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Abstract

In this paper, we discuss the validity of the inequality

9

n n n “
(1 b)/2
Z,ri Z 20l < Z 7 tatt) .

i=1 i=1 i=1

where 1, a, b are the sides of a triangle and the indices are understood modulo A New Arrangement Inequality
n. We show that, although this inequality does not hold in general, it is true
when n < 4. For general n, we show that any given set of nonnegative real
numbers can be arranged as 1,9, ...,2, such that the inequality above is
valid. Title Page
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Leta,b, zq,z9,...,x, be nonnegative real numbers.alf+ b = 1 then, by the
Rearrangement inequality][ we have

n n
(11) Z'I?l‘?"'l S inv
i=1 i=1

where throughout this paper, the indices are understood to be medutcan

attempt to generalize this inequality, we consider the following A New Arrangement Inequality
n n n 2 Mohammad Javaheri
(1.2) Z x; Z x?xfﬂ < (Z xf) )
i=1  i=1 i=1 Title Page
wherec = (a + b+ 1)/2. It turns out that ifa + b # 1 then the inequalityX.2) Contents
is false forn large enough (cf. Pro®.2). However, we show that if
44 44
(2.3) b<a+1, a<b+1, 1<a+b, P >
then the inequality](.2_) _is true in th(_a case at = 4 (cf. Prop.2.1). Moreover_, Go Back
under the same conditions anb as in (L.3), we show that one can always find
a permutation of {1,2,...,n} such that (cf. Prop2.4) Close
. . . 9 Quit
(1.4) Z T Z xZ(i)mZ(i+1) < (Z xf) ) Page 3 of 17
=1 =1 =1
The conditions in1.3) cannot be compromised in the sense that if for all non-  * "} Frar e T TR A 16 26

negativery, xo, . .., x, there exists a permutatigm such that the conclusion


http://jipam.vu.edu.au/
mailto:javaheri@uoregon.edu
http://jipam.vu.edu.au/

(1.4) holds, theru, b must satisfy {.3). To see this, let; = = > 0 be arbitrary
andz; = 1,7 = 2,...,n. Then, for any permutatiop, the inequality {.4)
reads the same as:

(1.5) (x4+n—1)("+2°+n—-2) < (z°+n—1)>%

If the above inequality is true for all andn, by comparing the coefficients of
on both sides of the inequalityt (), we should have® + 2+ z — 3 < 22¢ — 2.
Sincex > 0 is arbitrary,1, a,b < ¢ and conditions1.3) follow.

The case ofi = b = 1 of (1.2) is particularly interesting:

n

n n 2
1=1

=1 =1

There is a counterexample tb.§) whenn = 9, e.g. take

(17) Tr1 = Tg = 85,

Ty = Tg = 115,

To =23 =19, x3=u1x7;=10,

Ty = 12,

and subsequently the inequality.©) is false for alln. > 9 (cf. prop. @.2)).

Proposition2.1 shows that the inequalityl(6) is true forn < 4, and there
seems to be a computer-based prcedfdr the cases = 5,6, 7 which, if true,
leaves us with the only remaining case- 8.
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Applying Jensen’s inequality’[ § 3.14] to the concave functidng x gives

(2.1) u"vw' < ru+ sv + tw,

whereu, v, w, r, s,t are honnegative real numbers and- s + ¢ = 1. If, in
addition, we have, s, ¢ > 0 then the equality occurs iff = v = w. However,
if t = 0andr, s,w > 0then the equality occurs iff = v. We use this inequality
in the proof of the proposition below.

A New Arrangement Inequality
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Proposition 2.1. Leta,b > O such thata +1 > b,b+ 1 > aanda + b > 1.
Then for all nonnegative real numbetsy, z, t,

) ) ) ) ) Title Page
22 t a a at ta < C C C tC
(22) (z+y+z+t) (2% +y 2"+ 2 +t%°) < (2° 4 y° + 2 + 197, Contents
wherec = (a + b + 1)/2. The equality occurs if and only {lz, b} = {0,1} or <« >
r=y=2z=1.
4 >
Proof. We apply the inequality4.1) to
pply qualityA.1) ——
(2.3) u=(yz)¢, v=(r2) w=(2y) Close
1 .
r=1-2 s=1--, t=1--, Quit
C C C
Page 5 of 17
and obtain:

2.4)  avs < (1 - %) (y2)° + (1 - 9) (22)° + (1 - %) (zy)°.
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Notice that the assumptions enb in the lemma are made exactly so that, ¢

are nonnegative. Similarly, by replaciagvith ¢ in (2.4), we have:
(2.5) %yt < (1 — 9) (yt)*+ (1 — b (tr)+ (1-— ! (xy)°.
- & c &

Next, apply £.1) to

(2.6) w=212% wv=(ry), w=1 r=1—-- s=-, t=0,
C C

and get

a+1, b b 2¢ b c
(2.7) ¥y < |1 — - | 2%+ —(zy)".

& C

Similarly, by interchanging andb, one has

a, b+1 < o g 2c g c
(2.8) T < (1 C) x4+ C(xy) .

Adding the inequalitiesA.4), (2.5), (2.7) and @.9) gives:
(2.9) Sxy’ < %ﬁc + <4 - %) (xy)° + (1 - %) (yz)° + (1 - é) (tx)°

+ (1 - %) (yt)° + (1 - g) (z2)°
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whereS = z+y+z+t. There are three more inequalities of the form above that

are obtained by replacing the pair, y) by (v, z), (z,t) and(¢,z). By adding
all four inequalities (or by taking the cyclic sum ¢f.0)) we have

(2.10) ST < %Zx% + (4 — %) (€4 2°)(y° + 1) + %{(m)c + (yt)°},

where ST stands for the left hand side of the inequaliyZ). The right hand
side of the above inequality is equal to

(2.11) (Z :cC)Q + (% — 1) {(2°4+29)? + (y° +19)2 = 2(2° + 2°) (y° + 1) },

which is less than or equal t§_ 2¢)°, sincec > 1. This concludes the proof of
the inequality 2.2).

Next, suppose the equality occurs ihd) and so the inequalitie€ (4) — (2.9)
are all equalities. 1t = 0 then we have_ z Y 2> = (3 z°) and so, by the
equality case of Cauchy-Schwarz, the two vectarg, z, t) and(z°, 4, 2°, %)
have to be proportional. Then eithe= ¢ = 1 orx = y = z = t. Thus suppose
a,b # 0. Sincec = a = b is impossible, without loss of generality suppose
thatc # 0. Since the inequality2.7) must be an equality;** = z¢y° (cf. the
discussion on the equality case @f1)). Similarly y*¢ = y°2¢, 2% = 2“t¢ and
t2¢ = t°z°. Itis then not difficult to see that = y = » = t. O

Let N(a,b) denote the largest integerfor which the inequality 1.2) holds
for all nonnegativery, z,, . . ., z,,. By the above proposition, we havga, b) >
4.
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Proposition 2.2. Let a,b > 0 such thata + b # 1. ThenN(a,b) < oo.
Moreover, ifn < N(a,b) then the inequalityX(.2) is valid for all nonnegative
L1y T

Proof. The proof is divided into two parts. First we show that the inequality
(1.2) cannot be true for akk. Proof is by contradiction. I& = b = 0 then (L.2)

is false forn = 2 (e.qg. taker; = 1,z = 2). Thus, suppose + b > 0 and that
the inequality {.2) is true for alln. Let f be a non-constant positive continuous
function on the interval = [0, 1] such thatf(0) = f(1). Let

,— 1
(2.12) xi:f(’ ) g = (@l )V =1 n
n

Sincey; is a number between andzx; . ; (possibly equal to one of them), by the
Intermediate-value theorers,[Th 3.3], there exists € I; such thatf (¢;) = v;.
By the definition of integral we have:

1 n n
(2.13) / flx)dx / fo@)de = m — Y " Yyt
I I SR —

n n
= lim i E T; E %2t
n—00 n2 ! Caas
i=1 =1
2

n 2
< Jim (Z ) ()

where we have applied the inequality.g) to thex;’s. On the other hand, by
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the Cauchy-Schwarz inequality for integrals, we have

@) [ s [ ;e ( / f%<x>f”2*b<x>das)2

_ ( / f"(x)dx)z,

with equality iff f and f*? are proportional. The statemenfs13 and @.14)
imply that the equality indeed occurs. Since- b # 1 and f is not a constant
function, the two functiong and f*+* cannot be proportional. This contradic-
tion implies that {.2) could not be true for alh i.e. N(a,b) < oc. Mohammad Javaheri
Next, we show thatl(.2) is valid for alln < N. Itis sufficient to show that if
the inequality {.2) is true for all ordered sets &f+ 1 nonnegative real numbers,

A New Arrangement Inequality

.. i Title Page
then it is true for all ordered sets hfnonnegative real numbers.
Lety, ..., y, be nonnegative real numbers and set Contents
k k k 44 44
(2.15) S=> " A=yl P=>_uf > 5
=1 =1 =1
Without loss of generality we can assurie= 1. For eachl < i < k, define Go Back
an ordered set df + 1 nonnegative real numbers by setting: Close
Yj I<j<i+1 Quit
Ij =
. ‘ Page 9 of 17
yi-1 1 +2<j<k+1 =
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Adding these inequalities far= 1, ..., k, yields:
(2.17) kSA+ S8yt + AS <k +2.

On the other hand, by the Rearrangement inequalitwg have

k k
(2.18) D outyl <Dyt
=1 =1

and the lemma follows by putting together the inequalit4dq) and @.19.
0

The inequality {.1) translates taV(a, b) = co whena + b = 1. We expect
that N(a,b) — oo asa + b — 1. The following proposition supports this
conjecture. We define

n n n 2
_ ) a, b . c o
(2.19) A,(a,b) =sup Z_; x; 2_1: 7Ty (ZI: xl> max o; = 1
This number roughly measures the validity of the inequality)( Also let
1 n
2.20 == t
( ) o n; xz

By the Holder inequality ], if a, 3 > 0 anda + § = 1 then for anys,¢ > 0
we have:

(2.21) 030{? > Opstpt-

A New Arrangement Inequality

Mohammad Javaheri

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 10 of 17

J. Ineq. Pure and Appl. Math. 7(5) Art. 162, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:javaheri@uoregon.edu
http://jipam.vu.edu.au/

Proposition 2.3. N(u, u) is a non-increasing function of > 1/2. Moreover,
>

(
forall n anda,b > 0

(2.22) lim A,(a,b) =0.

a+b—1
Proof. Suppose: > v > 1/2. We show thatV(u,u) < N(v,v). Without loss
of generality we can assume:
1
u—v< Z

By the definition of N = N(v,v), there must exisV + 1 nonnegative integers
x1,...,Tn41 SUCh that the inequalityl(?) is false and so

N+1  N+1 N+1

v+1/2
g ng Ty > E x, /
i=1 =1

We show that the nonnegative numbeys—= x“/” i=1,...,N +1give a
counterexample tol(2) whena = b = u. In Ilght of (2.24), one just needs to
show

N+1 N+1 N+1 N+1
(225) (Z u+1/2v> qu/v_ (Z u+1/2) sz

=1 =1

(2.23)

(2.24)

To prove this, first let

_u+1/(2v) —ufv o ufv—1
(2.26) Cou+1/(20) =1 6_u+1/(2v)—1’
s =1, t—u+i

2v
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The numbers above are simply chosen suchdhats = 1 andas + 5t = u/v.
We briefly check that, 5 > 0. The denominator of fractions above is positive,
sinceu + 1/(2v) > (v+ 1/v)/2 > 1. This impliesg > 0. Now the positivity
of a > 0is equivalent tau(1 —v) < 1/2. If v > 1 thenu(l —v) <0 < 1/2.
So suppose < 1. By using @.23, we have:

1 3 1 1
2.27 1—) < V)= —?+ 204 <=
(2.27) u( v)_(v+4>( v) vt vt <3

for all v > 0. Now we can safely plug, 3, s, ¢ in (2.21) and get

(2.28) oo’

Ju+1/2v 2 Oufuv-

Next, leta’ = (1 —a)/2andf’ =1 — 3/2. Sincea’ + ' = 1 andd/, 3’ > 0,
we can use Hdlder’s inequality 21) with o/, 5’ instead ofa: and 3 (and the
sames, ¢ as before) and get (this timés + 't = v + 1/2):

1-a)/2 _1-5/2
(2.29) 0§ )/ 01+1ﬁ//2v < Ouyy2-

Now we square the above inequality and multiply it withA8) to obtain:
(2.30) 0-10-%4-1/21) < Uu/v‘73+1/27

which is equivalent to the inequalitg 25. So far we have shown the existence
of a counterexample td.(2) for a = b = uw whenn = N + 1. Then Prop.2.2
givesN (u,u) < N = N(v,v) and this concludes the proof of the monotonicity
of V.
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It remains to prove that,, (a, b) converges td asa+b — 1. To the contrary,
assume there exists> 0 and a sequendg;, b;) such thatA,,(a;, b;) > € and
a; +b; — 1. Then by definition, for each, there exists am-tuple X; =
(21, ..., %n;) such thatnax z;; = 1 and

(2.31) me wa Tty — (Zx ) %

wherec; = (a; + b; + 1)/2. SinceX; is a bounded sequence, it follows that,

A New Arrangement Inequality

along a subsequengg, the X, ’'s converge to som& = (zy,...,2,). On _
the other hand, along a subsequencg.afienoted again byy), a;, — a and Mohammad Javaheri
b;, — bfor somea,b > 0. Sincea; + b; — 1, we haven + b = 1. By taking
the limits of the inequality4.31) along this subsequence we should have Title Page
€ Contents

2.32 T Y xiT] T =
(232) Z Z - Z >5> —
which contradicts the inequalityl (1). This contradiction establishes the equa- < 4
tion (2.22. m Go Back

The next proposition shows that the inequalityZ holds if one mixes up Close
the order of ther;’s. The proof is simple and makes use of the monotonicity of _
(0,)"/* whereo, is defined by the equatior 20). It is well-known that(o, )/ Quit
is a non-decreasing function of1, Th. 16]. Page 13 of 17
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n nonnegative real numbers there exists an arrangement of them as , z,, i imamaedaay
such that the inequalityl(2) holds.
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Proof. Equivalently, we show that i, x,, ..
exists a permutatiop of the set{1,2,...,n} such that the inequalityl(4)
holds. Let

(2.33)

T = Zn:foxz’

i=1 j#i

n
S = § Ly
i=1

ThenST = noy(n*0,0,—n0ay) = n3c10,0,—n’01044,. NOw by the Cauchy-

Schwarz inequality]], o < 010,45 On the other hand by the monotonicity of

1 1
O't/t, we haver; < JC/C,JQ < Jg/c,ab <ol

from these inequalities that

/C, and sao,0,0;, < o2. It follows

(2.34) ST < n*(n— 1)
Now for a permutation of 1,2, ... n, let:
(2.35) A=Y @i

=1

We would like to show thabA,, < (no.)? for some permutatiop. It is
sufficient to show that the average $f1,, over all permutationg is less than
or equal to(no.)?. To show this, observe that the averageSef,, is equal to

ST/(n — 1) and so the claim follows from the inequality.B4). O
The symmetric groug,, acts onR” in the usual way, namely fqu € S,

and(zy,...,z,) € R let

(2.36) po (@, xn) = (Tp)s - Tum))-

., x, are nonnegative then there
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Let R be a region inR™ that is invariant under the action of permutations (i.e.
- R C Rforall u). define:

n n n 2
(2.37) MR)=1 (x1,...,2,) €ER Zl?z Zm?mfﬂ < <Z xf)
1 =1 i=1

1=

By Proposition2.4:

(2.38) R C U - MR). A New Arrangement Inequality

HESH Mohammad Javaheri

In particular, by taking the Lebesgue measure of the sides of the inclusion

above, we get Title Page
Contents
vol R
2. 1 > .
(2.39) vol A(R) > n! « b
We prove a better lower bound feel A(R) whenn is a prime number (similar 4 >
but weaker results can be proved in general). Go Back
Proposition 2.5. Let a, b be as in Propositior2.1 andn be a prime number. Close
Let R C R" be a Lebesgue-measurable bounded set that is invariant under the =
action of permutations. LeX(R) denote the set of allzy,...,z,) € R for Qui
which the inequalityX.2) holds. Then Page 15 of 17
(240) V()l /\<R> > VOl R . J. Ineq. Pure and Appl. Math. 7(5) Art. 162, 2006
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Proof. Form € {1,2,...,n — 1} let u,, € S,, and denote the permutation
(2.41) (i) = i,

where all the numbers are understood to be moduia particularg,,(n) = n
for all m). Now recall the definition ofl,, from the equation4.35 and observe
that:

n—1 n—1 n n—1 n
(2.42) Z Aum = Z Z x?nixlr)ni-i-m = Z Z x?$2+m A New Arrangement Inequality
m=1 m=1i=1 ) m=1j=1 Mohammad Javaheri
a b a b
:ij fvj+m=Z%Z%~
j=1 =1 j=1 i#j Title Page
Then, the same argument in the proof of Praptimplies that, for somen ¢ GO
{1,...,n—1}, we haved,, < (no.)?. We conclude that pp >
n—1 | >
2.4 C .
(2.43) s U1 i+ AR, Go Back
L . . . . Close
which in turn implies the inequality?(40). O
Quit
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