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ABSTRACT. Making use of Linear operator theory, we define a new subclass of uniformly con-
vex functions and a corresponding subclass of starlike functions with negative coefficients. The
main object of this paper is to obtain coefficient estimates distortion bounds, closure theorems
and extreme points for functions belonging to this new class. The results are generalized to
families with fixed finitely many coefficients.
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1. INTRODUCTION

Denoted bysS the class of functions of the form

(1.1) flz)=z+ i anz"

that are analytic and univalent in the unit did&c= {z : |z| < 1} and by ST andCV the
subclasses of that are respectively, starlike and convex. Goodman|[2, 3] introduced and
defined the following subclasses@V andST.

A function f(z) is uniformly convex (uniformly starlike) i\ if f(z)isinCV (ST) and has
the property that for every circular aficcontained i\, with center¢ also in/\, the arcf(v)
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2 G. MURUGUSUNDARAMOORTHY ANDN. MAGESH

is convex (starlike) with respect t(¢). The class of uniformly convex functions is denoted
by UCV and the class of uniformly starlike functions b7 (for details see [2]). It is well

known from [4, 5] that
2f"(2) ’ { 2f"(2) }
7o | = U T S

In [5], Rgnning introduced a new class of starlike functions relatéd@®” defined as

2 (2) ‘ {zf%z>}
———= — 1| <Res ——=/.
f(z) - f(z)

Note thatf(z) € UCV < zf'(z) € S,. Further, Rgnning generalized the cla§dy introduc-

ing a parameterr, —1 < a < 1,
zf%z>__' {zf%z>__ }
o R e

Now we define the function(a, c; z) by

felUlV <

fes, e

f€Sy(a) &

1.2 acz—z—i-z nl”

forc#0,—1,-2,...,a # —1;z € A where(\ )n is the Pochhammer symbol defined by
C(n+ A L n=>0
L3) (), =t A |
(M) AMA+FDA+2)...(A4+n—1), ne N={1,2,...}
Carlson and Shaffer [1] introduced a linear operdtor, c), by

L(a,c)f(z) = ¢(a, c; 2) = f(2)

(14) _ Z+Z (a>n—1anzn’ z €N,

n=2 (C)n—l

wherex stands for the Hadamard product or convolution product of two power series

Zsonz and ¢(z an

defined by
(pxP)(z) = p(2) x¢(2) = Z Pntp2"

We note thatl.(a,a) f(z) = f(2), L(2,1)f(z) = zf’( ) L(m+1,1)f(z) = D™f(z), where
D™ f(z) is the Ruscheweyh derivative ¢fz) defined by Ruscheweyhl[6] as

(1.5) D" f(z) = "

Which is equivalently,

D"f(2) = 0 ),

Forg > 0and—1 < o < 1, we letS(a, #) denote the subclass Sfconsisting of functions
f(z) of the form [1.1) and satisfying the analytic criterion

A(L{a, () o(L{a, ) f(2))
(1.9) RB{ L@, 0/(2) "&} Laofz) |

z € A.

J. Inequal. Pure and Appl. Mathb(4) Art. 85, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A NEW SUBCLASS OFUNIFORMLY CONVEX FUNCTIONS AND A CORRESPONDING... 3

We also letl'S(«a, 8) = S(«, 3) (T whereT, the subclass of consisting of functions of
the form

(1.7) f2)=2-> a,2"a,>0, Yn>2,
n=2
was introduced and studied by Silvermah [7].
The main object of this paper is to obtain necessary and sufficient conditions for the func-
tions f(z) € T'S(«a, B). Furthermore we obtain extreme points, distortion bounds and closure
properties forf(z) € T'S(«, 3) by fixing the second coefficient.

2. THE CLASS S(a, )

In this section we obtain necessary and sufficient conditions for funcfionsn the classes
TS(a, B).

Theorem 2.1. A functionf(z) of the form[(1.11) is iS5 («, ) if

- (@)n—

(2.1) > [n(1+8) = (a+p)]

n=2

Hao| <1-a,

(C)n—l
—-1<a<l, g>0.
Proof. It suffices to show that

AL Of ()| g fAE@ASE) L,
| s 1| s

We have

_ U+ X — Dt la
13000 ((Z;Z:i |an|

This last expression is bounded above(by- «) if

- Q)p—
S 1+ 8) - (a+ 8) D0, < 1-a,
n=2 <C)”_1
and hence the proof is complete. O

Theorem 2.2. A necessary and sufficient condition f6(z) of the form|[(1.]7) to be in the class
TS(a, (), -1 <a<1, §>0isthat

[e.9]

(2.2) > 1+ ) = (a+ P)] S

n=2 (C)n—l

Proof. In view of Theorenj 2]1, we need only to prove the necessit§(4f € 7'S(«, 3) andz
is real then

1-5>, n(é))ﬁ 2" s > (n— 1)((3% an2" 1
1 — ZOO (@)n—1 anznfl - 1 — ZOO (@)n—1 anz”*

n=2 (e)n_1 n=2 (e)n_1

—~

a, <1—a.
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Letting = — 1 along the real axis, we obtain the desired inequality

S 1+ ) — (a+ B) 2=

n=2 ( )n 1

/—\

a, <1l—a, —1<a<l1, g>0.

Corollary 2.3. Let the functionf(z) defined by[(1]7) be in the clag%5(«, 3). Then
(1 = @) ()n
(n(1+5) = (@ + B)l(a)n
Remark 2.4. In view of Theorenj 22, we can see thafif:) is of the form[(1.) and is in the

classT'S(«, 3) then
(1= a)(c)
(2.3) as = G+ A=)
By fixing the second coefficient, we introduce a new subclaSg«, 5) of T'S(«, 5) and

obtain the following theorems.
Let 7'Sy(«, 3) denote the class of functiorfs{z) in T'S(«, 3) and be of the form

a, < ,n>2 —1<a<l >0

b(1 — «)
(2.4) f(z)=2— (2+6—a Zan an L 0<b< 1.
Theorem 2.5. Let functionf(z) be defined b_4). Thef(z) € T'S,(«, 3) if and only if
25) >oln(1+5) = (a+ Al 4y < (1= B)(1 - ),
n=3 n-

—1<a<l1,p8>0.

Proof. Substituting
b(1 — ) (c)

(2+8—-a)(a)

in (2.2) and simple computation leads to the desired result. O
Corollary 2.6. Let the functionf(z) defined by[(2]4) be in the clag%5,(«, 5). Then
(1= b)(1 — a)(C)us
an <
(14 5) = (e + B)l(a)n
Theorem 2.7. The class'Sy(«, 3) is closed under convex linear combination.
Proof. Let the functionf(z) be defined by[(2]4) ang|~) defined by

(2.7) g(z) =2z — (Qbil% Zd 2"

a9 = 0<b<1

whered,, > 0and0 < b < 1.
Assuming thatf(z) and g(z) are in the clasg'Sy(«, (), it is sufficient to prove that the
function H(z) defined by

(2.8) H(z) = Af(2) + (1= Ng(z), (0<A<T)
is also in the clas%'S,(a, ).
Since
B b(1 — a)(c
(2.9) H(z)=z—- 213 -a)a Z{)\an Nd, }2",
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a, >0, d, >0, 0<b<1,weobserve that

o0

@10 Doln(1+8) - -+ B 0+ (1= Nd) < (1= (1 - )

n=3 n—1
which is, in view of Theorerh 2|5, again, implies thdfz) € 7'S,(«, 8) which completes the
proof of the theorem. O

Theorem 2.8. Let the functions

b(1 — a)(c

(2.11) fi(z) =2z— 217 —a)a Zan 2" an; >0
be in the clasg'Sy(«, ) for every;j (j = 1,2,...,m). Then the functior¥'(z) defined by
(2.12) F(z) =) uifi(2)
j=1
is also in the clas§'S,(«, 3), where
(2.13) > =1
j=1
Proof. Combining the definitiong (2.11) and (2]12), further py (2.13) we have
L bi—a))
(2.14) F(z)=z— 2ti—a)a Z (Z ,uj&n]>
Sincef;(z) € T'Sy(c, 3) for everyj = 1,2,...,m, Theorenj 2.b yields
> a)y—
2.15) >oln1+9) - @+ B 0y < (1= D1 - a).
n=3 n=
forj =1,2,...,m. Thus we obtain

> lnf1+6) - (a-+ A5 (Z Mjan,j>

=21 (Z (1+0) = (a+5)] Ej;:i )
<(1-0)(1-a)
in view of Theoren 2J5. Sd'(z) € T'Sy(ax, ). O

Theorem 2.9. Let

(2.16) fa(z) =

_ bl-a)0)
2+ 38— a)(a)

and

bl-a)(c) »  (A=-0)A-a)()ur

(246 —a)(a) (1 +8) = (a+ B)(a)n

n

(2.17) ful2) = 2 -
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forn = 3,4,.... Thenf(z) is in the classl'S,(«a, 3) if and only if it can be expressed in the
form

(2.18) f(2) = Anfal2)

where), > 0and > A\, = 1.

n=2

Proof. We suppose that(z) can be expressed in the form (2.18). Then we have

Zn

B b(1 — a)(c (1-b)(1—a)(c)n
fz) =z - EZA 1+5 (@1 ) (@

(2+8—a)a
(2.19) =z— i Anz",
where
(1 —a)(e)
220 SACET Iy
and

(2.21) A, = 1= =a) (s gy

[n(1 4 8) — (e + B)l(a)n-

Therefore

o0

> [n(1+8) = (a+B)]

n=2

—~
S
~—
3
H
N

— 1 —a)+§:)\n(1 _ ) —a)
(1= a)b+ (1 — A)(1— b)]
(2.22) <(1-a),

it follows from Theorenj 2]2 and Theorgm P.5 thfdt) is in the clas¥'S,(«, 5). Conversely,
we suppose that(z) defined by[(2.4) is in the clagsS,(«, 3). Then by using[(2]6), we get

(1-5)(1 ~ a)(C)u-s
(22 AT e I
Setting

_ [+ P) — (a+ Bl(@)na
(2.24) An = 001 =) (s an, (n>3)
and
(2.25) Ap=1-— i An,

n=3

we have|[(2.18). This completes the proof of Theofer 2.9. O

Corollary 2.10. The extreme points of the claf$,(«, 5) are functionsf,,(z), n > 2 given by
Theoreni 219.
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3. DISTORTION THEOREMS

In order to obtain distortion bounds for the functigne 7'Sy(«, 3), we first prove the fol-
lowing lemmas.

Lemma 3.1. Let the functionfs;(z) be defined by

_ ., =) 5 (=B -a)(9): 4
(3.1) f3(2) = 2+ 5-a)a) G125 o),

Then,for0 <r <land0 <b <1,
” b(1 — a)(c) (1 =01 —a)(c)
52 e 2 = @ Br2s—a)as
with equality forf = 0. For either0 < b < by and0 <r <rgorby < b <1,
0 b(l—a)(c) , (A=bI—a)(c) 4
(3.3) |ﬁ&e”§r+mz+5—@ﬂ@r_-@+2ﬁ—®Whr

with equality forf = 7, where
1

R P IGIGE
x {=[(3 428 — a)(a)2(c) +4(2+ 8 — a)(a)(c)2 — (1 — a)(c)(c)a]
+[((B+28 — a)(a)2(c) + 42+ B — a)(a)(c)s — (1 — @) (c)(c)3
+16(24 8 — ) (1 — a)(a)(c)(c)3]"/*}
and
(3.5) o — L (=21 = )2+ 8 — a)(a)(c+ 1)

b(1 —=b)(1 — a)(c):
+[4(1 =02+ B —a)*(a)’(c+ 1)
+ 531 = b)(3+ 26 — ) (1 — a)(a)a(c)] 2}
Proof. We employ the technique as used by Silverman and SilVvia [8]. Since
Olfs(re)? _ be) . A1-b)o)
90 2+ -a)la)  (B+28—a)(a)

_ WA =0 = a)(e)(c) 7~2}
2+ 8 —a)(3+28 —a)(a)(a)

rcosf

(3.6) 2(1 — a)r®sin d {

we can see that
9| f3(re’)|?

(3.7) s =0
for6, =0, 0, =7, and

(11 =b)( = a)(e)2r® = (3428 — a)(a)s]
(3.8) b = cos (r =02+ - (@)l )

sinceds is a valid root only when-1 < cosf; < 1. Hence we have a third root if and only
if ro <r < 1land0 < b < by. Thus the results of the theorem follow from comparing the

extremal valuesfs(re® )|, k = 1,2, 3 on the appropriate intervals. O
Lemma 3.2. Let the functiong, (=) be defined by (2.17) and> 4. Then
(3.9) [fulre®) < [ fa(=r)l.
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Proof. Since

PR PR ) [ R ) (€ k[ B
' 2+6-a)@)”  [n(l+08)~(a+B)(a)u

and% is a decreasing function af, we have

M- a)e) , (L-B1-a)e)
It < S o @” T 36— al(a)s

- —f4(—7"),
which shows[(3]9). O

Theorem 3.3. Let the functionf(z) defined by[(2]4) belong to the clags,(«, 3), then for
0<r<l,

n

e MI—a)©) (LB a)d
(340 Jre = 0@ B 28— ala)

with equality forf;(z) at = = r, and

(3.11) F(re)| < max {max| fs(re”)], ~ fi(~1) }

0| is qi
Wheremgmx | f3(re'”)| is given by Lemm@.l.

Proof. The proof of Theorem 3|3 is obtained by comparing the bounds of Lemma 3.1 and
Lemmé&3.2. O

Remark 3.4. Takingb = 1 in Theorenj 3.3 we obtain the following result.

Corollary 3.5. Let the functionf(z) defined by[(1]7) be in the clag%5(«, 3). Then for|z| =
r < 1, we have

(312) r— (1 B Oé)(C) 7"2 < |f(2)| <r4+ (1 — Oé)(C) 7"2.

2+ 08— a)(a) 2+ —a)a)
Lemma 3.6. Let the functionf;(z) be defined by (3|1). Then, for< » < 1,and0 < b < 1,

s 2 a)©) 31— B a)(e
(313) sl 2 G @ B2~ a)a)

with equality ford = 0. For either0 < b < b;and0 <r <rjorb; <b <1,
2b(1 — a)(c) 3(1—=0)(1 —a)(c)2

! Tei& r—
(3.14) |f3(re®)| <1+ 2+ 3—a)(a) (3428 — a)(a):

with equality forf = 7, where

1
6(1 —a)(c)(c2)
X {=[B+ 20 — a)(a)z(c) + 6(2+ 6 — a)(a)(c)2 — 3(1 — ) (c)(c)e]
+{((3+28 - a)(a)a(c) +6(2+ B — a)(a)(c)2 — 3(1 — a)(c)(c)2)?
+72(2+ 8 — a)(1 - a)(a)(e)(3)}?}

(3.15) b =

J. Inequal. Pure and Appl. Mathb(4) Art. 85, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A NEW SUBCLASS OFUNIFORMLY CONVEX FUNCTIONS AND A CORRESPONDING... 9

and

1
DI DI _a)e) SN —a)@)e+ ]

+B(1=b)*(2+ 8 — a)*(a)*(c+1)*
+30%(1 = b)(3+ 23 — a)(1 — a)(a)z(c)s]?}.
Proof. The proof of Lemma 3]6 is much akin to the proof of Lenjma 3.1. O

Theorem 3.7. Let the functionf(z) defined by[(2]4) belong to the clags,(«, 3), then for
0<r<l,

(3.16) r =

2b(1 — a)(e) . 3(1—=0)(1— Oé)(C)Qrg
(2+ 3 —a)(a) 34206 — a](a):

with equality forf;(z) at z = r, and

(3.18) £(re)] < max {max | f(re)], — f1(=1) }

(3.17) |f'(re?)| > 1 —

wheremax | fi(re?)| is given by Lemm@ﬁ.

Remark 3.8. Puttingb = 1 in Theorenj 3.J7 we obtain the following result.

Corollary 3.9. Let the functionf(z) defined by[(1]2) be in the clags5(«, 3). Then for|z| =
r < 1, we have

2(1 — a)(e)

. 2(1 —a)(c)
2+ 8 —a)(a)

(3.19) 1— o))"

<|f) <1+

4. THE CLASS T'S,, 1(av, B)

Instead of fixing just the second coefficient, we can fix finitely many coefficients. Let
T'Sh, k(a, 3) denote the class of functionsnS,(«, 3) of the form

1 N b1 — @)(C)u- B
(4.1) D Wl P > o

n=2 n=k+1

where0 < 32*_, b, = b < 1. Note thatT'S,, 5 (a, ) = T'Sy(ev, ).

Theorem 4.1. The extreme points of the clafs,, («, 3) are

Ly 1—a><c>n1 .
N nZ — (a+B)](a)a-
and
N ba(1 — ) () - -0 -a)(us
L R D e P Z e ey

The details of the proof are omitted, since the characterization of the extreme points enables
us to solve the standard extremal problems in the same manner as was dBAgfar5).
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