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ABSTRACT. Making use of Linear operator theory, we define a new subclass of uniformly con-
vex functions and a corresponding subclass of starlike functions with negative coefficients. The
main object of this paper is to obtain coefficient estimates distortion bounds, closure theorems
and extreme points for functions belonging to this new class. The results are generalized to
families with fixed finitely many coefficients.
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1. I NTRODUCTION

Denoted byS the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

that are analytic and univalent in the unit disc4 = {z : |z| < 1} and byST andCV the
subclasses ofS that are respectively, starlike and convex. Goodman [2, 3] introduced and
defined the following subclasses ofCV andST.

A functionf(z) is uniformly convex (uniformly starlike) in4 if f(z) is inCV (ST ) and has
the property that for every circular arcγ contained in4, with centerξ also in4, the arcf(γ)

ISSN (electronic): 1443-5756

c© 2004 Victoria University. All rights reserved.

The authors would like to thank the referee for his insightful suggestions.

125-04

http://jipam.vu.edu.au/
mailto:gmsmoorthy@yahoo.com
mailto:nmagiprotect T1	extunderscore 2000@yahoo.co.in
http://www.ams.org/msc/


2 G. MURUGUSUNDARAMOORTHY AND N. MAGESH

is convex (starlike) with respect tof(ξ). The class of uniformly convex functions is denoted
by UCV and the class of uniformly starlike functions byUST (for details see [2]). It is well
known from [4, 5] that

f ∈ UCV ⇔
∣∣∣∣zf ′′

(z)

f ′(z)

∣∣∣∣ ≤ Re

{
1 +

zf
′′
(z)

f ′(z)

}
.

In [5], Rønning introduced a new class of starlike functions related toUCV defined as

f ∈ Sp ⇔
∣∣∣∣zf ′

(z)

f(z)
− 1

∣∣∣∣ ≤ Re

{
zf

′
(z)

f(z)

}
.

Note thatf(z) ∈ UCV ⇔ zf ′(z) ∈ Sp. Further, Rønning generalized the classSp by introduc-
ing a parameterα, −1 ≤ α < 1,

f ∈ Sp(α) ⇔
∣∣∣∣zf ′

(z)

f(z)
− 1

∣∣∣∣ ≤ Re

{
zf

′
(z)

f(z)
− α

}
.

Now we define the functionφ(a, c; z) by

(1.2) φ(a, c; z) = z +
∞∑

n=2

(a)n−1

(c)n−1

zn,

for c 6= 0,−1,−2, . . . , a 6= −1; z ∈ ∆ where(λ)n is the Pochhammer symbol defined by

(1.3) (λ)n =
Γ(n+ λ)

Γ(λ)
=

{
1; n = 0

λ(λ+ 1)(λ+ 2) . . . (λ+ n− 1), n ∈ N = {1, 2, . . . }

}
.

Carlson and Shaffer [1] introduced a linear operatorL(a, c), by

L(a, c)f(z) = φ(a, c; z) ∗ f(z)

= z +
∞∑

n=2

(a)n−1

(c)n−1

anz
n, z ∈ 4,(1.4)

where∗ stands for the Hadamard product or convolution product of two power series

ϕ(z) =
∞∑

n=1

ϕnz
n and ψ(z) =

∞∑
n=1

ψnz
n

defined by

(ϕ ∗ ψ)(z) = ϕ(z) ∗ ψ(z) =
∞∑

n=1

ϕnψnz
n.

We note thatL(a, a)f(z) = f(z), L(2, 1)f(z) = zf ′(z), L(m+1, 1)f(z) = Dmf(z), where
Dmf(z) is the Ruscheweyh derivative off(z) defined by Ruscheweyh [6] as

(1.5) Dmf(z) =
z

(1− z)m+1
∗ f(z), m > −1.

Which is equivalently,

Dmf(z) =
z

m!

dm

dzm
{zm−1f(z)}.

Forβ ≥ 0 and−1 ≤ α < 1, we letS(α, β) denote the subclass ofS consisting of functions
f(z) of the form (1.1) and satisfying the analytic criterion

(1.6) Re

{
z(L(a, c)f(z))′

L(a, c)f(z)
− α

}
> β

∣∣∣∣z(L(a, c)f(z))′

L(a, c)f(z)
− 1

∣∣∣∣ , z ∈ 4.
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A NEW SUBCLASS OFUNIFORMLY CONVEX FUNCTIONS AND A CORRESPONDING... 3

We also letTS(α, β) = S(α, β)
⋂
T whereT, the subclass ofS consisting of functions of

the form

(1.7) f(z) = z −
∞∑

n=2

anz
n, an ≥ 0, ∀ n ≥ 2,

was introduced and studied by Silverman [7].
The main object of this paper is to obtain necessary and sufficient conditions for the func-

tionsf(z) ∈ TS(α, β). Furthermore we obtain extreme points, distortion bounds and closure
properties forf(z) ∈ TS(α, β) by fixing the second coefficient.

2. THE CLASS S(α, β)

In this section we obtain necessary and sufficient conditions for functionsf(z) in the classes
TS(α, β).

Theorem 2.1.A functionf(z) of the form (1.1) is inS(α, β) if

(2.1)
∞∑

n=2

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

|an| ≤ 1− α,

−1 ≤ α < 1, β ≥ 0.

Proof. It suffices to show that

β

∣∣∣∣z(L(a, c)f(z))′

L(a, c)f(z)
− 1

∣∣∣∣− Re

{
z(L(a, c)f(z))′

L(a, c)f(z)
− 1

}
≤ 1− α.

We have

β

∣∣∣∣z(L(a, c)f(z))′

L(a, c)f(z)
− 1

∣∣∣∣− Re

{
z(L(a, c)f(z))′

L(a, c)f(z)
− 1

}
≤ (1 + β)

∣∣∣∣z(L(a, c)f(z))′

L(a, c)f(z)
− 1

∣∣∣∣
≤

(1 + β)
∑∞

n=2(n− 1) (a)n−1

(c)n−1
|an|

1−
∑∞

n=2
(a)n−1

(c)n−1
|an|

.

This last expression is bounded above by(1− α) if
∞∑

n=2

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

|an| ≤ 1− α,

and hence the proof is complete. �

Theorem 2.2. A necessary and sufficient condition forf(z) of the form (1.7) to be in the class
TS(α, β), −1 ≤ α < 1, β ≥ 0 is that

(2.2)
∞∑

n=2

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

an ≤ 1− α.

Proof. In view of Theorem 2.1, we need only to prove the necessity. Iff(z) ∈ TS(α, β) andz
is real then

1−
∑∞

n=2 n
(a)n−1

(c)n−1
anz

n−1

1−
∑∞

n=2
(a)n−1

(c)n−1
anzn−1

− α ≥ β

∣∣∣∣∣
∑∞

n=2(n− 1) (a)n−1

(c)n−1
anz

n−1

1−
∑∞

n=2
(a)n−1

(c)n−1
anzn−1

∣∣∣∣∣ .
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4 G. MURUGUSUNDARAMOORTHY AND N. MAGESH

Letting z → 1 along the real axis, we obtain the desired inequality
∞∑

n=2

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

an ≤ 1− α, −1 ≤ α < 1, β ≥ 0.

�

Corollary 2.3. Let the functionf(z) defined by (1.7) be in the classTS(α, β). Then

an ≤
(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

, n ≥ 2, −1 ≤ α ≤ 1, β ≥ 0.

Remark 2.4. In view of Theorem 2.2, we can see that iff(z) is of the form (1.7) and is in the
classTS(α, β) then

(2.3) a2 =
(1− α)(c)

(2 + β − α)(a)
.

By fixing the second coefficient, we introduce a new subclassTSb(α, β) of TS(α, β) and
obtain the following theorems.

Let TSb(α, β) denote the class of functionsf(z) in TS(α, β) and be of the form

(2.4) f(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 −

∞∑
n=3

anz
n (an ≥ 0), 0 ≤ b ≤ 1.

Theorem 2.5.Let functionf(z) be defined by (2.4). Thenf(z) ∈ TSb(α, β) if and only if

(2.5)
∞∑

n=3

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

an ≤ (1− b)(1− α),

−1 ≤ α < 1, β ≥ 0.

Proof. Substituting

a2 =
b(1− α)

(2 + β − α)

(c)

(a)
, 0 ≤ b ≤ 1.

in (2.2) and simple computation leads to the desired result. �

Corollary 2.6. Let the functionf(z) defined by (2.4) be in the classTSb(α, β). Then

(2.6) an ≤
(1− b)(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

, n ≥ 3, −1 ≤ α ≤ 1, β ≥ 0.

Theorem 2.7.The classTSb(α, β) is closed under convex linear combination.

Proof. Let the functionf(z) be defined by (2.4) andg(z) defined by

(2.7) g(z) = z − b(1− α)

(2 + β − α)

(c)

(a)
z2 −

∞∑
n=3

dnz
n,

wheredn ≥ 0 and0 ≤ b ≤ 1.
Assuming thatf(z) and g(z) are in the classTSb(α, β), it is sufficient to prove that the

functionH(z) defined by

(2.8) H(z) = λf(z) + (1− λ)g(z), (0 ≤ λ ≤ 1)

is also in the classTSb(α, β).
Since

(2.9) H(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 −

∞∑
n=3

{λan + (1− λ)dn}zn,
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an ≥ 0, dn ≥ 0, 0 ≤ b ≤ 1, we observe that

(2.10)
∞∑

n=3

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

(λan + (1− λ)dn) ≤ (1− b)(1− α)

which is, in view of Theorem 2.5, again, implies thatH(z) ∈ TSb(α, β) which completes the
proof of the theorem. �

Theorem 2.8.Let the functions

(2.11) fj(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 −

∞∑
n=3

an, jz
n, an,j ≥ 0

be in the classTSb(α, β) for everyj (j = 1, 2, . . . ,m). Then the functionF (z) defined by

(2.12) F (z) =
m∑

j=1

µjfj(z),

is also in the classTSb(α, β), where

(2.13)
m∑

j=1

µj = 1.

Proof. Combining the definitions (2.11) and (2.12), further by (2.13) we have

(2.14) F (z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 −

∞∑
n=3

(
m∑

j=1

µjan,j

)
zn.

Sincefj(z) ∈ TSb(α, β) for everyj = 1, 2, . . . ,m, Theorem 2.5 yields

(2.15)
∞∑

n=3

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

an,j ≤ (1− b)(1− α),

for j = 1, 2, . . . ,m. Thus we obtain

∞∑
n=3

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

(
m∑

j=1

µjan,j

)

=
m∑

j=1

µj

(
∞∑

n=3

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

an,j

)
≤ (1− b)(1− α)

in view of Theorem 2.5. So,F (z) ∈ TSb(α, β). �

Theorem 2.9.Let

(2.16) f2(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2

and

(2.17) fn(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 − (1− b)(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

zn
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6 G. MURUGUSUNDARAMOORTHY AND N. MAGESH

for n = 3, 4, . . . . Thenf(z) is in the classTSb(α, β) if and only if it can be expressed in the
form

(2.18) f(z) =
∞∑

n=2

λnfn(z),

whereλn ≥ 0 and
∞∑

n=2

λn = 1.

Proof. We suppose thatf(z) can be expressed in the form (2.18). Then we have

f(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 −

∞∑
n=3

λn
(1− b)(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

zn

= z −
∞∑

n=2

Anz
n,(2.19)

where

(2.20) A2 =
b(1− α)(c)

(2 + β − α)(a)

and

(2.21) An =
λn(1− b)(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

, n = 3, 4, . . . .

Therefore
∞∑

n=2

[n(1 + β)− (α+ β)]
(a)n−1

(c)n−1

An = b(1− α) +
∞∑

n=3

λn(1− b)(1− α)

= (1− α)[b+ (1− λ2)(1− b)]

≤ (1− α),(2.22)

it follows from Theorem 2.2 and Theorem 2.5 thatf(z) is in the classTSb(α, β). Conversely,
we suppose thatf(z) defined by (2.4) is in the classTSb(α, β). Then by using (2.6), we get

(2.23) an ≤
(1− b)(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

, (n ≥ 3).

Setting

(2.24) λn =
[n(1 + β)− (α+ β)](a)n−1

(1− b)(1− α)(c)n−1

an, (n ≥ 3)

and

(2.25) λ2 = 1−
∞∑

n=3

λn,

we have (2.18). This completes the proof of Theorem 2.9. �

Corollary 2.10. The extreme points of the classTSb(α, β) are functionsfn(z), n ≥ 2 given by
Theorem 2.9.
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3. DISTORTION THEOREMS

In order to obtain distortion bounds for the functionf ∈ TSb(α, β), we first prove the fol-
lowing lemmas.

Lemma 3.1. Let the functionf3(z) be defined by

(3.1) f3(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 − (1− b)(1− α)(c)2

(3 + 2β − α)(a)2

z3 .

Then, for0 ≤ r < 1 and0 ≤ b ≤ 1,

(3.2) |f3(re
iθ)| ≥ r − b(1− α)(c)

(2 + β − α)(a)
r2 − (1− b)(1− α)(c)2

(3 + 2β − α)(a)2

r3

with equality forθ = 0. For either0 ≤ b < b0 and0 ≤ r ≤ r0 or b0 ≤ b ≤ 1,

(3.3) |f3(re
iθ)| ≤ r +

b(1− α)(c)

(2 + β − α)(a)
r2 − (1− b)(1− α)(c)2

(3 + 2β − α)(a)2

r3

with equality forθ = π, where

(3.4) b0 =
1

2(1− α)(c)(c)2

× {−[(3 + 2β − α)(a)2(c) + 4(2 + β − α)(a)(c)2 − (1− α)(c)(c)2]

+ [((3 + 2β − α)(a)2(c) + 4(2 + β − α)(a)(c)2 − (1− α)(c)(c)2
2

+ 16(2 + β − α)(1− α)(a)(c)(c)2
2]

1/2}
and

(3.5) r0 =
1

b(1− b)(1− α)(c)2

{−2(1− b)(2 + β − α)(a)(c+ 1)

+ [4(1− b)2(2 + β − α)2(a)2(c+ 1)2

+ b2(1− b)(3 + 2β − α)(1− α)(a)2(c)2]
1/2}.

Proof. We employ the technique as used by Silverman and Silvia [8]. Since

(3.6)
∂|f3(re

iθ)|2

∂θ
= 2(1− α)r3 sin θ

{
b(c)

(2 + β − α)(a)
+

4(1− b)(c)2

(3 + 2β − α)(a)2

r cos θ

− b(1− b)(1− α)(c)(c)2

(2 + β − α)(3 + 2β − α)(a)(a)2

r2

}
we can see that

(3.7)
∂|f3(re

iθ)|2

∂θ
= 0

for θ1 = 0, θ2 = π, and

(3.8) θ3 = cos−1

(
1

r

b[(1− b)(1− α)(c)2r
2 − (3 + 2β − α)(a)2]

4(1− b)(2 + β − α)(a)(c+ 1)

)
sinceθ3 is a valid root only when−1 ≤ cos θ3 ≤ 1. Hence we have a third root if and only
if r0 ≤ r < 1 and0 ≤ b ≤ b0. Thus the results of the theorem follow from comparing the
extremal values|f3(re

iθk)|, k = 1, 2, 3 on the appropriate intervals. �

Lemma 3.2. Let the functionsfn(z) be defined by (2.17) andn ≥ 4. Then

(3.9) |fn(reiθ)| ≤ |f4(−r)|.
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Proof. Since

fn(z) = z − b(1− α)(c)

(2 + β − α)(a)
z2 − (1− b)(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

zn

and rn

n
is a decreasing function ofn, we have

|fn(reiθ| ≤ r +
b(1− α)(c)

(2 + β − α)(a)
r2 − (1− b)(1− α)(c)3

[4 + 3β − α](a)3

r4

= −f4(−r),

which shows (3.9). �

Theorem 3.3. Let the functionf(z) defined by (2.4) belong to the classTSb(α, β), then for
0 ≤ r < 1,

(3.10) |f(reiθ)| ≥ r − b(1− α)(c)

(2 + β − α)(a)
r2 − (1− b)(1− α)(c)2

[3 + 2β − α](a)2

r3

with equality forf3(z) at z = r, and

(3.11) |f(reiθ)| ≤ max
{

max
θ
|f3(re

iθ)|,−f4(−r)
}
,

wheremax
θ
|f3(re

iθ)| is given by Lemma 3.1.

Proof. The proof of Theorem 3.3 is obtained by comparing the bounds of Lemma 3.1 and
Lemma 3.2. �

Remark 3.4. Takingb = 1 in Theorem 3.3 we obtain the following result.

Corollary 3.5. Let the functionf(z) defined by (1.7) be in the classTS(α, β). Then for|z| =
r < 1, we have

(3.12) r − (1− α)(c)

(2 + β − α)(a)
r2 ≤ |f(z)| ≤ r +

(1− α)(c)

(2 + β − α)(a)
r2.

Lemma 3.6. Let the functionf3(z) be defined by (3.1). Then, for0 ≤ r < 1, and0 ≤ b ≤ 1,

(3.13) |f ′3(reiθ)| ≥ 1− 2b(1− α)(c)

(2 + β − α)(a)
r − 3(1− b)(1− α)(c)2

(3 + 2β − α)(a)2

r2

with equality forθ = 0. For either0 ≤ b < b1 and0 ≤ r ≤ r1 or b1 ≤ b ≤ 1,

(3.14) |f ′3(reiθ)| ≤ 1 +
2b(1− α)(c)

(2 + β − α)(a)
r − 3(1− b)(1− α)(c)2

(3 + 2β − α)(a)2

r2

with equality forθ = π, where

(3.15) b1 =
1

6(1− α)(c)(c2)

× {−[(3 + 2β − α)(a)2(c) + 6(2 + β − α)(a)(c)2 − 3(1− α)(c)(c)2]

+ {((3 + 2β − α)(a)2(c) + 6(2 + β − α)(a)(c)2 − 3(1− α)(c)(c)2)
2

+ 72(2 + β − α)(1− α)(a)(c)(c22)}1/2}
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A NEW SUBCLASS OFUNIFORMLY CONVEX FUNCTIONS AND A CORRESPONDING... 9

and

(3.16) r1 =
1

3b(1− b)(1− α)(c2)
{−3(1− b)(2 + β − α)(a)(c+ 1)

+ [8(1− b)2(2 + β − α)2(a)2(c+ 1)2

+ 3b2(1− b)(3 + 2β − α)(1− α)(a)2(c)2]
1/2}.

Proof. The proof of Lemma 3.6 is much akin to the proof of Lemma 3.1. �

Theorem 3.7. Let the functionf(z) defined by (2.4) belong to the classTSb(α, β), then for
0 ≤ r < 1,

(3.17) |f ′(reiθ)| ≥ 1− 2b(1− α)(c)

(2 + β − α)(a)
r − 3(1− b)(1− α)(c)2

[3 + 2β − α](a)2

r2

with equality forf ′3(z) at z = r, and

(3.18) |f ′(reiθ)| ≤ max
{

max
θ
|f ′3(reiθ)|,−f ′4(−r)

}
,

wheremax
θ
|f ′3(reiθ)| is given by Lemma 3.6.

Remark 3.8. Puttingb = 1 in Theorem 3.7 we obtain the following result.

Corollary 3.9. Let the functionf(z) defined by (1.2) be in the classTS(α, β). Then for|z| =
r < 1, we have

(3.19) 1− 2(1− α)(c)

(2 + β − α)(a)
r ≤ |f ′(z)| ≤ 1 +

2(1− α)(c)

(2 + β − α)(a)
r.

4. THE CLASS TSbn,k(α, β)

Instead of fixing just the second coefficient, we can fix finitely many coefficients. Let
TSbn,k(α, β) denote the class of functions inTSb(α, β) of the form

(4.1) f(z) = z −
k∑

n=2

bn(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

zn −
∞∑

n=k+1

anz
n,

where0 ≤
∑k

n=2 bn = b ≤ 1. Note thatTSb2,2(α, β) = TSb(α, β).

Theorem 4.1.The extreme points of the classTSbn,k(α, β) are

fk(z) = z −
k∑

n=2

bn(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

zn

and

fn(z) = z −
k∑

n=2

bn(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

zn −
∞∑

n=k+1

(1− b)(1− α)(c)n−1

[n(1 + β)− (α+ β)](a)n−1

zn

The details of the proof are omitted, since the characterization of the extreme points enables
us to solve the standard extremal problems in the same manner as was done forTSb(α, β).
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