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ABSTRACT. For a large family of weightg in the unit disc and for fixed < ¢ < p < oo, we
give a characterization of those measuyresich that, for all functiong holomorphic in the unit

disc, )
s by Ud2) b\
1o < C (/1 = o T +|f(0)|> |
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1. INTRODUCTION

Givenindices, ¢, 1 < p,q < oo, and given a positive weighton the unit discD, a positive
measureu on is aCarleson measure fofB,(p), q) if the following Sobolev-type inequality
holds whenevey is a function which is holomorphic ib,

@D Wl =€ ([ 10 - BB EPC) (ﬁ(fjly Flror)”

Throughout the papenr; denotes the Lebesgue measure: i positive throughoud and, say,
continuous, the right-hand side pf ([L.1) defines a norm for a Banach space of analytic functions,
the analytic Besov spacg,(p).

ISSN (electronic): 1443-5756

(© 2005 Victoria University. All rights reserved.

Most of this work was done while the author was visiting the Institute Mittag-Leffler, with a grant of the Royal Swedish Academy of
Sciences.
Itis a pleasure to thank D. R. Adams for pointing out the reference [5].
Work partly supported by the COFIN project "Analisi Armonica", funded by the Italian Minister of Research.

124-04


http://jipam.vu.edu.au/
mailto:arcozzi@dm.unibo.it
http://www.ams.org/msc/

2 NicoLA ARCOZzZI

The measurg% and the differential operatdf1 — |z|?) f’(z)| should be read, respec-

tively, as the volume element and the gradient’s modulus with respect to the hyperbolic metric
inD,
|d=|”
(1= [=2)*
In [2], a characterization of the Carleson measure$B ), ¢) was given, whep < ¢ and
p is ap-admissible weightto be defined below. Loosely speaking, a weiglg p-admissible
if one can naturally identify the dual space®f(p) with B, (p*~*'). The weights of the form
(1 —]z*)*, s € R, arep-admissible if and only if-1 < s < p — 1. (Here and throughout
plapl=qgleqgt=1).

Theorem 1.1([2]). Suppose that < p < g < oo and thatp is a p-admissible weight. A
positive Borel measurg onD is Carleson for(B,(p), ¢) if, and only if, there is & (i) > 0,
so that for alla € D

ds® =

/
q

(1.2) (/5( )p(Z)p//p (1(S(2) N S(a)))” mh(dz)> " < Gn(Sa).

Fora € D,
<1- ra\}

is theCarleson boxvith centera. The proof was based on a discretization procedure and on the
solution of a two-weight inequality for the “Hardy operator on trees”. Actually, wien p,
Theoren 1.JL holds with a “single box” condition which is simpler than](1.2). For different
characterizations of the Carleson measures for analytic Besov spaces in different generality, see
[13], [8], [14], [17], [18]. A short survey of results and problems is containedlin [1].

In this note, we consider the Carleson measure$®(p), ¢) in the casd < ¢ < p < oc.
The new tool is a method allowing work in this “upper triangle” case, developed by C. Cascante,
J.M. Ortega and I.E. Verbitsky in[5]. Before we state the main theorem, we introduce some
notation.

Fora € D, let P(a) = [0,a] € D, the segment with endpoinfisanda. Let1 < p < oo and
let p be a positive weight ofd. Given a positive, Borel measureon D, we define itdoundary
Wolff potentia) We, (1) = Weo(p, p; 1) to be

|dw|

Watpi) = [ oty (S

The main result of this note is the theorem below. Its statement certainly does not come as a
surprise to the experts.

S(a> = {Z eD: 1-— ’2’ < 2(1 . ‘CL’), argz(;ﬁ)

Theorem 1.2.Letl < ¢ < p < oo and letp be ap-admissible weight. A positive Borel measure
wonl is a Carleson measure f@B3,(p), ¢) if and only if

(1.3) /D(Wco(u)(Z))q(;—;) pu(dz) < oo.

We say that a weight is p-admissible if the following two conditions are satisfied:
(i) p is regular, i.e., there exist > 0, C' > 0 such thatp(z;) < Cp(z2) wheneverz,
and z, are within hyperbolic distance Equivalently, there aré < 1, C’ > 0 so that
p(z1) < C'p(z2) whenever

AT o5

1— 21292

J. Inequal. Pure and Appl. Math6(1) Art. 13, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

CARLESON MEASURES FORANALYTIC BESOV SPACES 3

(i) the weightp,(2) = (1 — |2]?)P~?p(z) satisfies theBekollé-Bonami3, condition ([4],
[3]): There is aC(p, p) so that for alla € D

1
p/—1

(L.4) [ mma) || [ ooy mia) | < Copmsiay.
S(a) S(a)

Inequalities like [(1.]l) have been extensively studied in the setting of Sobolev spaces. For
instance, given < p, ¢ < oo, consider the problem of characterizing tlaz’'ya measureor
(p, q); that is, the class of the positive Borel measyrem R such that the Poincare inequality

(L5) (AJW@Qésmm(égwmwQ;

holds for all functions: in Cg°(R™), with a constant independent of Here, we only consider
the case when < ¢ < p < oo, and refer the reader t0 [16] for a comprehensive survey of
these “trace inequalities”. Maz'ya [11], and then Maz'ya and Netrusov [12], gave a charac-
terization of such measures that involves suitable capacities. Later, Verhitsky [15], gave a first
noncapacitary characterization.

The following noncapacitary characterization of the Maz'ya measures<£op is in [5]. For
0 <a<mn,letl,(z) = c(n,a)|z|* " be the Riesz kernel iR™. Recall that, forl < p < oo,
(1.5) is equivalent, forv = 1, to the inequality

(L6) ( Mwﬂ%@qgcmw: mwmf
R" Rn

with a constant(:), independent of € L?(R™).
Now, let B(x, r) denote the ball ifR", having its center at and radius-. TheHedberg-Wolff

potentiallV, , of 1 is
< (u(B(x,r Pl gy
Woy(o) = [~ (M)
0 r

r

Theorem 1.3([5]). If 1 < ¢ < p < oo and0 < a < n, u satisfies[(1J6) if and only if
a(p—1)
(1.7) | W) ¥ < o0,

Comparing the different characterizations for the analytic-Besov and the Sobolev case, we
see at work the heuristic principle according to which the relevant objects for the analysis in
Sobolev spaces (e.g., Euclidean balls, or the potelitigl) have as holomorphic counterparts
similar objects, who livenear the boundarye.g., Carleson boxes, or the potentidl,). This is
expected, since a holomorphic function cannot behave badly inside its domain. Another simple,
but important, heuristic principle is theblomorphic functions are essentially discreBy this,
we mean that, for many purposes, we can consider a holomorphic function in the unit disc as
if it were constant on discs having radius comparable to their distance to the boundary. (For
positive harmonic functions, this is just Harnack’s inequality). Based on these considerations,
one might think that the problem of characterizing the Carleson measureB,figr), ¢) might
be reduced to some discrete problem. This is in fact true, and it is the main tool in the proof of
Theorem 1.P.

The idea, already exploited inl[2], is to considér— |z|?) f/(z) constants on sets that form a
Whitney decomposition db). The Whitney decomposition has a natural tree structure, hence,
the Carleson measure problem leads to a weighted inequality on trees.
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The discrete result is the following. L&t be a tree, i.e., a connected, loopless graph, that
we do not assume to be locally finite; see Sedfion 3 for complete definitions and notation. Let
o € T be afixed vertex, theot of 7. There is a partial order dfidefined byx <y, x,y € T,
if z € [o,y], the geodesic joining andy. Lety: T'— C. We defineZy, theHardy operator
on T, with respect tw, applied toyp, by

To(r)=> o)=Y o)

y€[o,]

A weightp on T is a positive function of".

Forz € T,letS(x) = {y € T : y > x}. S(z) is theCarleson box with vertex or the
successors’ satf z. Also, let P(z) = {z € T: 0o < z < z} be thepredecessors’ saif x.
Given a positive weighp and a nonnegative functignon 7', and givenl < p < oo, define
W(n) = Wi(p,p; 1), thediscrete Wolff potentiadf 1,

(1.8) W)= > p) " Sy
yEP ()
Theorem 1.4.Letl < ¢ < p < oo and letp be a weight orf". For a nonnegative functiop
onT, the following are equivalent :
(1) For some constan®'(x) > 0 and all functionsp

(1.9) (Z \Iw(w)lqu(w)> < C(p) <Z lo()|” p(ﬂf)) -
(2) We have the inequality

(1.10) S ) (W) 57 < oo,

zeT

A different characterization of the measuyefor which (1.9) holds is given iri [6] Theorem
3.3, in the more general context tfick trees(i.e., trees in which the edges are copies of
intervals of the real line). The necessary and sufficient condition given in [6], however, seems
more difficult to verify than[(1.7]0), at least in our simple context.

The paper is structured as follows. In Sectign 2, we show that the problem of characteriz-
ing the measureg for which (1.1) holds is completely equivalent,fis p-admissible, to the
corresponding problem for the Hardy operator on tr&eslhe idea, already present [ [2], is
to replace the unit disc by one of its Whitney decompositions, endowed with its natural tree
structure, and the integral along segments by the sum along tree-geodesics. In[Section 3, fol-
lowing [5], Theorenj 14 is proved, and the problem on trees is solved. Sé¢tion 2 and Section
together, show thaft (1.1) is equivalent to a condition which is the discrete analogug of (1.3).
Unfortunately, this discrete condition depends on the chosen Whitney decomposition. In Sec-
tion[4, we show that the discrete condition is in fact equivalenf td (1.3). In the course of the
proof, we will see that the Carleson measure problem in the unit disc is equivalent to a number
of its different discrete “metaphors” on a suitable graph.

Actually, this route to the proof of Theorgm [L.2 is not the shortest possible. In fact, we could
have carried the discretization directly over a graph, skipping the repetition of some arguments.
We chose to do otherwise for two reasons. First, the tree situation is slightly easier to handle,
and it leads, already in Sectiph 2, to a characterization of the Carleson measiigg f9rq).
Second, it can be more easily compared with the proof of the characterization theorem for the
casey > p, which was obtained i [2] working on trees.
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It should be mentioned that![5] has some results for spaces of holomorphic functions, which
are different from those considered in this article.

2. DISCRETIZATION

In this section, Theoren 2.5, we show thatp i p-admissible, then the problem of charac-
terizing the Carleson measures #8y(p) is equivalent to a two-weight inequality on trees. This
fact is already implicit in[[2], but, here, our formulation stresses more clearly the interplay be-
tween the discrete and the continuous situation. In the context of the weighted Bergman spaces,
a similar approach to the Carleson measures problem was employed by Luécking [9], who also
obtained a characterization theorem in the upper triangle case [10].

First, we recall some facts on Bergman and analytic Besov spaces.

Let1 < p < oo be fixed and lep be a weight orD. TheBergman spacel,,(p) is the space
of those functiong that are holomorphic if» and such that

mmmzémmw@mw>

is finite. Define, forf, g € Ay = As(1),
uwhz/ﬂm@mwy
D

Let A,(p)* be the dual space of,(p). We identifyg € A, (p'~7") with the functional om4,,(p)

(21) Ag: f = <f7 g>A2'

By Holder's inequality we have that(p) C A, (p'~'). Condition [1.}) shows that the reverse
inclusion holds.

Theorem 2.1(Bekolle-Bonamil[4],[3]) If the weightp satisfies[(1}4) thep — A,, whereA,
defined in[(2.1) is an isomorphism.af, (p' ') onto A7 (p).

We need some consequences of Thedrein 2.1, whose proof can be found in [2], §2 and §4.
Let F, G be holomorphic functions if,

F(z) = ianz”, G(z) = i bnZn.
Define O 0
(F,G)p. = inanE = /D F'(2)G'(2)m(dz)
and 1

(F,G)p = apby + inanE = F(0)G(0) + (F,G)p. .

Lemma 2.2. Let p be a weight satisfying (1.4). The®), (p'~*') is the dual ofB, (p) under the
pairing (-, -)p. i.e., each functionak on B,(p) can be represented as

Af = <f7 g>D7 f € Bp(p)
for a uniqueg € B, (p' 7).
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The reproducing kernel @ with respect to the product, -)p is

1
¢.(w) =1+ log T

i.e., if f € D, then

1 /
1) = oo = [ 7@ (1+1og =) midw) + 50)
Lemma 2.3. Let p be an admissible weight, < p < co. Then,¢, is a reproducing kernel for
By (p'7). i.e., ifG € By(p'~7), then
(2.2) G(z) = (G, ¢:)p.
In particular, point evaluation is bounded dg, (p' ).

Observe tha4) is symmetric jp, p) and(p' 7', p’) and hence the same conclusion holds
for B,(p).
Now, let . be a positive bounded measureldand define

(F,G) = (F,G) 2 = /H)F(Z)G(z)u(dz).
wis Carleson foB,(p), p, q) if and only if

Id: By(p) — L(p)

is bounded. In turn, this is equivalent to the boundedness, with the same norm, of its adjoint
O = Id*,

©: LY (1) — (By(p))" = By(p' ™),
where we have used the duality pairings)p and(-, -),, and Lemma 2]2.
By Lemmd 2.3,
GG(Z) = <6Ga ¢Z>D = <G, ¢Z>L2(;L)

= [ (1108 ) Glwpntan

For future reference, we state this as

Lemma 2.4. If p is ap-admissible weight, the adjoint étl : B,(p) — L%(u) is the operator

O : L (1) — (By(p))" = By (p'™)
defined by

2.3) 0G(2) — /D (1—|—log1 ! _)G(w)u(dw).

— ZW

Consider, now, a dyadic Whitney decompositioDofNamely, for integern > 0, 1 < m <
arg(z) m

2", let
< 2*(714’1) )
27 2n |
These boxes are best seen in polar coordinates. It is natural to consider the Whitney squares as
indexed by the vertices of a dyadic trdg, Thus the vertices df; are
(2.4) {alae = (n,m), n>0andl <m < 2" m,n € N}

and we say that there is an edge betwgemn), (n',m’) if A, ) andA, . share an arc of
acircle. The root of’; is, by definition,(0, 1). Here and throughout we will abuse notation and,

Apm = {z eD: 27" <1~z <27
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when convenient, identify the vertices of such a tree with the sets for which they are indices.
Here we identifyo andA,,. Thus, there are four edges haviftg1) as an endpoint, each other
box being the endpoint of exactly three edges.

Given a positive, regular weight on D, we define a weight off;, still denoted byp. If
a € Ty and if z, be, say, the center of the baxC D, then,p(a) = p(z,). By the regularity
assumption, the choice of, does not matter in the estimates that follow.

Theorem 2.5.Letl < ¢, p < oo and letp be ap-admissible weight. A positive Borel measure
ponD is a Carleson measure fdiB,(p), ¢) if and only if the following inequality holds, with
a constant”' which is independent of: 7, — R.

(2.5) (Z !M(@W(@) q <C <Z !@(y)!pp(y)> -

z€TH y€Ts

Proof. It is proved in [2] (84, Theorem 12, proof of the sufficiency condition) that](2.5) is
sufficient foru to be a Carleson measure.

We come, now, to necessity. Without loss of generality, assume thatisupp{z: |z| <
1/2}. By the remarks preceding the proof, Lemmd 2.2 and Lefnnja 2,3 ,idFCarleson, then
© is bounded from. (11) to B, (p*~*"). Consider, now, functiong € L7 (1), having the form

gfw) = Lw)

whereh > 0 andh is constant on each bex e Ty, h|, = h(a). The boundedness 6f implies

c (Z Ih(a)lq/u(a)> T ( / |g|q’du)q1'

a€Ts
> 19915, (1

2(/@

Forz € D, leta(z) € T, be the Whitney box containing By elementary estimates,

(2.6) Re (M) >0

1—zw

1

v , m(dz) >p/

A T

/ L= B )

1—zw

if we D, and

Re (%) >c>0,if weSaz))

for some universal constaat If «(z) = o is the root of75, the latter estimate holds, say, only
on one half of the box, and this suffices for the calculations below.
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Using this, and the fact that all our Whitney boxes have comparable hyperbolic measure, we
can continue the chain of inequalities

2</D

1

[ ulnwuto) pl-p’<z>—(1"i<fj)2>2)p

(a(z)) 1 — 2W

' L m(dz) g
>c h(ﬂ)ﬂ(ﬁ) p( ) 212
/D BeS(alz) (=[P
>c| > | DL rBwB) | pla)
a  \BeS(a)

LetZ*, defined on functiong: 7, — R, be the operator
Tp(a) = > e(B)u(B).
peS(a)

It is readily verified thaZ* is the adjoint ofZ, in the sense that

ST (a)p(a) = 3 la)Tp(a)u(a).

Then, the chain of inequalities above shows that
I L () — LY (p'7)
is a bounded operator. In turn, this is equivalent to the boundedness of
I:LP(p) — L(p).

3. ATWO-WEIGHT HARDY INEQUALITY ON TREES

In this section we prove Theorgm [L.4.

Let 7" be a tree. We use the same naméor the tree and for its set of vertices. We do not
assume thal’ is locally finite; a vertex ofl’ can be the endpoint of infinitely many edges. If
xz,y € T, thegeodesic betweenandvy, [z,y], is the set{x,...,z,}, wherexq = z, x, =
y, x;_1 is adjacent tac; (i.e., z;_; andz; are endpoints of an edge), and the verticeg:iny|
are all distinct. We lefz, z] = {«}. If z,y are as above, we lef{z,y) = n. Leto € T' be a
fixedroot. We say thatr < y, z,y € T, if z € [0,y]. <is a partial order ofi". Forxz € T', the
Carleson boxof vertexz (or theset of successors af) is S(z) = {y € T: y > z}. We will
sometimes writgo, x| = P(x), theset of predecessors of

Theorem 3.1.Let1 < ¢ < p < oo and letp be a weight orf". For a nonnegative functiop
onT, the following are equivalent:

(1) For some constan®'(x) > 0 and all functionsy

1

6D (Z |Iso<x>|qu<x>> <o (Z |¢<x>|pp<x>> R

zeT €T

J. Inequal. Pure and Appl. Math6(1) Art. 13, 2005 http://jipam.vu.edu.au/
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(2) We have the inequality

(3.2) S nle) (W) (@) 57 < oc.

xzeT

As a consequence of Theorefms|3.1 2.5, we obtain a characterization of the Carleson
measures fofB,(p), q).

Corollary 3.2. A measurg: in the unit disc is Carleson fotB,(p), ¢) if, and only if,
q(p—1)
(3.3) 3 pla) (W (p)(@) 7 < oo
a€cT
Proof. First, we show thaf (3]2) implief (3.1). By duality, it suffices to show that, ii (3.2) holds,
thenZ*,

Trp(z) = > o)y

y€S(z)

is a bounded map fromh? (1) to L¥ (p'~*"). Without loss of generality, we can te&t on
positive functions. Ley > 0. Then

/

1T g1y = D () ( > g(y)u(’y)>

zeT yeS(z)
by definition of IV, = " g(y)u(y)W (gu) (1).
yeT
Define, now, the maximal function
2 ies(z) 9 u(t)
34 M = .

The following lemma will be proved at the end of the proof of Thedrerm 3.1. It can be considered
as a discrete, boundary version of the weighted maximal theorem of R. Fefferman [7].

Lemma 3.3.1f 1 < s < oo andy is a bounded measure @n then,, is bounded orl®(u).

Sinceg > 0,
W(gm)(y) <3 p(a) 7 u(S(@)" ~* (Mg(y)” "
P(y)
= W () (y) (Mug(y))" .
Thus,
IZ 917 iy < D 9()W (1) () (Mg ()"
< (Z Mug(y)(p'”’"u(y)> T (Zg(y)“(W(u)(y))’”'u(y)> T

by Hélder’s inequality, with- = ﬁ > 1,

< Cllgli;t, (Zg(y)”'u(y)> T (DW(m(y»”’u(y)) T

yeT yeT

J. Inequal. Pure and Appl. Math6(1) Art. 13, 2005 http://jipam.vu.edu.au/
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by Lemmg 3.B and Holder's inequality, with=¢ — p’ +1 > 1,

=Clgl?, ., (Z(W(u)(y))mu(y)) .

yeT

This proves one implication.
We show that, conversely, (3.1) impli¢s (3.2). By hypothesis and duality, we have>for,

lglly, .y = C DT gy ply)' ™"

- o (Saesi 9@nx)\”
—;p(y) 1(S(y)) ( e ) .

Replacey = (Muh)i, with h > 0. By Lemm, since’ > p/,
Bl > CUMY

(W) LP" ()

= C|| (M.h)Y7 |7 (1)

By duality, then, we have that

6<y) ( // /)/ a(p—1)
c L\9/p =L »q .
yGZT u(S(y))XS(y) (N) (,u)

Hence,

e(y) o
o0 > Z <Z m)(s@ (@) ()

=S nla) (W) 5

xzeT

which is the desired conclusion. O
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As a final remark, let us observe that the potentialdmits the following, suggestive for-
mulation:

W) =1 (o (@ 1d),
whereld is the identity operator.
Condition [1.10) might, then, be reformulated as

T (o7 (@ 1)) € L ().
Proof of Lemma 3]3The argument is a caricature of the classical one. By intepolation, it suf-
fices to show thad/, is of weak typg(1, 1). For f > 0onT andt > 0, let E(t) = {M, > f >
t}. If z € E(t), there exists = z(z) € P(x), such that

tu(S(2)) < D fy)uy).
y€S(2)
Let I be the set of such's. By the tree structure, there exists a subset 7, which is maximal,
in the sense that, for eachn 7, there is av in J so thatw > z. Hence,

E(t) g UZGIS(Z) = Uwel]S('LU)
the latter union being disjoint. Thus,

p(EW) < 3 n(5(w) < 11l

weJ
which is the desired inequality. O

4. EQUIVALENCE OF Two CONDITIONS

The last step in the proof of Theor¢m|1.2 consists of showing that conditign (3.3) is equivalent
to (1.3). In order to do so, we introduce T, the set of the Whitney boxes in whidh was
partitioned, a graph structure, which is richer than the tree structure we have considered so far.

Let 75 be thesetdefined in Sectiof]2. We makk into a graphGy structure as follows. For
a, B € Ty, to say that there is an edge aff betweerny and 3” is to say that the closures and
(3 share an arc or a straight line. Ferj € G, the distance betweenandg, ds(a, 3), is the
minimum number of edges in a path betweeand. The ball of centery and radiug: € Nin
G will be denoted byB(a, k) = {5 € G : dg(a, 5) < k}. In G, we maintain the partial order
given by the original tree structure. In particular, we still have the tree geodesids

Letk > 0 be an integer. Fat € G, define

Pi(a) ={6 € G :dg(B,[0,0]) <k}
and, dually,
Sp(a) ={0 € G:ae€ P,(B)}.
Observe thapy € Si(«) if and only if [0, 5] N B(«, k) is nonempty. Clearly?, = P and

So = S are the sets defined in the tree case. The corresponding opératordZ; are defined
as follows. Forf : G — R,

(4.1) if(a)= > f(B)
BEP;(ar)

and

(4.2) if(e) = Y f(B)u(B).
BESK ()

J. Inequal. Pure and Appl. Math6(1) Art. 13, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

12 NicoLA ARCOZzI

As beforeZ;, andZ; are dual to each other. That is/if(G) is the L? space or7, with respect
to the counting measure,

<I/€907¢>L2(M) = <907:Z;;77Z)>L2(G)-
For eachk, we have a discrete potential

Welp)(x) = D py)' ™ w(Sk(y))” ™

yEPy(z)

and a[COV]-condition
(4.3) S ) (Welp) () " < o0,

If f>0o0nG,thenZ,f > Zf, pointwise onz. The estimates for all these operators, however,
behave in the same way.

Proposition 4.1. Let, be a measure angda p-admissible weight o, 1 < g < p < oco. Also,
let » and p denote the corresponding weights Gn
Then, the following conditions are equivalent

(i) There existg’ > 0 such that[(1.1l) holds, that is

1l < (/ 0= P o) (ﬁ>) +|f(0)|”)

3 =

wheneverf is holomorphic orD.
(i) For k > 2, there existg’;, > 0 such that

1

(4.4) (Zrzkwx)\qu(:v)) < Ci(p (Zw )

zeT zeT
(iif) The following inequality holds,

(4.5) S ) (Welp) () " < oo,
(iv) (1.3) holds, -

(4.6) [ Wl )55 i) < o0
(v) (1.10) holds,

@.7) ;um (W () ()55 < oo.

(vi) (1.9) holds for somé’ > 0,

@8) (Z \Iso(x)wx)) <o) (Z |so<x>|”p<:c>> R

zeT zeT

Proof. We prove that (i}= (i) = (iii)) = (iv) = (v) = (vi) = (i).

The implications (v)== (vi) = (i) were proved in Theorenjs 1.4 apd]|1.2, respectively.
(i) = (ii) can be proved by the same argument used in the proof of Thgorém 2.5, with minor
changes only. The key is the estimate|(2.6).

The proof that (iii)=- (iv) = (v) is easy. Observe thdlt). (1) increases witlt, hence that
(i) with k& = n implies (iii) with £ = n — 1. In particular, it implies (v), which corresponds to

J. Inequal. Pure and Appl. Math6(1) Art. 13, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

CARLESONMEASURES FORANALYTIC BESOV SPACES 13

k = 0. Letz € D, and leta(z) € G be the box containing. Then, it is easily checked that, if
k> 2,

S(a(z)) € S(z) C Sk(a(z)).
To show the implication (iii}=- (iv), observe that

/ ’ d’lU|
Weo z:/ WP (S (w))P 1 |
(1)(2) Pz)p( )P (S (w)) EE
a(z)
<CY pB)P u(SB)r!
B=o0
=C (B p(Sk(B))"
BEP,(af(2))
= CWi(p)(a(2)).
hence
a(p=1) a(p=1)
[ Wi @) 55 ) < ¢ Y sup (Wanl)(2) 55 e
D acG .
q(p—1)
<O (Wilp)(a) = pla
aceG
as wished.

Fory € G, let v~ be the predecessor of : v~ € [o,7] anddg(vy,7~) = 1. For the
implication (iv) = (v), we have

Weol12)(2) = / )p(w)p’-wS(w))p"ll'fl—T;,'}P
a(z)”
>C Y pBF T u(S) !
B=o0

= CW(p)(a(z)).
In the second last inequality, we used the fact $1at) C S(a~). Then,

[ Va5 () 2 € 3 i Wanli) ()5 ()

aeG
a(p—1)
> (W) () 7 p(a)
aeG
and this shows that ()= (v).
We are left with the implication (ii}=> (iii). The proof follows, line by line, that of Theorem
[1.4 in Sectiof B. One only has to modify the definition of the maximal function

teSK(2 t t
(4.9) My ug(y) = max = Z&?E);M( >-

We just have to verify thad/,, , is bounded orl*(p), if 1 < s < oo. It suffices to show that
My, is of type weak(1, 1) and this, in turn, boils down to the covering lemma that follows.
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Lemma 4.2. There exists a constarit > 0 with the following property. Lef’ be any set irt7,
F C U.erSk(2)
wherel C G is an index set. Then, there exists_ I such that
F C U.es5(2)
and, forallz € G,
HweJ:xe S (w)} <L
wheref A is the number of elements in the get

Proof of the lemmaFor simplicity, we prove the lemma whén= 2. Incidentally, this suffices
to finish the proof of Theorein 1.2.

It suffices to show that, it; are points inG, j = 1,2, 3, andﬂ;’?:ng(zj) is nonempty, then
one of theSy(z;)’s, sayS»(z1), is contained in the union of the other two. In fact, this gives
L = 2in the lemma.

Letz € G, dg(z,w) > 3. Let 272 be the pointw in [o, z] such thati; (o, w) = 2 and letz*
be the only pointv in G such that

w € S5(2), dg(o,w) = dg(o,2) — 1 andw ¢ Sy(z?)

whereSy(z) = S(z) is the same Carleson box introduced in Sedfipn 3. Then, one can easily
see that
SQ(Z) = 50(272) U S()(Z*>
the union being disjoint.
Let now zy, 2y, 23 be as above, witdg (o, z1) > da(o, z2) > da(o, z3). Then,dg(o, ;%) >
dg(0,25%) > dg(o, 23 %) andz, is a point withindg distancel from Sy(z3). If Sy(z5) C Sa(23),
there is nothing to prove. Otherwise,

SQ(ZQ) U SQ(Zg) = 30(2’3_2) U So(Z§) U SQ(U)),
wherew = z;% orw = 23, respectively, the union being disjoint, and

Sa(22) N Sa(z3) = So(§),

where¢ = 23 or ¢ = z; 2, respectively. In the first case, sinée(o, z1) > dg(o, 22), if Sa(21)
intersectsSy(w), thenS,(z;) must be contained in the union 6§(z,) andSy(z3). The same
holds in the second case, unlekgo, z1) = dg(o, z2). In this last case, one of the following
three holds: (|)52(21> - 52(2’3), (ll) 52(2’1) = SQ(ZQ), (|||) SQ(ZQ) C SQ(ZS) U 52(2’1). In all
three cases, the claim holds, hence the lemma. O

An extension of the results in this paper to higher complex dimensions is in N. ARCOZZI,
R.ROCHBERG, E. SAWYER, “Carleson Measures and Interpolating Sequences for Besov
Spaces on Complex Balls", to appeaiMemoirs of the A.M.S. O

The covering lemma might also be proved taking into account the interpretation of the graph
elements as Whitney boxes, then using elementary geometry.
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