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ABSTRACT. For a large family of weightsρ in the unit disc and for fixed1 < q < p < ∞, we
give a characterization of those measuresµ such that, for all functionsf holomorphic in the unit
disc,

‖f‖Lq(µ) ≤ C(µ)

(∫
D
|(1− |z|2)f ′(z)|pρ(z)

m(dz)
(1− |z|2)2

+ |f(0)|p
) 1

p

.
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1. I NTRODUCTION

Given indicesp, q, 1 < p, q <∞, and given a positive weightρ on the unit disc,D, a positive
measureµ on is aCarleson measure for(Bp(ρ), q) if the following Sobolev-type inequality
holds wheneverf is a function which is holomorphic inD,

(1.1) ‖f‖Lq(µ) ≤ C(µ)

(∫
D
|(1− |z|2)f ′(z)|pρ(z) m(dz)

(1− |z|2)2
+ |f(0)|p

) 1
p

.

Throughout the paper,m denotes the Lebesgue measure. Ifρ is positive throughoutD and, say,
continuous, the right-hand side of (1.1) defines a norm for a Banach space of analytic functions,
the analytic Besov spaceBp(ρ).
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2 NICOLA ARCOZZI

The measure m(dz)

(1−|z|2)2
and the differential operator|(1 − |z|2)f ′(z)| should be read, respec-

tively, as the volume element and the gradient’s modulus with respect to the hyperbolic metric
in D,

ds2 =
|dz|2

(1− |z|2)2
.

In [2], a characterization of the Carleson measures for(Bp(ρ), q) was given, whenp ≤ q and
ρ is ap-admissible weight, to be defined below. Loosely speaking, a weightρ is p-admissible
if one can naturally identify the dual space ofBp(ρ) with Bp′(ρ

1−p′). The weights of the form
(1 − |z|2)s, s ∈ R, arep-admissible if and only if−1 < s < p − 1. (Here and throughout
p−1 + p′−1 = q−1 + q′−1 = 1).

Theorem 1.1([2]). Suppose that1 < p ≤ q < ∞ and thatρ is a p-admissible weight. A
positive Borel measureµ on D is Carleson for(Bp(ρ), q) if, and only if, there is aC1(µ) > 0,
so that for alla ∈ D

(1.2)

(∫
S(a)

ρ(z)−p′/p (µ (S(z) ∩ S(a)))p′ mh(dz)

) q′
p′

≤ C1(µ)µ (S(a)) .

Fora ∈ D,

S(a) =

{
z ∈ D : 1− |z| ≤ 2(1− |a|),

∣∣∣∣arg(az̄)

2π

∣∣∣∣ ≤ 1− |a|
}

is theCarleson boxwith centera. The proof was based on a discretization procedure and on the
solution of a two-weight inequality for the “Hardy operator on trees”. Actually, whenq > p,
Theorem 1.1 holds with a “single box” condition which is simpler than (1.2). For different
characterizations of the Carleson measures for analytic Besov spaces in different generality, see
[13], [8], [14], [17], [18]. A short survey of results and problems is contained in [1].

In this note, we consider the Carleson measures for(Bp(ρ), q) in the case1 < q < p < ∞.
The new tool is a method allowing work in this “upper triangle” case, developed by C. Cascante,
J.M. Ortega and I.E. Verbitsky in [5]. Before we state the main theorem, we introduce some
notation.

For a ∈ D, letP (a) = [0, a] ∈ D, the segment with endpoints0 anda. Let 1 < p < ∞ and
let ρ be a positive weight onD. Given a positive, Borel measureµ onD, we define itsboundary
Wolff potential,Wco(µ) = Wco(ρ, p;µ) to be

Wco(µ)(a) =

∫
P (a)

ρ(w)p′−1µ(S(w))p′−1 |dw|
1− |w|2

.

The main result of this note is the theorem below. Its statement certainly does not come as a
surprise to the experts.

Theorem 1.2.Let1 < q < p <∞ and letρ be ap-admissible weight. A positive Borel measure
µ onD is a Carleson measure for(Bp(ρ), q) if and only if

(1.3)
∫

D
(Wco(µ)(z))

q(p−1)
p−q µ(dz) <∞.

We say that a weightρ is p-admissible if the following two conditions are satisfied:
(i) ρ is regular, i.e., there existε > 0, C > 0 such thatρ(z1) ≤ Cρ(z2) wheneverz1

andz2 are within hyperbolic distanceε. Equivalently, there areδ < 1, C ′ > 0 so that
ρ(z1) ≤ C ′ρ(z2) whenever ∣∣∣∣ z1 − z2

1− z1z2

∣∣∣∣ ≤ δ < 1.
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CARLESON MEASURES FORANALYTIC BESOV SPACES 3

(ii) the weightρp(z) = (1 − |z|2)p−2ρ(z) satisfies theBekollé-BonamiBp condition ([4],
[3]): There is aC(ρ, p) so that for alla ∈ D

(1.4)

∫
S(a)

ρp(z)m(dz)


∫

S(a)

ρp(z)
1−p′m(dz)


1

p′−1

≤ C(ρ, p)m(S(a))p.

Inequalities like (1.1) have been extensively studied in the setting of Sobolev spaces. For
instance, given1 < p, q <∞, consider the problem of characterizing theMaz’ya measuresfor
(p, q); that is, the class of the positive Borel measuresµ onR such that the Poincarè inequality

(1.5)

(∫
Rn

|u|qdµ
) 1

q

≤ C(µ)

(∫
Rn

|∇u|pdm
) 1

p

holds for all functionsu in C∞
0 (Rn), with a constant independent ofu. Here, we only consider

the case when1 < q < p < ∞, and refer the reader to [16] for a comprehensive survey of
these “trace inequalities”. Maz’ya [11], and then Maz’ya and Netrusov [12], gave a charac-
terization of such measures that involves suitable capacities. Later, Verbitsky [15], gave a first
noncapacitary characterization.

The following noncapacitary characterization of the Maz’ya measures forq < p is in [5]. For
0 < α < n, let Iα(x) = c(n, α)|x|α−n be the Riesz kernel inRn. Recall that, for1 < p < ∞,
(1.5) is equivalent, forα = 1, to the inequality

(1.6)

(∫
Rn

|Iα ? v|qdµ
) 1

q

≤ C(µ)

(∫
Rn

|v|pdm
) 1

p

with a constantC(µ), independent ofv ∈ Lp(Rn).
Now, letB(x, r) denote the ball inRn, having its center atx and radiusr. TheHedberg-Wolff

potentialWα,p of µ is

Wα,p(µ)(x) =

∫ ∞

0

(
µ(B(x, r))

rn−αp

)p′−1
dr

r
.

Theorem 1.3([5]). If 1 < q < p <∞ and0 < α < n, µ satisfies (1.6) if and only if

(1.7)
∫

Rn

(Wα,p(µ))
q(p−1)

p−q dµ <∞.

Comparing the different characterizations for the analytic-Besov and the Sobolev case, we
see at work the heuristic principle according to which the relevant objects for the analysis in
Sobolev spaces (e.g., Euclidean balls, or the potentialWα,p) have as holomorphic counterparts
similar objects, who livenear the boundary(e.g., Carleson boxes, or the potentialWco). This is
expected, since a holomorphic function cannot behave badly inside its domain. Another simple,
but important, heuristic principle is thatholomorphic functions are essentially discrete. By this,
we mean that, for many purposes, we can consider a holomorphic function in the unit disc as
if it were constant on discs having radius comparable to their distance to the boundary. (For
positive harmonic functions, this is just Harnack’s inequality). Based on these considerations,
one might think that the problem of characterizing the Carleson measures for(Bp(ρ), q) might
be reduced to some discrete problem. This is in fact true, and it is the main tool in the proof of
Theorem 1.2.

The idea, already exploited in [2], is to consider(1− |z|2)f ′(z) constants on sets that form a
Whitney decomposition ofD. The Whitney decomposition has a natural tree structure, hence,
the Carleson measure problem leads to a weighted inequality on trees.
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4 NICOLA ARCOZZI

The discrete result is the following. LetT be a tree, i.e., a connected, loopless graph, that
we do not assume to be locally finite; see Section 3 for complete definitions and notation. Let
o ∈ T be a fixed vertex, theroot of T . There is a partial order onT defined by:x ≤ y, x, y ∈ T ,
if x ∈ [o, y], the geodesic joiningo andy. Let ϕ : T → C. We defineIϕ, theHardy operator
onT , with respect too, applied toϕ, by

Iϕ(x) =
x∑
o

ϕ(y) =
∑

y∈[o,x]

ϕ(y).

A weightρ onT is a positive function onT .
For x ∈ T , let S(x) = {y ∈ T : y ≥ x}. S(x) is theCarleson box with vertexx or the

successors’ setof x. Also, let P (x) = {z ∈ T : o ≤ z ≤ x} be thepredecessors’ setof x.
Given a positive weightρ and a nonnegative functionµ on T , and given1 < p < ∞, define
W (µ) = W (ρ, p;µ), thediscrete Wolff potentialof µ,

(1.8) W (µ)(x) =
∑

y∈P (x)

ρ(y)1−p′µ(S(y))p′−1.

Theorem 1.4. Let 1 < q < p < ∞ and letρ be a weight onT . For a nonnegative functionµ
onT , the following are equivalent :

(1) For some constantC(µ) > 0 and all functionsϕ

(1.9)

(∑
x∈T

|Iϕ(x)|q µ(x)

) 1
q

≤ C(µ)

(∑
x∈T

|ϕ(x)|p ρ(x)

) 1
p

.

(2) We have the inequality

(1.10)
∑
x∈T

µ(x) (W (µ)(x))
q(p−1)

p−q <∞.

A different characterization of the measuresµ for which (1.9) holds is given in [6] Theorem
3.3, in the more general context ofthick trees(i.e., trees in which the edges are copies of
intervals of the real line). The necessary and sufficient condition given in [6], however, seems
more difficult to verify than (1.10), at least in our simple context.

The paper is structured as follows. In Section 2, we show that the problem of characteriz-
ing the measuresµ for which (1.1) holds is completely equivalent, ifρ is p-admissible, to the
corresponding problem for the Hardy operator on trees,I. The idea, already present in [2], is
to replace the unit disc by one of its Whitney decompositions, endowed with its natural tree
structure, and the integral along segments by the sum along tree-geodesics. In Section 3, fol-
lowing [5], Theorem 1.4 is proved, and the problem on trees is solved. Section 2 and Section
3 together, show that (1.1) is equivalent to a condition which is the discrete analogue of (1.3).
Unfortunately, this discrete condition depends on the chosen Whitney decomposition. In Sec-
tion 4, we show that the discrete condition is in fact equivalent to (1.3). In the course of the
proof, we will see that the Carleson measure problem in the unit disc is equivalent to a number
of its different discrete “metaphors” on a suitable graph.

Actually, this route to the proof of Theorem 1.2 is not the shortest possible. In fact, we could
have carried the discretization directly over a graph, skipping the repetition of some arguments.
We chose to do otherwise for two reasons. First, the tree situation is slightly easier to handle,
and it leads, already in Section 2, to a characterization of the Carleson measures for(Bp(ρ), q).
Second, it can be more easily compared with the proof of the characterization theorem for the
caseq ≥ p, which was obtained in [2] working on trees.
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It should be mentioned that [5] has some results for spaces of holomorphic functions, which
are different from those considered in this article.

2. DISCRETIZATION

In this section, Theorem 2.5, we show that, ifρ is p-admissible, then the problem of charac-
terizing the Carleson measures forBp(ρ) is equivalent to a two-weight inequality on trees. This
fact is already implicit in [2], but, here, our formulation stresses more clearly the interplay be-
tween the discrete and the continuous situation. In the context of the weighted Bergman spaces,
a similar approach to the Carleson measures problem was employed by Luecking [9], who also
obtained a characterization theorem in the upper triangle case [10].

First, we recall some facts on Bergman and analytic Besov spaces.
Let 1 < p < ∞ be fixed and letρ be a weight onD. TheBergman spaceAp(ρ) is the space

of those functionsf that are holomorphic inD and such that

‖f‖p
Ap(ρ) =

∫
D
|f(z)|pρ(z)m(dz)

is finite. Define, forf, g ∈ A2 ≡ A2(1),

〈f, g〉A2 =

∫
D
f(z)g(z)m(dz).

LetAp(ρ)
∗ be the dual space ofAp(ρ). We identifyg ∈ Ap′(ρ

1−p′) with the functional onAp(ρ)

(2.1) Λg : f 7→ 〈f, g〉A2 .

By Hölder’s inequality we have thatA∗p(ρ) ⊆ Ap′(ρ
1−p′). Condition (1.4) shows that the reverse

inclusion holds.

Theorem 2.1(Bekollé-Bonami [4], [3]). If the weightρ satisfies (1.4) theng 7→ Λg, whereΛg

defined in (2.1) is an isomorphism ofAp′(ρ
1−p′) ontoA∗p(ρ).

We need some consequences of Theorem 2.1, whose proof can be found in [2], §2 and §4.
Let F,G be holomorphic functions inD,

F (z) =
∞∑
0

anz
n, G(z) =

∞∑
0

bnzn.

Define

〈F,G〉D∗ =
∞∑
1

nanbn =

∫
D
F ′(z)G′(z)m(dz)

and

〈F,G〉D = a0b0 +
∞∑
1

nanbn = F (0)G(0) + 〈F,G〉D∗ .

Lemma 2.2. Letρ be a weight satisfying (1.4). ThenBp′(ρ
1−p′) is the dual ofBp(ρ) under the

pairing 〈·, ·〉D. i.e., each functionalΛ onBp(ρ) can be represented as

Λf = 〈f, g〉D, f ∈ Bp(ρ)

for a uniqueg ∈ Bp′(ρ
1−p′).
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6 NICOLA ARCOZZI

The reproducing kernel ofD with respect to the product〈·, ·〉D is

φz(w) = 1 + log
1

1− wz̄

i.e., if f ∈ D, then

f(z) = 〈f, φz〉D =

∫
D
f ′(w)

(
1 + log

1

1− z̄w

)′
m(dw) + f(0).

Lemma 2.3. Let ρ be an admissible weight,1 < p < ∞. Then,φz is a reproducing kernel for
Bp′(ρ

1−p′). i.e., ifG ∈ Bp′(ρ
1−p′), then

(2.2) G(z) = 〈G, φz〉D.
In particular, point evaluation is bounded onBp′(ρ

1−p′).

Observe that (1.4) is symmetric in(ρ, p) and(ρ1−p′ , p′) and hence the same conclusion holds
for Bp(ρ).

Now, letµ be a positive bounded measure onD and define

〈F,G〉µ = 〈F,G〉L2(µ) =

∫
D
F (z)G(z)µ(dz).

µ is Carleson for(Bp(ρ), p, q) if and only if

Id : Bp(ρ) → Lq(µ)

is bounded. In turn, this is equivalent to the boundedness, with the same norm, of its adjoint
Θ = Id∗,

Θ : Lq′(µ) → (Bp(ρ))
∗ ≡ Bp′(ρ

1−p′),

where we have used the duality pairings〈·, ·〉D and〈·, ·〉µ, and Lemma 2.2.
By Lemma 2.3,

ΘG(z) = 〈ΘG, φz〉D = 〈G, φz〉L2(µ)

=

∫
D

(
1 + log

1

1− zw̄

)
G(w)µ(dw).

For future reference, we state this as

Lemma 2.4. If ρ is ap-admissible weight, the adjoint ofId : Bp(ρ) → Lq(µ) is the operator

Θ : Lq′(µ) → (Bp(ρ))
∗ ≡ Bp′(ρ

1−p′)

defined by

(2.3) ΘG(z) =

∫
D

(
1 + log

1

1− zw̄

)
G(w)µ(dw).

Consider, now, a dyadic Whitney decomposition ofD. Namely, for integern ≥ 0, 1 ≤ m ≤
2n, let

∆n,m =

{
z ∈ D : 2−n−1 ≤ 1− |z| ≤ 2−n,

∣∣∣∣arg(z)

2π
− m

2n

∣∣∣∣ ≤ 2−(n+1)

}
.

These boxes are best seen in polar coordinates. It is natural to consider the Whitney squares as
indexed by the vertices of a dyadic tree,T2. Thus the vertices ofT2 are

(2.4) {α|α = (n,m), n ≥ 0 and1 ≤ m ≤ 2n, m, n ∈ N}
and we say that there is an edge between(n,m), (n′,m′) if ∆(n,m) and∆(n′,m′) share an arc of
a circle. The root ofT2 is, by definition,(0, 1). Here and throughout we will abuse notation and,
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CARLESON MEASURES FORANALYTIC BESOV SPACES 7

when convenient, identify the vertices of such a tree with the sets for which they are indices.
Here we identifyα and∆α. Thus, there are four edges having(0, 1) as an endpoint, each other
box being the endpoint of exactly three edges.

Given a positive, regular weightρ on D, we define a weight onT2, still denoted byρ. If
α ∈ T2 and if zα be, say, the center of the boxα ⊂ D, then,ρ(α) = ρ(zα). By the regularity
assumption, the choice ofzα does not matter in the estimates that follow.

Theorem 2.5.Let1 < q, p <∞ and letρ be ap-admissible weight. A positive Borel measure
µ on D is a Carleson measure for(Bp(ρ), q) if and only if the following inequality holds, with
a constantC which is independent ofϕ : T2 → R.

(2.5)

(∑
x∈T2

|Iϕ(x)|qµ(x)

) 1
q

≤ C

(∑
y∈T2

|ϕ(y)|pρ(y)

) 1
p

.

Proof. It is proved in [2] (§4, Theorem 12, proof of the sufficiency condition) that (2.5) is
sufficient forµ to be a Carleson measure.

We come, now, to necessity. Without loss of generality, assume that supp(µ) ⊆ {z : |z| ≤
1/2}. By the remarks preceding the proof, Lemma 2.2 and Lemma 2.3, IFµ is Carleson, then
Θ is bounded fromLq′(µ) toBp′(ρ

1−p′). Consider, now, functionsg ∈ Lq′(µ), having the form

g(w) =
|w|
w
h(w),

whereh ≥ 0 andh is constant on each boxα ∈ T2, h|α = h(α). The boundedness ofΘ implies

C

(∑
α∈T2

|h(α)|q′µ(α)

) 1
q′

=

(∫
D
|g|q′dµ

) 1
q′

≥ ‖Θg‖Bp′ (ρ
1−p′ )

≥

(∫
D

∣∣∣∣∫
D

1− |z|2

1− zw
|w|h(w)µ(dw)

∣∣∣∣p′ ρ(z)1−p′ m(dz)

(1− |z|2)2

) 1
p′

.

For z ∈ D, letα(z) ∈ T2 be the Whitney box containingz. By elementary estimates,

(2.6) Re

(
|w|(1− |z|2)

1− zw

)
≥ 0

if w ∈ D, and

Re

(
|w|(1− |z|2)

1− zw

)
≥ c > 0, if w ∈ S(α(z))

for some universal constantc. If α(z) = o is the root ofT2, the latter estimate holds, say, only
on one half of the boxo, and this suffices for the calculations below.
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8 NICOLA ARCOZZI

Using this, and the fact that all our Whitney boxes have comparable hyperbolic measure, we
can continue the chain of inequalities

≥

(∫
D

∣∣∣∣∫
S(α(z))

1− |z|2

1− zw
|w|h(w)µ(dw)

∣∣∣∣p′ ρ1−p′(z)
m(dz)

(1− |z|2)2

) 1
p′

≥ c

∫
D

 ∑
β∈S(α(z))

h(β)µ(β)

p′

ρ1−p′(z)
m(dz)

(1− |z|2)2


1
p′

≥ c

∑
α

 ∑
β∈S(α)

h(β)µ(β)

p′

ρ(α)1−p′


1
p′

.

Let I∗, defined on functionsϕ : T2 → R, be the operator

I∗ϕ(α) =
∑

β∈S(α)

ϕ(β)µ(β).

It is readily verified thatI∗ is the adjoint ofI, in the sense that∑
T2

I∗ψ(α)ϕ(α) =
∑
T2

ψ(α)Iϕ(α)µ(α).

Then, the chain of inequalities above shows that

I∗ : Lq′(µ) → Lp′(ρ1−p′)

is a bounded operator. In turn, this is equivalent to the boundedness of

I : Lp(ρ) → Lq(µ).

�

3. A T WO-WEIGHT HARDY I NEQUALITY ON TREES

In this section we prove Theorem 1.4.
Let T be a tree. We use the same nameT for the tree and for its set of vertices. We do not

assume thatT is locally finite; a vertex ofT can be the endpoint of infinitely many edges. If
x, y ∈ T , thegeodesic betweenx andy, [x, y], is the set{x0, . . . , xn}, wherex0 = x, xn =
y, xj−1 is adjacent toxj (i.e.,xj−1 andxj are endpoints of an edge), and the vertices in[x, y]
are all distinct. We let[x, x] = {x}. If x, y are as above, we letd(x, y) = n. Let o ∈ T be a
fixed root. We say thatx ≤ y, x, y ∈ T , if x ∈ [o, y]. ≤ is a partial order onT . Forx ∈ T , the
Carleson boxof vertexx (or theset of successors ofx) is S(x) = {y ∈ T : y ≥ x}. We will
sometimes write[o, x] = P (x), theset of predecessors ofx.

Theorem 3.1. Let 1 < q < p < ∞ and letρ be a weight onT . For a nonnegative functionµ
onT , the following are equivalent:

(1) For some constantC(µ) > 0 and all functionsϕ

(3.1)

(∑
x∈T

|Iϕ(x)|q µ(x)

) 1
q

≤ C(µ)

(∑
x∈T

|ϕ(x)|p ρ(x)

) 1
p

.
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(2) We have the inequality

(3.2)
∑
x∈T

µ(x) (W (µ)(x))
q(p−1)

p−q <∞.

As a consequence of Theorems 3.1 and 2.5, we obtain a characterization of the Carleson
measures for(Bp(ρ), q).

Corollary 3.2. A measureµ in the unit disc is Carleson for(Bp(ρ), q) if, and only if,

(3.3)
∑
α∈T2

µ(α) (W (µ)(α))
q(p−1)

p−q <∞.

Proof. First, we show that (3.2) implies (3.1). By duality, it suffices to show that, if (3.2) holds,
thenI∗,

I∗ϕ(x) =
∑

y∈S(x)

ϕ(y)µ(y)

is a bounded map fromLq′(µ) to Lp′(ρ1−p′). Without loss of generality, we can testI∗ on
positive functions. Letg ≥ 0. Then

‖I∗g‖p′

Lp′ (ρ1−p′ )
=
∑
x∈T

ρ(x)1−p′

 ∑
y∈S(x)

g(y)µ(y)

p′

by definition ofW, =
∑
y∈T

g(y)µ(y)W (gµ)(y).

Define, now, the maximal function

(3.4) Mµg(y) = max
z∈P (y)

∑
t∈S(z) g(t)µ(t)

µ(S(z))
.

The following lemma will be proved at the end of the proof of Theorem 3.1. It can be considered
as a discrete, boundary version of the weighted maximal theorem of R. Fefferman [7].

Lemma 3.3. If 1 < s <∞ andµ is a bounded measure onT , thenMµ is bounded onLs(µ).

Sinceg ≥ 0,

W (gµ)(y) ≤
∑
P (y)

ρ(x)1−p′µ(S(x))p′−1 (Mµg(y))
p′−1

= W (µ)(y) (Mµg(y))
p′−1 .

Thus,

‖I∗g‖p′

Lp′ (ρ1−p′ )
≤
∑
y∈T

g(y)µ(y)W (µ)(y) (Mµg(y))
p′−1

≤

(∑
y∈T

Mµg(y)
(p′−1)rµ(y)

) 1
r
(∑

y∈T

g(y)r′(W (µ)(y))r′µ(y)

) 1
r′

by Hölder’s inequality, withr = q′

p′−1
> 1,

≤ C‖g‖p′−1

Lq′ (µ)

(∑
y∈T

g(y)λr′µ(y)

) 1
λr′
(∑

y∈T

(W (µ)(y))λ′r′µ(y)

) 1
λ′r′
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by Lemma 3.3 and Hölder’s inequality, withλ = q′ − p′ + 1 > 1,

= C‖g‖p′

Lq′ (µ)

(∑
y∈T

(W (µ)(y))
(p−1)q

p−q µ(y)

) p−q
(p−1)q

.

This proves one implication.
We show that, conversely, (3.1) implies (3.2). By hypothesis and duality, we have, forg ≥ 0,

‖g‖p′

Lq′ (µ)
≥ C

∑
y∈T

I∗g(y)p′ρ(y)1−p′

=
∑
y∈T

ρ(y)1−p′µ(S(y))p′

(∑
x∈S(y) g(x)µ(x)

µ(S(y))

)p′

.

Replaceg = (Mµh)
1
p′ , with h ≥ 0. By Lemma 3.3, sinceq′ > p′,

‖h‖
L

q′
p′ (µ)

≥ C‖Mµh‖
L

q′
p′ (µ)

= C‖ (Mµh)
1/p′ ‖p′

Lq′ (µ)

≥ C
∑
y∈T

e(y)

∑x∈S(y)(Mµh(x))
1
p′ µ(x)

µ(S(y))

p′

,

wheree(y) = ρ(y)1−p′µ(S(y))p′ ,

≥ C
∑
y∈T

e(y)


∑

x∈S(y)

(∑
t∈S(y) h(t)µ(t)

/
µ(S(y))

) 1
p′
µ(x)

µ(S(y))


p′

≥ C
∑
y∈T

e(y)

µ(S(y))

∑
t∈S(y)

h(t)µ(t)


= C

∑
t∈T

µ(t)h(t)

(∑
y∈T

e(y)

µ(S(y))
χS(y)

)
(t).

By duality, then, we have that∑
y∈T

e(y)

µ(S(y))
χS(y) ∈ L(q′/p′)′(µ) = L

q(p−1)
p−q (µ).

Hence,

∞ >
∑
x∈T

(∑
y∈T

e(y)

µ(S(y))
χ

S(y)
(x)

) q(p−1)
p−q

µ(x)

=
∑
x∈T

µ(x) (W (µ)(x))
q(p−1)

p−q ,

which is the desired conclusion. �
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As a final remark, let us observe that the potentialW admits the following, suggestive for-
mulation:

W (µ) = I
(
ρ1−p′ (I∗Id)p′−1

)
,

whereId is the identity operator.
Condition (1.10) might, then, be reformulated as

I
(
ρ1−p′ (I∗Id)p′−1

)
∈ L

q(p−1)
p−q (µ).

Proof of Lemma 3.3.The argument is a caricature of the classical one. By intepolation, it suf-
fices to show thatMµ is of weak type(1, 1). Forf ≥ 0 onT andt > 0, letE(t) = {Mµ > f >
t}. If x ∈ E(t), there existsz = z(x) ∈ P (x), such that

tµ(S(z)) <
∑

y∈S(z)

f(y)µ(y).

Let I be the set of suchz’s. By the tree structure, there exists a subsetJ of I, which is maximal,
in the sense that, for eachz in I, there is aw in J so thatw ≥ z. Hence,

E(t) ⊆ ∪z∈IS(z) = ∪w∈JS(w)

the latter union being disjoint. Thus,

µ(E(t)) ≤
∑
w∈J

µ(S(w)) ≤ 1

t
‖f‖L1(µ),

which is the desired inequality. �

4. EQUIVALENCE OF TWO CONDITIONS

The last step in the proof of Theorem 1.2 consists of showing that condition (3.3) is equivalent
to (1.3). In order to do so, we introduce inT2, the set of the Whitney boxes in whichD was
partitioned, a graph structure, which is richer than the tree structure we have considered so far.

Let T2 be thesetdefined in Section 2. We makeT2 into a graphG structure as follows. For
α, β ∈ T2, to say that “there is an edge ofG betweenα andβ” is to say that the closuresα and
β share an arc or a straight line. Forα, β ∈ G, the distance betweenα andβ, dG(α, β), is the
minimum number of edges in a path betweenα andβ. The ball of centerα and radiusk ∈ N in
G will be denoted byB(α, k) = {β ∈ G : dG(α, β) ≤ k}. In G, we maintain the partial order
given by the original tree structure. In particular, we still have the tree geodesics[0, α].

Let k ≥ 0 be an integer. Forα ∈ G, define

Pk(α) = {β ∈ G : dG(β, [o, α]) ≤ k}
and, dually,

Sk(α) = {β ∈ G : α ∈ Pk(β)}.
Observe thatβ ∈ Sk(α) if and only if [0, β] ∩ B(α, k) is nonempty. Clearly,P0 = P and
S0 = S are the sets defined in the tree case. The corresponding operatorsIk andI∗k are defined
as follows. Forf : G→ R,

(4.1) Ikf(α) =
∑

β∈Pk(α)

f(β)

and

(4.2) I∗kf(α) =
∑

β∈Sk(α)

f(β)µ(β).
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As before,Ik andI∗k are dual to each other. That is, ifL2(G) is theL2 space onG, with respect
to the counting measure,

〈Ikϕ, ψ〉L2(µ) = 〈ϕ, I∗kψ〉L2(G).

For eachk, we have a discrete potential

Wk(µ)(x) =
∑

y∈Pk(x)

ρ(y)1−p′µ(Sk(y))
p′−1

and a[COV]-condition

(4.3)
∑
x∈T

µ(x) (Wk(µ)(x))
q(p−1)

p−q <∞.

If f ≥ 0 onG, thenIkf ≥ If , pointwise onG. The estimates for all these operators, however,
behave in the same way.

Proposition 4.1. Letµ be a measure andρ a p-admissible weight onD, 1 < q < p <∞. Also,
let µ andρ denote the corresponding weights onG.

Then, the following conditions are equivalent

(i) There existsC > 0 such that (1.1) holds, that is

‖f‖Lq(µ) ≤ C(µ)

(∫
D
|(1− |z|2)f ′(z)|pρ(z) m(dz)

(1− |z|2)2
+ |f(0)|p

) 1
p

wheneverf is holomorphic onD.
(ii) For k ≥ 2, there existsCk > 0 such that

(4.4)

(∑
x∈T

|Ikϕ(x)|q µ(x)

) 1
q

≤ Ck(µ)

(∑
x∈T

|ϕ(x)|p ρ(x)

) 1
p

.

(iii) The following inequality holds,

(4.5)
∑
x∈T

µ(x) (Wk(µ)(x))
q(p−1)

p−q <∞.

(iv) (1.3) holds,

(4.6)
∫

D
(Wco(µ)(z))

q(p−1)
p−q µ(dz) <∞.

(v) (1.10) holds,

(4.7)
∑
x∈T

µ(x) (W (µ)(x))
q(p−1)

p−q <∞.

(vi) (1.9) holds for someC > 0,

(4.8)

(∑
x∈T

|Iϕ(x)|q µ(x)

) 1
q

≤ C(µ)

(∑
x∈T

|ϕ(x)|p ρ(x)

) 1
p

.

Proof. We prove that (i)=⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (vi) =⇒ (i).
The implications (v)=⇒ (vi) =⇒ (i) were proved in Theorems 1.4 and 1.2, respectively.

(i) =⇒ (ii) can be proved by the same argument used in the proof of Theorem 2.5, with minor
changes only. The key is the estimate (2.6).

The proof that (iii)=⇒ (iv) =⇒ (v) is easy. Observe thatWk(µ) increases withk, hence that
(iii) with k = n implies (iii) with k = n− 1. In particular, it implies (v), which corresponds to
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k = 0. Let z ∈ D, and letα(z) ∈ G be the box containingz. Then, it is easily checked that, if
k ≥ 2,

S(α(z)) ⊂ S(z) ⊂ Sk(α(z)).

To show the implication (iii)=⇒ (iv), observe that

Wco(µ)(z) =

∫
P (z)

ρ(w)p′−1µ(S(w))p′−1 |dw|
1− |w|2

≤ C

α(z)∑
β=o

ρ(β)p′−1µ(S(β))p′−1

≤ C
∑

β∈Pk(α(z))

ρ(β)p′−1µ(Sk(β))p′−1

= CWk(µ)(α(z)),

hence ∫
D

(Wco(µ)(z))
q(p−1)

p−q µ(dz) ≤ C
∑
α∈G

sup
z∈α

(Wco(µ)(z))
q(p−1)

p−q µ(α)

≤ C
∑
α∈G

(Wk(µ)(α))
q(p−1)

p−q µ(α)

as wished.
For γ ∈ G, let γ− be the predecessor ofγ : γ− ∈ [o, γ] and dG(γ, γ−) = 1. For the

implication (iv) =⇒ (v), we have

Wco(µ)(z) =

∫
P (z)

ρ(w)p′−1µ(S(w))p′−1 |dw|
1− |w|2

≥ C

α(z)−∑
β=o

ρ(β)p′−1µ(S(β))p′−1

≥ C

α(z)∑
β=o

ρ(β)p′−1µ(S(β))p′−1

= CW (µ)(α(z)).

In the second last inequality, we used the fact thatS(α) ⊂ S(α−). Then,∫
D

(Wco(µ)(z))
q(p−1)

p−q µ(dz) ≥ C
∑
α∈G

inf
z∈α

(Wco(µ)(z))
q(p−1)

p−q µ(α)

≥ C
∑
α∈G

(W (µ)(α))
q(p−1)

p−q µ(α)

and this shows that (iv)=⇒ (v).
We are left with the implication (ii)=⇒ (iii). The proof follows, line by line, that of Theorem

1.4 in Section 3. One only has to modify the definition of the maximal function

(4.9) Mk,µg(y) = max
z∈Pk(y)

∑
t∈Sk(z) g(t)µ(t)

µ(Sk(z))
.

We just have to verify thatMk,µ is bounded onLs(µ), if 1 < s < ∞. It suffices to show that
Mk,µ is of type weak(1, 1) and this, in turn, boils down to the covering lemma that follows.
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Lemma 4.2. There exists a constantL > 0 with the following property. LetF be any set inG,

F ⊆ ∪z∈ISk(z)

whereI ⊆ G is an index set. Then, there existsJ ⊆ I such that

F ⊆ ∪z∈JSk(z)

and, for allx ∈ G,
]{w ∈ J : x ∈ Sk(w)} ≤ L

where]A is the number of elements in the setA.

Proof of the lemma.For simplicity, we prove the lemma whenk = 2. Incidentally, this suffices
to finish the proof of Theorem 1.2.

It suffices to show that, ifzj are points inG, j = 1, 2, 3, and∩3
j=1S2(zj) is nonempty, then

one of theS2(zj)’s, sayS2(z1), is contained in the union of the other two. In fact, this gives
L = 2 in the lemma.

Let z ∈ G, dG(z, w) ≥ 3. Let z−2 be the pointw in [o, z] such thatdG(o, w) = 2 and letz∗

be the only pointw in G such that

w ∈ S2(z), dG(o, w) = dG(o, z)− 1 andw /∈ S0(z
−2)

whereS0(z) = S(z) is the same Carleson box introduced in Section 3. Then, one can easily
see that

S2(z) = S0(z
−2) ∪ S0(z

∗)

the union being disjoint.
Let nowz1, z2, z3 be as above, withdG(o, z1) ≥ dG(o, z2) ≥ dG(o, z3). Then,dG(o, z−2

1 ) ≥
dG(o, z−2

2 ) ≥ dG(o, z−2
3 ) andz2 is a point withindG distance1 fromS2(z3). If S2(z2) ⊆ S2(z3),

there is nothing to prove. Otherwise,

S2(z2) ∪ S2(z3) = S0(z
−2
3 ) ∪ S0(z

∗
3) ∪ S0(w),

wherew = z−2
2 orw = z∗2 , respectively, the union being disjoint, and

S2(z2) ∩ S2(z3) = S0(ξ),

whereξ = z∗2 or ξ = z−2
2 , respectively. In the first case, sincedG(o, z1) ≥ dG(o, z2), if S2(z1)

intersectsS0(w), thenS2(z1) must be contained in the union ofS2(z2) andS2(z3). The same
holds in the second case, unlessdG(o, z1) = dG(o, z2). In this last case, one of the following
three holds: (i)S2(z1) ⊂ S2(z3), (ii) S2(z1) = S2(z2), (iii) S2(z2) ⊂ S2(z3) ∪ S2(z1). In all
three cases, the claim holds, hence the lemma. �

An extension of the results in this paper to higher complex dimensions is in N. ARCOZZI,
R.ROCHBERG, E. SAWYER, “Carleson Measures and Interpolating Sequences for Besov
Spaces on Complex Balls", to appear inMemoirs of the A.M.S. �

The covering lemma might also be proved taking into account the interpretation of the graph
elements as Whitney boxes, then using elementary geometry.
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