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1. Introduction

Exponential martingale inequalities are a very important and still relevant topic in
Martingale Theory: see e.g5]| [10], [11] and [9] for recent literature. In partic-
ular, inequalities involving a continuous martingale and its quadratic variation are
considered in10] and [B].

An attempt has been made to find exponential inequalities that relate a generic
continuous martingale and its quadratic variation by investigating results similar to
Burkholder, Davis and Gundy’s (BDG) inequalities, but in the framework of expo-
nential (hon moderate) Orlicz spaces. A first attempt on this topic can be found in
[6], where exponential BDG-type inequalities are discussed for a Brownian motion.

The analytical framework of (exponential) Orlicz spaces has recently been given
renewed relevance - see e.fj] §nd [12] - and may have applications in the field of
Mathematical Finance. For instance, semimartingales such that their quadratic vari-
ation belongs to the exponential Orlicz space are considereti7jn Moreover, a
general Orlicz space based approach for utility maximization problems is described
in [2] and [3]. However, BDG inequalities are interesting in themselves. For in-
stance, BDG-type inequalities are usedlifij[to find closure properties in Lebesgue
spaces that are directly related to variance-optimal hedging strategies.

In order to state our results, a special class of exponential Orlicz spaces is intro-
duced and its properties are discussed in relation to different probability measures.
More precisely, in Sectio? we analyze in detail the structure of exponential

Orlicz spaces by defining the class of* spaces as the sets of random variables
whosen-power belongs td.*!, where®,(x) = cosh(z) — 1. Such discussions

are generalizations of previous results based 1, [14] and [4], regarding the
topology of L®* and its applications to exponential models. In particular, we study
the equivalence of norms among these spaces with respect to different probability
measures, whose densities are connected by an open exponential arc.
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The main result is given in Sectiéih where BDG-type inequalities are discussed
within the topology ofL™®! spaces, with respect to different measures. Finally, we
show that such measures are connected by an open exponential arc and therefore the
corresponding spaces have equivalent norms.
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2. Exponential Orlicz Spaces

2.1. Analytical framework

Before showing the main results of this paper, a brief introduction to Orlicz spaces

is necessary: reference can be madel@) for the general theory and td §], [14]
and H] for connections to exponential models.

Let us fix a probability spac&?, F, i) and letD(Q2, F, 1) be the set of the:-
almost surely strictly positive densities. LBt (1) be the Orlicz space associated to
the Young functionb: it can be proved that® () is a Banach space endowed with
the Luxemburg norm

(2.2) [ullgo, = inf{k > 0: E[®(u/k)] < 1}.

It is possible to characterize functions that belong to the closed unit balt gf)
using the following property - see e.d.g, p. 54]

(22) lullios < 1 4= E[d(u)] < 1.

Furthermore, this norm is monotone, that/ig, < |v| implies||u||@,.) < [|v]|(@,u)-

From now on, we shall deal with the spat®&! (u) associated with the function
Py (x) := cosh(x) — 1. Let Uy (x) := (1 + |z|) log(1 + |z|) — |z| be the conjugate
function of ®(z) := exp(|z|) — |z| — 1. Since®, and ® are equivalent Young
functions, we shall refer t&; as the conjugate @b, in the sequel.

The following result will be used hereatfter.
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wheref € (0, — ¢, 0, + <), for some positive andi)(0) is the cumulant generating
function, such thap(6y) = p andp(6,) = ¢q. ThenL® (p - ) and L*'(q - p) are
equal as sets and have equivalent norms.

2.2. The spaceL™?

The topology of L% (y) is a natural framework to consider theoment generating
functionalE[e*] of a random variable. More generally, let us also take into account
the moment generating functional of powefs wheren > 1. For this purpose, we
introduce a more general class of Orlicz spaces.

Forn > 1, let us define

(2.4) L (p) = {u: u™ € L™ ()}

it is trivial to show that.™® (p) is a subspace df®' (), becauseu| < 1+ |u|" for
each real number.

In fact, L™®1(u) is an Orlicz space with respect to the Young functigy(z) :=
cosh(z™) — 1. Therefore, we can endow it with the usual norm: givea L™® (),
we have

(2.5) ||| (@0 = inf{r > 0: Elexp(u")] + E[exp(—u")] < 4}.

An easy computation shows that these norms are related to the topolddy (af)
through the following equality

1

(2.6) lell @, = 1" l1{a, -

Unfortunately, the conjugate function &f,(z) does not simply admit an explicit
expression. However, if we defing,(x) := nz"~! sinh(2"), a straight integration
gives the following expression for the conjugditg(x)

2.7)  Wu(z) =n(g, ()" sinh((¢," (z))") — cosh((¢, " (x))") + 1.
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Sincecosh(z™) < cosh(z™) foranym > n > 1 andz > 1, from e.g. [L6, p.
155] one obtains

(2.8) L™ (u) C L™ (),

foranym > n > 1. More precisely, these inclusions correspond to continuous
embedding of one space into another, that is, for any> n > 1 there exists a
positive constant := 1 + ®,,(1)u(2) = (e? + 1)/2e such that

(2.9) HUH(%,M) < kH“H(‘%M)'

It is natural to consider the intersection of such spaces: for this purpose, let us
define

(2.10) L% () = () L™ ().

n>1

First of all, note that.>®* is not empty, since it contains all the bounded functions.
Moreover, since the produat can be upper bounded by the sui+ v?, it can be
shown thatZ.>>®1 () is an algebra.

At this point, it is possible to ask whether, in geneia®®1 (1) and L>°(u) are
equal as sets.

Proposition 2.2. Let i be the Lebesgue measure [0nl]; then L>°(u) is strictly
included inL>®1 ().

Proof. Let us define
(2.11) u(z) :=log (1 — log(x))

and fixn > 1 andr < 1. Trivially, E[exp(—ru™)] < oo; let us study the conver-
gence ofE[exp(ru™)]. For anyxz belonging to a suitable neighborhood of zero, the
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following holds

(212) u(w) < [1 - log()]",
and hence
(2.13) exp(ru”) < e” exp (—rlog(z)).

SinceE[exp (—rlog(z))] < oo, we can conclude that € L™®1(u), proving the
thesis. u

We conclude this section by investigating relationships amighty spaces with
respect to different probability measures. Such a result will be useful to better un-
derstand the structure of the Burkholder-type inequalities that will be discussed in
the next section. The proof is a consequencelpfémma 18, p. 40 ].

Proposition 2.3. For eachp,q € D connected by a one-dimensional open expo-
nential model,L™®1(p - 1) and L™®1(q - ;1) are equal as sets and have equivalent
norms.

Remarkl. It should be noted that the definition 6f® and its basic properties are
similar to the theory of classical Lebesgue spaltes

From now on, we shall limit our study to the spac&®:. The following theorem
states the continuity of the product in L.

Theorem 2.4.Letp > 1 andq be its conjugate; let us considerc L?®1(;) and
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Proof. Let s := [|vP||(@, 1), m = [[v|](@,u), € = (s/m)z%q andr := srmys; from
the inequality

1
(215) uv < _'LL_ + —pied
per g
and by using the convexity @#,; we obtain

e afo ()] <efo ()] e o (22
<32 lo ()] 52l (7))

Therefore, the following holds
(2.17) luvlf(@, ) <7 = ||up|| for |1V 1y

and @.6) gives the inequality we were looking for. [

More generally, a standard argument shows the following corollary.

Corollary 2.5. The functionF' : L*>®1(u) > u — u? € L*'(u) is continuous;
furthermore, it is Fréchet differentiable and its differentidl’ evaluated at the point
u in the directionv is equal tod F'(u) [v] = 2uwv.

Moreover, from Theorem.4 and since the topology df*! is stronger that any
L? space, the following statement can be easily proved.

Corollary 2.6. The scalar productu, v);> := E[uv] is continuous inL>®1(u) x
L2% (p).
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3. Martingale Inequalities within L™®' Spaces

Let (2, F, u, (F1):), wheret € [0,7] andT’ < oo, be afiltered probability space that
satisfies the usual conditions. From now on, we shall consider adapted processes
with continuous trajectories and denote the space of continuous martingales starting
from zero withM..

For the sequel, it is useful to reformulate a classical sufficient condition in the
topology of L™* (1) spaces which can ensure that the so-caddgubnential martin-
gale

(31) Zt = exp (Mt — %(Mﬁ) = (‘:t<M),

where M is a local martingale, is a true martingale. If this is the cael/) is
actually aGirsanov densitjor anyt € [0,7]. However, in the general casgis a
supermartingale, so th&{7;] < 1 for eacht. For a deeper insight into these topics,
reference can be made t8][ In particular, in B, p. 8] it is proved that” is a
martingale if there existsa > 1 such that

52 o[ (720 <.

Proposition 3.1. Let M € M. be a continuous martingale such that/r ||, ) <
2. Then&(M) is a martingale.

Proof. Since||Mr||s,,,) < 2, there exists @ > 0 such that

vm

1
. 3 am=1)
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for somem € (1, 00). Moreover,||Mr/3||, ) < 1, so that, from(2.2),

(3.4) E {exp <%MT)] <4 < oo0.

SinceM € M., due to the convexity ob,(x), for any stopping time < T

(3.5) M@y < [Mr]|(@,0)-

Therefore

(3.6) ilglgE {exp (2<\/_m—\/m_1)MT)] = ilglg]E {exp (%MT>} <4 < 0.

3.1. BDGe-inequalities within L™*1 spaces

Let ®(¢) be a Young function expressed in integral form as

(3.7) a(t) = / o(s)ds;
define

(3.8) Y = sup i]?((f))
and

(3.9) ¥ = inf if((g .
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The function® is said to bemoderateif v < oo. For instanceV,(z) = (1 +
|z])log(1 + |z|) — |z|, that is the conjugate function df,(z) = cosh(z) — 1, is
moderate, since it has logarithmic form. Furthermore, wihes @, a straightfor-
ward computation shows that = 2. Therefore, see e.g7[p. 186], the following
generalized Doob’s inequality can be stated.f (u).

Proposition 3.2. Let M € M. andM* := supy < | M|, then
(3.10) M@, ) < 201M (@) 1)

Given a local martingalé/ and a moderaté, Burkholder, Davis and Gundy’s
(BDG) classical inequalities are the following ones, see &,0.[ 304]

1 1
(3.11) Il < (00

o = 6y M| (@.10)-
When~y = oo, (3.11) becomes meaningless, therefore different results could be
expected.

In the sequel, we shall allow the norm of two different Orlicz spaces to appear
in (3.17), provided they both belong to the exponential clag$. In this way, we
shall show that the former inequality i6.(L1) still holds with a different constant,
while the latter holds provided that different measures are allowed.

Proposition 3.3. Let M € M. andr < T be a stopping time; if M) € L (),
thenM, € L* (u) and

1
(312) 1Ml < VE| 03|
(Do, )
Therefore
1
(3.13) 1l < 2V2 | O0Z] .
(P2, )
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Proof. Since(M)r € L*(u) and due to the monotonicity of the norf}/), €
L*1(p) for eachr < T Letq := |[(M).|(#, ) < oo and define- := \/2¢. Using
Hoélder’s inequality we obtain

os0 5 (s20)] < e (20} o (o)

therefore

(315) 1Mo < 7= VRN, ) = V2 ||(00)2

N|=

IN

(@a11)

which provides £.12). The inequality £.13 is a consequence of PropositianL(
O

Remark2. By definition of norm, from £.13 one has
M*

(3.16) E |exp 2\/§H<M>T% < 4.

(P2,u)

For instance, for a Brownian motidm;);<r, one obtains

(3.17) E {exp (25%)] <4

Similar exponential inequalities are widely discussedin [

Theorem 3.4 (Main). Let M € M, be a non zero martingale such that; <
L% (p), letk € (2 — v/2,2] andT < T be a stopping time such that, # 0. Then:

.|\
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(1) (M), € L* (qra, - j1), Wherege,, = E-(k"'M/a;) and o, = || M;||(@,,)-
Furthermore, the following holds

S \/aHMTH(‘i’L,u)a

(¢27Qka7— '/")

(3.18) H(M)i

wherecy, := 4k* /(=2 + 4k — k?);

(27) if k = 1, we have the most stringent inequality and obtain

(3.19) |2

< 2||MT||(¢>17M)‘

(¢27‘1a7— 'H)

Proof. Statementii) follows directly from (i) by minimizing the constant, with
respect tdc. Hence,it is only necessary to prove asser{ion

Let us first show that3 18 holds forr = T. In order to prove this, we can
suppose M) # 0; otherwise, the thesis is trivial.

Let us fixk € (2 — v/2,2] and prove thaty,, is a density. By definition ofi;
and since: > 1 one obtains

(3.20) ||k My /ar|@, 0 < 2.

Thus, from Propositios.1, £(k~'M/ar) is a uniformly integrable martingale, so
that gi., is a density. Let;, := 4k?/(—2 + 4k — k*) andr := cya2 and define
1/s? .= —1/r + 1/(2k*a%); it should be noted that,, is positive andl/s? is non
negative. Therefore

(3.21) E,.. [exp <%<M>T)1

1 1 1 M
=E |:€Xp <— <M>T+EMT_EMT+_T):|

52
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S 27
since
1 1 _
Therefore,

1 1
(3.23) Egpo, {exp (;(M)T)} + Egpep {exp (—;(M>T> < 4,
with strict inequality since)r # 0, so that|[(M)r|(s, 4.,) < 7. Hence, due to
(2.6), the thesis follows immediately for= T
Now, letT < T such thatV/, # 0 and consideN := M7; it should be noted that
N € M.andNr = M7 = M, € L*(u) due to(3.5). Hence, 8.19 follows. [

Remark3. Again, by definition of norm one may obtain the following bound from

(3.19
M 1 1 M
exp #(———ZN—T <4
MrlPy, 0 \ex 282) " KMl ar g

In particular, wherk = 1, (3.24) reduces to

exp —§ (M)r + My < 4.
Mzt 0y Mzl @i )|~

(3.24) E

(3.25) E
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Proposition3.3 and Theorens.4 give a BDG-type inequality between the mea-
surey and a family of measures that depend on the paraneter2 — v/2,2]. In
fact, taking 8.13 with respect to the measutg,,. - ¢ and due to §.10 and the
monotonicity of the norm, the following proposition holds.

Proposition 3.5. For any non zera// € M., the following holds

(3.26) LS VElM @

1 . 1
/s g < (407

(P2,qKaqp 1

3.2. Discussion

It should be noted tha}.,. - 1 actually depends on the considered martingéle

In order to better understand such a structure, it is useful to study the relationships
between this class of measures and the reference.ofer this purpose, we shall
prove that, under suitable conditions &f, for eachkt € (1,2], the densitiegy,,.

and1 can be connected by a one-dimensional exponential model, so that their corre-
sponding norms are equivalent. Before this, we need the following lemma.

Lemma 3.6. Let M € M., such thatM; € L*' (1) and suppose that
(3.27) 1 <K, [cosh (r{M)r)] < oo
for somer > 0. Then(M), € L*'(u) for each stopping time < 7.

Proof. If M = 0, the thesis is trivial, therefore, we can suppdde # 0. Let
p = (M) 7|l(@).q00,-1)» SO that

g, [exp (U\?Tﬂ & [exp <é\§i N <J\£>T B %ZTT)]

<4 < o0,

(3.28)
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and define a real positivein such a way that
4 1 1
2 - =
(3.29) s p 8ak
In fact, due to the continuity of the function
(3.30) H,(r):=E[® (ru)],

see e.g. 16, p. 54] condition £.27) and the strict inequality sign ir3(23 ensure
that (3.19 also holds with strict inequality fot = 2.
Hence, an application of the generalized Holder inequality gives

oo ofen(2)] |
felon () ol (e o))
{afon () oo (22 - L)

<2< o0,

due respectively toA 2) and 3.29. Therefore, there existse (0, co) such that

(3.32) E {exp (%)] <4 < o0,
so that(M)r € L* (u). Finally, since the norm is monotong\/), € L*' () for
eachr <T. O

Remarkd. For instance, conditior3(27) of Lemma3.6 holds for a continuous mar-
tingale M € M. with a bounded quadratic variation.
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Proposition 3.7. Let M € M. be a non zero martingale that satisfies the conditions
of Lemma3.6 and considerk € (1,2]; then, for each stopping time < 7' such
that M, # 0, the two densitie$ and g, can be connected by a one-dimensional
exponential model. Hencg, ||(s,, 4. -x) @nd|| - ||, are equivalent norms.

Proof. Let u, := M, /(ka,) — (M),/(2k*a?) and define, for an arbitrary small
positivee

(3.33) p(0) := exp(Ou, — (), 0 (—ee+1), Danicle Imparato

wherey)(0) := log E[exp(fu,)]. Due to @.5 and from LemmaB.6, u, € L* (u); Vieh 25155 Saciis & E00
in fact, p(0) is an exponential model such that0) = 1 andp(l) = gx.., the
two densitiesl andgq., being in the interior of the model. Indeed, let us choose
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6 € (—¢,1]; then
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0
(3.34) E &, M <E|&; oM <1< 0. <« >
ko, ko,
< >

On the other hand, whehe (1,1 + ) one obtains Page 18 of 20

M, 0 OM. Go Back
(3.35) E 5( ) SE{exp( )}§4<oo, i
kas kar Full Screen
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smce) oL o < 1 and due to £.2). The equivalence off - ||, ,) and]|| - ose
(@1, - fOllOWs from Propositior?. 3. O journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:daniele.imparato@polito.it
http://jipam.vu.edu.au

References

[1] G. ALSMEYER AND U. ROSLER, Maximal¢-inequalities for nonnegative
submartingalesTheory Probab. Appl50(1) (2006), 118-128.

[2] S. BIAGINI, An Orlicz spaces duality for utility maximization in incomplete
marketsProgress in Probability59 (2007), 445-455.

[3] S. BIAGINI AND M. FRITTELLI, A Unifying Framework for Utility Maxi-
mization Problems: an Orlicz Spaces Approatie Annals of Applied Proba-
bility, 18(3) (2008), 929-966.

[4] A. CENA AND G. PISTONE, Exponential statistical manifoldnn. Inst.
Statist. Math.59(1) (2007), 27-56.

[5] V.H. DE LA PENA, A General Class of Exponential Inequalities for Martin-
gales and Ratio®\nn. Probab.27(1) (1999), 537-564.

[6] V.H. DE LA PENA AND N. EISEMBAUN, Exponential Burkholder Davis
Gundy InequalitiesBull. London Math. Soc29 (1997), 239-242.

[7] C. DELLACHERIEAND P.A. MEYER,Probabilités et potentiel - Théorie des
martingales Hermann, Paris, 1980.

[8] N. KAZAMAKI, Continuous Exponential Martingales and BMICect. Notes
in Math., Vol. 1579, Springer-Verlag, Berlin 1994.

[9] Y. MIAO, A note on the Martingale inequality,). Inequal. Pure Appl.
Math., 7(5) (2006), Art. 187. [ONLINEhttp://jipam.vu.edu.au/
article.php?sid=804 ]

[10] S. MORETAND D. NUALART, Exponential inequalities for two-parameters
martingalesStatist. Probab. Lett54 (2001), 13-19.

Martingale Inequalities in
Exponential Orlicz Spaces

Daniele Imparato

vol. 10, iss. 1, art. 1, 2009

Title Page
Contents
44 44
< >
Page 19 of 20
Go Back
Full Screen

Close

journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:daniele.imparato@polito.it
http://jipam.vu.edu.au
http://jipam.vu.edu.au/article.php?sid=804
http://jipam.vu.edu.au/article.php?sid=804

[11] P.E. OLIVEIRA, An exponential inequality for associated variab&st. Prob.
Lett.,73(2005), 189-197.

[12] A. OSEKOWSKI, Inequalities for dominated martingaldsgrnoulli, 13(1)
(2007), 54-79.

[13] J. PIPHER, A martingale inequality related to exponential square integrability,
Proc. Amer. Math. Soc1,182) (1993), 541-546.

[14] G. PISTONEAND M.P. ROGANTIN, The exponential statistical manifold:
mean parameters, orthogonality and space transformat®esoulli, 5(4)
(1999), 721-760.

[15] G. PISTONEAND C. SEMPI, An infinite dimensional geometric structure on
the space of all the probability measures equivalent to a givenfame Statist.,
23(1995), 1543-1561.

[16] M.M. RAO AND Z.D. REN,Theory of Orlicz Space®ekker, New York, 1991.

[17] T. RHEINLANDER, An entropy approach to the Stein model with correlation,
Finance Stoch9 (2005), 399-413.

[18] T. RHEINLANDER AND M. SCHWEIZER, OnL?-Projections on a Space of
Stochastic Integral$\nn. Probah.25 (1997), 1810-1831.

Martingale Inequalities in
Exponential Orlicz Spaces

Daniele Imparato

vol. 10, iss. 1, art. 1, 2009

Title Page
Contents
44 44
< >
Page 20 of 20
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:daniele.imparato@polito.it
http://jipam.vu.edu.au

	Introduction
	Exponential Orlicz Spaces
	Analytical framework
	The space Ln, 1

	Martingale Inequalities within Ln,1 Spaces
	BDG-inequalities within Ln, 1 spaces
	Discussion


