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Abstract

In this paper, we discuss the validity of the inequality

n∑
i=1

xi

n∑
i=1

xa
i x

b
i+1 ≤

(
n∑

i=1

x
(1+a+b)/2
i

)2

,

where 1, a, b are the sides of a triangle and the indices are understood modulo
n. We show that, although this inequality does not hold in general, it is true
when n ≤ 4. For general n, we show that any given set of nonnegative real
numbers can be arranged as x1, x2, . . . , xn such that the inequality above is
valid.
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1. Main Statements
Let a, b, x1, x2, . . . , xn be nonnegative real numbers. Ifa + b = 1 then, by the
Rearrangement inequality [1], we have

(1.1)
n∑

i=1

xa
i x

b
i+1 ≤

n∑
i=1

xi,

where throughout this paper, the indices are understood to be modulon. In an
attempt to generalize this inequality, we consider the following

(1.2)
n∑

i=1

xi

n∑
i=1

xa
i x

b
i+1 ≤

(
n∑

i=1

xc
i

)2

,

wherec = (a + b + 1)/2. It turns out that ifa + b 6= 1 then the inequality (1.2)
is false forn large enough (cf. Prop.2.2). However, we show that if

(1.3) b ≤ a + 1, a ≤ b + 1, 1 ≤ a + b,

then the inequality (1.2) is true in the case ofn = 4 (cf. Prop.2.1). Moreover,
under the same conditions ona, b as in (1.3), we show that one can always find
a permutationµ of {1, 2, . . . , n} such that (cf. Prop.2.4)

(1.4)
n∑

i=1

xi

n∑
i=1

xa
µ(i)x

b
µ(i+1) ≤

(
n∑

i=1

xc
i

)2

.

The conditions in (1.3) cannot be compromised in the sense that if for all non-
negativex1, x2, . . . , xn there exists a permutationµ such that the conclusion
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(1.4) holds, thena, b must satisfy (1.3). To see this, letx1 = x > 0 be arbitrary
andxi = 1, i = 2, . . . , n. Then, for any permutationµ, the inequality (1.4)
reads the same as:

(1.5) (x + n− 1)(xa + xb + n− 2) ≤ (xc + n− 1)2.

If the above inequality is true for allx andn, by comparing the coefficients ofn
on both sides of the inequality (1.5), we should havexa +xb +x−3 ≤ 2xc−2.
Sincex > 0 is arbitrary,1, a, b ≤ c and conditions (1.3) follow.

The case ofa = b = 1 of (1.2) is particularly interesting:

(1.6)
n∑

i=1

xi

n∑
i=1

xixi+1 ≤

(
n∑

i=1

x
3/2
i

)2

.

There is a counterexample to (1.6) whenn = 9, e.g. take

x1 = x9 = 8.5, x2 = x8 = 9, x3 = x7 = 10,(1.7)

x4 = x6 = 11.5, x5 = 12,

and subsequently the inequality (1.6) is false for alln ≥ 9 (cf. prop. (2.2)).
Proposition2.1 shows that the inequality (1.6) is true for n ≤ 4, and there
seems to be a computer-based proof [2] for the casesn = 5, 6, 7 which, if true,
leaves us with the only remaining casen = 8.
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2. Proofs
Applying Jensen’s inequality [1, § 3.14] to the concave functionlog x gives

(2.1) urvswt ≤ ru + sv + tw,

whereu, v, w, r, s, t are nonnegative real numbers andr + s + t = 1. If, in
addition, we haver, s, t > 0 then the equality occurs iffu = v = w. However,
if t = 0 andr, s, w > 0 then the equality occurs iffu = v. We use this inequality
in the proof of the proposition below.

Proposition 2.1. Let a, b ≥ 0 such thata + 1 ≥ b, b + 1 ≥ a anda + b ≥ 1.
Then for all nonnegative real numbersx, y, z, t,

(2.2) (x + y + z + t)(xayb + yazb + zatb + taxb) ≤ (xc + yc + zc + tc)2,

wherec = (a + b + 1)/2. The equality occurs if and only if{a, b} = {0, 1} or
x = y = z = t.

Proof. We apply the inequality (2.1) to

u = (yz)c, v = (xz)c, w = (xy)c,(2.3)

r = 1− a

c
, s = 1− b

c
, t = 1− 1

c
,

and obtain:

(2.4) xaybz ≤
(
1− a

c

)
(yz)c +

(
1− b

c

)
(xz)c +

(
1− 1

c

)
(xy)c.
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Notice that the assumptions ona, b in the lemma are made exactly so thatr, s, t
are nonnegative. Similarly, by replacingz with t in (2.4), we have:

(2.5) xaybt ≤
(
1− a

c

)
(yt)c +

(
1− b

c

)
(tx)c +

(
1− 1

c

)
(xy)c.

Next, apply (2.1) to

(2.6) u = x2c, v = (xy)c, w = 1, r = 1− b

c
, s =

b

c
, t = 0,

and get

(2.7) xa+1yb ≤
(

1− b

c

)
x2c +

b

c
(xy)c.

Similarly, by interchanginga andb, one has

(2.8) xayb+1 ≤
(
1− a

c

)
x2c +

a

c
(xy)c.

Adding the inequalities (2.4), (2.5), (2.7) and (2.8) gives:

(2.9) Sxayb ≤ 1

c
x2c +

(
4− 3

c

)
(xy)c +

(
1− a

c

)
(yz)c +

(
1− b

c

)
(tx)c

+
(
1− a

c

)
(yt)c +

(
1− b

c

)
(xz)c,
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whereS = x+y+z+t. There are three more inequalities of the form above that
are obtained by replacing the pair(x, y) by (y, z), (z, t) and(t, x). By adding
all four inequalities (or by taking the cyclic sum of (2.9)) we have

(2.10) ST ≤ 1

c

∑
x2c +

(
4− 2

c

)
(xc + zc)(yc + tc) +

2

c

{
(xz)c + (yt)c

}
,

whereST stands for the left hand side of the inequality (2.2). The right hand
side of the above inequality is equal to

(2.11)
(∑

xc
)2

+

(
1

c
− 1

){
(xc + zc)2 + (yc + tc)2− 2(xc + zc)(yc + tc)

}
,

which is less than or equal to(
∑

xc)2, sincec ≥ 1. This concludes the proof of
the inequality (2.2).

Next, suppose the equality occurs in (2.2) and so the inequalities (2.4) – (2.8)
are all equalities. Ifa = 0 then we have

∑
x
∑

xb = (
∑

xc)2 and so, by the
equality case of Cauchy-Schwarz, the two vectors(x, y, z, t) and(xb, yb, zb, tb)
have to be proportional. Then eitherb = c = 1 or x = y = z = t. Thus suppose
a, b 6= 0. Sincec = a = b is impossible, without loss of generality suppose
that c 6= b. Since the inequality (2.7) must be an equality,x2c = xcyc (cf. the
discussion on the equality case of (2.1)). Similarly y2c = yczc, z2c = zctc and
t2c = tcxc. It is then not difficult to see thatx = y = z = t.

Let N(a, b) denote the largest integern for which the inequality (1.2) holds
for all nonnegativex1, x2, . . . , xn. By the above proposition, we haveN(a, b) ≥
4.
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Proposition 2.2. Let a, b ≥ 0 such thata + b 6= 1. ThenN(a, b) < ∞.
Moreover, ifn ≤ N(a, b) then the inequality (1.2) is valid for all nonnegative
x1, . . . , xn.

Proof. The proof is divided into two parts. First we show that the inequality
(1.2) cannot be true for alln. Proof is by contradiction. Ifa = b = 0 then (1.2)
is false forn = 2 (e.g. takex1 = 1, x2 = 2). Thus, supposea + b > 0 and that
the inequality (1.2) is true for alln. Letf be a non-constant positive continuous
function on the intervalI = [0, 1] such thatf(0) = f(1). Let

(2.12) xi = f

(
i− 1

n

)
, yi = (xa

i x
b
i+1)

1/(a+b), i = 1, . . . , n.

Sinceyi is a number betweenxi andxi+1 (possibly equal to one of them), by the
Intermediate-value theorem [3, Th 3.3], there existsti ∈ Ii such thatf(ti) = yi.
By the definition of integral we have:∫

I

f(x)dx

∫
I

fa+b(x)dx = lim
n→∞

1

n2

n∑
i=1

xi

n∑
i=1

ya+b
i(2.13)

= lim
n→∞

1

n2

n∑
i=1

xi

n∑
i=1

xa
i x

b
i+1

≤ lim
n→∞

1

n2

(
n∑

i=1

xc
i

)2

=

(∫
I

f c(x)dx

)2

,

where we have applied the inequality (1.2) to thexi’s. On the other hand, by
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the Cauchy-Schwarz inequality for integrals, we have∫
I

f(x)dx

∫
I

fa+b(x)dx ≥
(∫

I

f
1
2 (x)f

a+b
2 (x)dx

)2

(2.14)

=

(∫
I

f c(x)dx

)2

,

with equality iff f andfa+b are proportional. The statements (2.13) and (2.14)
imply that the equality indeed occurs. Sincea + b 6= 1 andf is not a constant
function, the two functionsf andfa+b cannot be proportional. This contradic-
tion implies that (1.2) could not be true for alln i.e. N(a, b) < ∞.

Next, we show that (1.2) is valid for alln ≤ N . It is sufficient to show that if
the inequality (1.2) is true for all ordered sets ofk+1 nonnegative real numbers,
then it is true for all ordered sets ofk nonnegative real numbers.

Let y1, . . . , yk be nonnegative real numbers and set

(2.15) S =
k∑

i=1

yi, A =
k∑

i=1

ya
i y

b
i+1, P =

k∑
i=1

yc
i .

Without loss of generality we can assumeP = 1. For each1 ≤ i ≤ k, define
an ordered set ofk + 1 nonnegative real numbers by setting:

xj =


yj 1 ≤ j ≤ i + 1

yj−1 i + 2 ≤ j ≤ k + 1

Applying the inequality (1.2) to x1, . . . , xk+1 gives

(2.16) (S + yi)(A + ya+b
i ) ≤ (P + yc

i )
2 = 1 + y2c

i + 2yc
i .
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Adding these inequalities fori = 1, . . . , k, yields:

(2.17) kSA + S
∑

i

ya+b
i + AS ≤ k + 2.

On the other hand, by the Rearrangement inequality [1] we have

(2.18)
k∑

i=1

ya
i y

b
i+1 ≤

k∑
i=1

ya+b
i ,

and the lemma follows by putting together the inequalities (2.17) and (2.18).

The inequality (1.1) translates toN(a, b) = ∞ whena + b = 1. We expect
that N(a, b) → ∞ as a + b → 1. The following proposition supports this
conjecture. We define

(2.19) An(a, b) = sup


n∑

i=1

xi

n∑
i=1

xa
i x

b
i+1 −

(
n∑

i=1

xc
i

)2
∣∣∣∣∣∣ max

1≤i≤n
xi = 1

 .

This number roughly measures the validity of the inequality (1.2). Also let

(2.20) σt =
1

n

n∑
i=1

xt
i.

By the Hölder inequality [1], if α, β > 0 andα + β = 1 then for anys, t > 0
we have:

(2.21) σα
s σβ

t ≥ σαs+βt.
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Proposition 2.3. N(u, u) is a non-increasing function ofu ≥ 1/2. Moreover,
for all n anda, b ≥ 0

(2.22) lim
a+b→1

An(a, b) = 0.

Proof. Supposeu > v > 1/2. We show thatN(u, u) ≤ N(v, v). Without loss
of generality we can assume:

(2.23) u− v <
1

4
.

By the definition ofN = N(v, v), there must existN + 1 nonnegative integers
x1, . . . , xN+1 such that the inequality (1.2) is false and so

(2.24)
N+1∑
i=1

xi

N+1∑
i=1

xv
i x

v
i+1 >

(
N+1∑
i=1

x
v+1/2
i

)2

.

We show that the nonnegative numbersyi = x
u/v
i , i = 1, . . . , N + 1 give a

counterexample to (1.2) whena = b = u. In light of (2.24), one just needs to
show

(2.25)

(
N+1∑
i=1

x
u+1/2v
i

)2/N+1∑
i=1

x
u/v
i ≥

(
N+1∑
i=1

x
u+1/2
i

)2/N+1∑
i=1

xi.

To prove this, first let

α =
u + 1/(2v)− u/v

u + 1/(2v)− 1
, β =

u/v − 1

u + 1/(2v)− 1
,(2.26)

s = 1, t = u +
1

2v
.
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The numbers above are simply chosen such thatα + β = 1 andαs + βt = u/v.
We briefly check thatα, β > 0. The denominator of fractions above is positive,
sinceu + 1/(2v) ≥ (v + 1/v)/2 ≥ 1. This impliesβ > 0. Now the positivity
of α > 0 is equivalent tou(1 − v) < 1/2. If v ≥ 1 thenu(1 − v) ≤ 0 < 1/2.
So supposev ≤ 1. By using (2.23), we have:

(2.27) u(1− v) ≤
(

v +
1

4

)
(1− v) = −v2 +

3

4
v +

1

4
<

1

2
,

for all v ≥ 0. Now we can safely plugα, β, s, t in (2.21) and get

(2.28) σα
1 σβ

u+1/2v ≥ σu/v.

Next, letα′ = (1− α)/2 andβ′ = 1− β/2. Sinceα′ + β′ = 1 andα′, β′ > 0,
we can use Hölder’s inequality (2.21) with α′, β′ instead ofα andβ (and the
sames, t as before) and get (this timeα′s + β′t = u + 1/2):

(2.29) σ
(1−α)/2
1 σ

1−β/2
1+1/2v ≤ σu+1/2.

Now we square the above inequality and multiply it with (2.28) to obtain:

(2.30) σ1σ
2
1+1/2v ≤ σu/vσ

2
u+1/2,

which is equivalent to the inequality (2.25). So far we have shown the existence
of a counterexample to (1.2) for a = b = u whenn = N + 1. Then Prop.2.2
givesN(u, u) ≤ N = N(v, v) and this concludes the proof of the monotonicity
of N .
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It remains to prove thatAn(a, b) converges to0 asa+b → 1. To the contrary,
assume there existsε > 0 and a sequence(aj, bj) such thatAn(aj, bj) > ε and
aj + bj → 1. Then by definition, for eachj, there exists ann-tuple Xj =
(x1j, . . . , xnj) such thatmax xij = 1 and

(2.31)
n∑

i=1

xij

n∑
i=1

x
aj

ij x
bj

i+1j −

(
n∑

i=1

x
cj

ij

)2

≥ ε

2
,

wherecj = (aj + bj + 1)/2. SinceXj is a bounded sequence, it follows that,
along a subsequencejk, the Xjk

’s converge to someX = (x1, . . . , xn). On
the other hand, along a subsequence ofjk (denoted again byjk), ajk

→ a and
bjk

→ b for somea, b ≥ 0. Sinceaj + bj → 1, we havea + b = 1. By taking
the limits of the inequality (2.31) along this subsequence, we should have

(2.32)
n∑

i=1

xi

n∑
i=1

xa
i x

b
i+1 −

(
n∑

i=1

xi

)2

≥ ε

2
> 0,

which contradicts the inequality (1.1). This contradiction establishes the equa-
tion (2.22).

The next proposition shows that the inequality (1.2) holds if one mixes up
the order of thexi’s. The proof is simple and makes use of the monotonicity of
(σt)

1/t whereσt is defined by the equation (2.20). It is well-known that(σt)
1/t

is a non-decreasing function oft [1, Th. 16].

Proposition 2.4. Let a, b, c be as in Proposition2.1. Then for any given set of
n nonnegative real numbers there exists an arrangement of them asx1, . . . , xn

such that the inequality (1.2) holds.
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Proof. Equivalently, we show that ifx1, x2, . . . , xn are nonnegative then there
exists a permutationµ of the set{1, 2, . . . , n} such that the inequality (1.4)
holds. Let

(2.33) S =
n∑

i=1

xi, T =
n∑

i=1

∑
j 6=i

xa
i x

b
j.

ThenST = nσ1(n
2σaσb−nσa+b) = n3σ1σaσb−n2σ1σa+b. Now by the Cauchy-

Schwarz inequality [4], σ2
c ≤ σ1σa+b. On the other hand by the monotonicity of

σ
1/t
t , we haveσ1 ≤ σ

1/c
c , σa ≤ σ

a/c
c , σb ≤ σ

b/c
c , and soσ1σaσb ≤ σ2

c . It follows
from these inequalities that

(2.34) ST ≤ n2(n− 1)σ2
c .

Now for a permutationµ of 1, 2, . . . , n, let:

(2.35) Aµ =
n∑

i=1

xa
µ(i)x

b
µ(i+1).

We would like to show thatSAµ ≤ (nσc)
2 for some permutationµ. It is

sufficient to show that the average ofSAµ over all permutationsµ is less than
or equal to(nσc)

2. To show this, observe that the average ofSAµ is equal to
ST/(n− 1) and so the claim follows from the inequality (2.34).

The symmetric groupSn acts onRn in the usual way, namely forµ ∈ Sn

and(x1, . . . , xn) ∈ Rn let

(2.36) µ · (x1, . . . , xn) = (xµ(1), . . . , xµ(n)).
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Let R be a region inRn that is invariant under the action of permutations (i.e.
µ ·R ⊆ R for all µ). define:

(2.37) λ(R) =

(x1, . . . , xn) ∈ R

∣∣∣∣∣∣
n∑

i=1

xi

n∑
i=1

xa
i x

b
i+1 ≤

(
n∑

i=1

xc
i

)2
 .

By Proposition2.4:

(2.38) R ⊆
⋃

µ∈Sn

µ · λ(R).

In particular, by taking the Lebesgue measure of the sides of the inclusion
above, we get

(2.39) vol λ(R) ≥ vol R

n!
.

We prove a better lower bound forvol λ(R) whenn is a prime number (similar
but weaker results can be proved in general).

Proposition 2.5. Let a, b be as in Proposition2.1 and n be a prime number.
LetR ⊆ Rn

+ be a Lebesgue-measurable bounded set that is invariant under the
action of permutations. Letλ(R) denote the set of all(x1, . . . , xn) ∈ R for
which the inequality (1.2) holds. Then

(2.40) vol λ(R) ≥ vol R

n− 1
.
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Proof. Form ∈ {1, 2, . . . , n− 1} let µm ∈ Sn and denote the permutation

(2.41) µm(i) = mi,

where all the numbers are understood to be modulon (in particularµm(n) = n
for all m). Now recall the definition ofAµ from the equation (2.35) and observe
that:

n−1∑
m=1

Aµm =
n−1∑
m=1

n∑
i=1

xa
mix

b
mi+m =

n−1∑
m=1

n∑
j=1

xa
jx

b
j+m(2.42)

=
n∑

j=1

xa
j

n−1∑
m=1

xb
j+m =

n∑
j=1

xa
j

∑
i6=j

xb
i .

Then, the same argument in the proof of Prop.2.4 implies that, for somem ∈
{1, . . . , n− 1}, we haveAµm ≤ (nσc)

2. We conclude that

(2.43) R ⊆
n−1⋃
m=1

µm · λ(R),

which in turn implies the inequality (2.40).
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