn () du () oui
X YK
T (f, £, 8) Tw (9, 95 X, K) - Page 19 of 40
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However, by the Fubini theorem,

T I8 = Tt 0 5 ) dn )

m/w(y)ﬁ(y)dﬂ(y)

1
e / wie) ) dn (o) [ ) ) du )

=T (f:X) + T (f15) + [Mu (fi x) = Mu (fi )]
and a similar expression holds fer

Hence 8.3) holds where from .4), B, (f;x,k) = T (f, f;x,«) and
T, (f;x) is as given by §.5). O

Corollary 3.2. Let the conditions of Theorefl persist and in addition let

+

my < f < M; a.e.ony andmy < f < M, a.e. onx,
ny < g < Nja.e.onyandny, < g < N, a.e. Ohx.

Then we have the inequality

B.7) |T, (f,9:x. k)|

x [(M;mf + (NQ;nz)QJr (M (g5 x) — Mo (g3 ﬁ))zl

N[

N[
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Proof. The proof follows directly from §.3) — (3.5), where by the Griss in-

equality .2

YHﬂmzﬁﬁﬁwﬁ(%gﬂ%.

) readily produceg.?).
[

Similar inequalities fofl’, (f; k), T, (¢; x) andT, (g;

Remark 3.1. If y = xk = Qandm; = my =: mand M; = M, =: M then
My (f5x) = My (f;6) . Ifng =ng =-nandN, = Ny =: Nwithy =k =Q
we haveM,, (g; x) = My, (g; k) . Thus we recapture the Griss inequality

Following in the same spirit ad (23 consider the generalis€kbysev func-
tional

(3.8) T! (f, g5 x, k) = My (fg:X) — My (9 X) M (f3K) |

where M, (f; x) is as defined by3.2) andy, x C (.
T (f, g; x, k) may be shown to satisfy a Korkine type identity

1
(x WN)I (y) dp (y)

/ / (2) (f (@) — F (4)) dps () dp ().

69)Tngx7)—f
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The following theorem then provides bounds 8rg) using 3.9), where the
proof mimicks that used in obtaining bounds G ( f, g; x, =) and will thus be

omitted.

Theorem 3.3. Letw, f, g : 0 — R beu—measurable functions witlhh > 0,
—ae. onand [ w(z)du(x) > 0and [, w(z)du(x) > 0 wherey,x C Q.
Further, letf, g, fg € L, (2, A, n) then, form; < g < M; andn; < f < N

a.e. ony withn, < f < N, a.e. onk, the following inequalities hold. Namely,

(3.10) |7} (f, g5 x. &)
< [Tw (g; x) + M2, (g;xﬂ%
X {Tw (f7X) —|—Tw (f, K,) + [Mw (faX) - Mw <f;/€)]2}§

N "
s[@i?@)+wﬁ@m

Q) ()

+¢Muﬁm—wuwmﬁ}?

=

whereT,, (f;x) andM,, (f; x) are as defined in3.5) and (3.2) respectively.
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Let the conditions as described in Sectiboontinue to hold. Lek, ~ be mea-
surable subsets 6f and define

(4.1) Dl (fix, %) == DL, (fix. k)
= My (|f<x) - My (f>’€)‘ aX)»

whereM,, (f; x) is as defined by3.9). }
The following theorem holds providing bounds for the general{SeldySev
functionalT] (f, g; x, x) defined by 8.4).

Theorem 4.1. Letw, f,g : 2 — R be u—measurable functions witlwy > 0
p—a.e. onf). Further, lety, s C Qand [ w (v) du (z) > 0and [, w (y) du (y) >
0.1f f,g,fg € L, (2, A, 1) and there are constants A such that

—0<d<g(r) <A< for p—ae ze€y,
then we have the inequality

4.2) |T!(f.9;5x. k) — ato (Mo (f;x) = M (f; K)]

2
A—=9
<
-2

D} (fix, k),

whereD] (f;x, x) is as defined by4(1).
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Proof. From (3.4) we have the identity

(4.3) T (f.g:x, k)
1

_ / w(@) g (@) (f (x) = My (f;0)) dps ().

Jow (@) dp () J,

Consider the measurable subsetsandy _ of x defined by

(4.4) X+ ={z € x|f (z) = M (f;r) = 0}
and
(4.5) x-={zex|f () = M (f;r) <0}
so thaty = y, U x_ andy, Nx_ = 0.

If we define

46) I, (f.g.w):= / w () g (2) (f () — My, (f:%)) du (z) and

I (f,g,w) = / w () g (x) (f (£) — My (f: %) ds (2)

then we have from4.3)

@7 Ti(fgxw) / w (@) dji () = L (frgow) + I (f,g,w).

X
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Since—c0 < 0 < g(z) <A < oo forp-a.e.x € yandu—a.e.x € Q2 we may

write
48) L (fgw) <A / w (@) (f (@) = Moy (3 1)) dpt ()
and

49) I (fgw) <6 / w () (f () — My (f:5)) dpa (z).

Now, the identity
(410) M (fix) — Mo (f;5) / w () dp (1)

X

w () (f (x) = M (f; 5)) dps ()

I
—

holds so that we have frord ©)

(4.11) I_(f.g.w) < -6 / w (@) (f (@) = My (F; 1)) dpt ()

1My (F50) — My (f59) / w () dps ().

X
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That is, combining4.8) and ¢@.11) we have from4.7)
(4.12) T} (f,9; x, %)
A—9§
< e L U@ - M) )
+5[Mw(f7X) _Mw(f;"{')]‘

Further, we have
On Some Results Involving the
Ceby3Sev Functional and its

/w () |f(x) = My (f; k)| du (x) Generalisations

P. Cerone

:/ w (@) (f () — My (f; 1)) dp (z)

X+ Title Page
- / w (@) (f (2) — My (f: 1)) du (1) Contents
. «“ S8
giving, from (4.10), > 3
(4.13) / w (@) |f (2) — M (f: )] dya (2) Go Back
X Close
T M (i) — M (f: )] / w () dy () ou

Page 26 of 40
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Substitution of .13 into (4.12 produces

(4.14) TI (f,9:x. k)

A—9 1
< e L@ @0 Mol
+ 20 M (750 — M (759

Now, we may see fromd(14) that

T (=f,9:x. k) = =T} (f, 9; x. K)
and so
(4.15) — T} (f,9:x k)
A—9 1
< .
-2 Jow(z)du(z)

/ w (@) |f () — M (f: )| dpt ()

_¥[Mw(f;x)—/\/lw(f;f€)]‘

Combining @.14) and @.15 gives the result4.2).

Now for the sharpness of the consta}nt

To show this, it is perhaps easiest to fet,, (f; x) = M., (f;«) in which
instance the result of Theoreixl, namely, £.6) is recaptured which was shown
to be sharp in].

The proof is now complete. O]
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Remark 4.1. It should be noted that the result of Theoréris a generalisa-
tion of Theoren®.1to involving means over different setsand «. If we take
x = k = in (4.2) then the result4.6), which was proven ind] is regained.

Following in the spirit of Sectior2, we may define fox, ~ measurable sub-
sets of(2

(4.16) D, (fix, k) == M (If () = My (fi8)[";0)]7, 1<p<oo

and

On Some Results Involving the
Ceby3ev Functional and its
(4.17) DZ),OO (f, X, K) = esssup |f (33‘) - ./\/lw (f, /i)‘ . Generalisations
reX
P. Cerone

The following corollary then holds.

Corollary 4.2. Let the conditions of Theoreml persist, then we have Title Page
A+6 Contents
(418) TJ; (fa97X7H)_T[Mw (faX)_Mw (fa’f)]
A_s <44 >»
< ) Dl},l (f> X5 '%) 4 >
A—9§ ; Go Back
<= Dy (fixo k), f € Luy (0, A ), 1<p<oo,
A_s§ Close
< =5 Dl (fixih), [ € Lo (A1), Quit
whereD!  (f;x,x)andD] _ (f;x, ) are as defined in4.16 and @.17) re- Page 28 of 40
spectively.
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Proof. From the Sonin type identity}(3) we have

(@19) T4 (F:x,4) ~ 20 M (75 X) ~ Mu (F: )]

_ 1 A9
‘gw@mmwﬁw@%“@ 2)
% (f () = M (f: %)) dii ().

Now, the first result in4.18) was obtained in Theorerh1in the guise of4.2).

However, it may be obtained directly from the identityX9 since

A+d

(4.20) fﬂﬁ%@——jﬁMMﬁm—MMﬁm

1
Sgwmmmwlw“)

< |f (x) = M (f; )| dp ()
A+6

g@——g—DLme%

< esssup
TEX

Now, for —oo < § < g(z) < A < oo for z € x, then

(4.21) esssup

xreEX

_A+ﬂ_A—5

g9 (z) 5 5

and so the first inequality ird(17) results.
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Further, we have, using Holder’s inequality

DY (fix, k)= i w (@) |f (x) = My (f;5)| dp (2)

1
0 () dt (7) /
<D}, (fix,k)
< Dl (fix, k),

where we have used (16 and @.17) producing the remainder of the results in

(4.18 from (4.20 and ¢.21). On Some Results Involving the
) ) epysev Functional ana Its
The sharpness of the constants follows from Hoélder’s inequality and the Generalisations
sharpness of the first inequality proven earlier. O 5 Corone

Remark 4.2. We note that

A+s Title Page
(4.22) TJJ (fr9:xK) — 9 My, (f;x) — M (f; K)] Contents
A+9 «“ b
=Tu (f,9:X) + | Mu (g:x) = —5— | M (fix) = M (fi5)]
< >
so that T Go Back
Ty (fr9:x:6) = Tw (f, 95 X) o
ose
if either or bothM,, (g; x) = 282 and M, (f; x) = M, (f; ) hold. _
Thus Theorem.1and Corollary4.2 are generalisations of Theorel and QU
Corollary 2.2 respectively. Page 30 of 40
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Corollary 4.3. Let the conditions in Theorem1 hold and further assume that
x is chosen in such a way thatt,, (f; <) = 0, then

A+96
(4.23) \ Mo, (fg:x) = —5—Mu (fix)
A—§
< —5Mu(fl5x)
< S0 MAP O, f € Lup (@A)
- 2 v WX ’ P R On Some Results Involving the
A —0 Ceby3Sev Functional and its
< €8S sup |f (l’)| , f€ Ly (Q, A, ,u) , Generalisations
rex P. Cerone
The constang is sharp in the above inequalities.
Proof. Taking M., (f; ) = 0 in (4.18 and , using §.8), (4.16 and @.17) Title Page
readily produces the stated result. ] Contents
Remark 4.3. The result .23 provides aéebyéev-like expression in which the 44 >
arithmetic average of the upper and lower bounds of the fungtiehis in place < >
of the traditional integral mean. The above formulation may be advantageous
if the norms off (-) are known or are more easily calculated than the shifted Go Back
Remark 4.4. Similar results as procured fdf] (f, g; x, k) may be obtained for Quit

the generalise€ebysev functiondl’” (f, g; x, x) as defined by3.1). We note Page 31 of 40
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that

(4.24) T, (f,9:x, k)

=T} (f.g:x. k) + T}, (f. g; K, X)
1

" [ w(z)dp(x) /w @lg @) (2) = Ma (F5 1)) di )

1
+Wéw<y>g<y> (f () = Mo (£ X)) di (9)

As an example, we consider a result correspondingitd) ( Assume that the
conditions of Theorem.1 hold and let

—o0<d <g(r) <A <oo forp—aexey
with

—00 <0y < g(x) <Ay <oo forp—aexcens.
Then from 4.24), we have

Ag+02  Aj+9
@025 |15 (fgien) — (S5 4 S0 ) M0 (7500 = M (£i0)]
< S0 (Fom) + 222D (k).

whereD! (f;x, x) is as defined in4.1). We notice from4.25) that
Ty (i, 5) — (A4 0) [My (fix) — Mu (f;5)]|
A—§
< (DY, (f;x: &) + DL (fi 5] 5
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whered; = d, = dandA; = Ay, = A.

Similar results forT: (£, g; x, ) to those expounded in Corolla#y.2 for
Ti (f,g; x, k) may be obtained, however these will not be considered any fur-
ther here.
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Some particular specialisation of the results in the previous sections will now

be examined. New results are provided by these specialisations.

A. Letw, f,g : I — R be Lebesgue integrable functions with> 0 a.e.

on the intervall and [, w () dz > 0.If f, g, fg € L, (I), where

Ly, (I):= {f:[—>R

Jw@lr@ra <o

and
Lo (I) = esssup|f (v)]

zel

and
—0<d<g(r)<A<oo forz € la,b] C I,

then we have the inequality, f¢t, d] C I,

GO [T o] e d) — S0 WMo (7, 8) — M (7 e, d)
< 220 M (17 () = Mo (5 e, ) o 0)
< 222 M1 O = M (e d)P s 0B f € Ly 1]

2

5688 sup |f (z) = My (f;le,d])], f€ Lo |I],

z€la,b]

<
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where

TS (f.g;[a, 0], [c,d]) = M.y, (fg;[a,b]) — My, (g; [a, b]) M., (f;[c. d))

and
1

b

The constang is sharp for all the inequalities ifb(1).

To obtain the resulty.1), we have identifiedl, b] with x and|c, d] with « in
the preceding work specifically irt(2).

If we take[a, b] = [c,d] then results obtained iro] are captured. Further,
takingw () = 1, x € I produces a result obtained ifl] from the first in-
equality in £.1).

Moy (f;a,b]) =

B. Leta = (a1,...,a,), b= (b1,...,b,),p = (p1,-..,pn) ben—tuples
of real numbers witly, > 0,7 € {1,2,...,n} and withP, = 2% p;, P, = 1.
Further, if

then form <n

(5.2)

" B+1b
;piaibi T

n 1 m
Zpiai P ijaj]
i=1 moj=1
1 m n
B ijaj . Zpibi
moj=1 i=1
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B—b 1 «—
— max |a; — —— i@l .
< max o Z pja;
J=1 On Some Results Involving the
. . Ceby3Sev Functional and its
If 37", pja; = 0, then the above results simplify. Generalisations
The constang is sharp for all the inequalities b (1). P. Cerone
If p; =1, i € {1,...,n} then the following unweighted inequalities may be
stated from%.2). Namely, Sy —
B _|_ b 1 & Contents
I S S S S P
, Py m <4« 44
B-b1l 1 & < »
< — a; — — a;
2 n = m 3 Go Back
B_b1" A « Close
= 9 (5 Z LR, a; ) Quit
i= j=1
B—b 1 Page 36 of 40
< —omaxia; - — ) a;
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Form = n anda; = b; for eachi € {1,2,...,n} then from £.2),

n n 2 n n
0< Y pi - (Xt ) <E 0 eS| < (
=1 i=1 =1 7j=1

providing a counterpart to the Schwartz inequality.

B-b

2

).
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