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ABSTRACT. Solutions of two slightly more general problems than those posed by Kenneth B.
Stolarsky in[[10] are presented. The latter deal with a shape preserving approximation, in the
uniform norm, of two functiong1/z)log coshz and (1/z)log(sinhz/x), > 0, by ratios

of exponomials. The main mathematical tools employed include Gini means and the Stolarski

means.
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1. INTRODUCTION

The purpose of this note is to present solutions of two problems posed by Professor Kenneth

B. Stolarsky in[[10, p. 817]. They are formulated as follows:

“Call (as is sometimes done) a polynomialinexp(c;x), ..., exp(c,z) anex-
ponomial Alternatively, an exponomial is a solution of the constant coeffi-
cient linear differential equation. Is there a sequence of functfQ(s), n =
1,2,3,..., each a ratio of exponomials and each increasing from O tod as

increases from 0 too, such that

(1) f/'(z) <0forallx >0,
(2) eitherf,(z) < f(z) forallz > 0or f,,(z) < f.(z) forall z > 0,

(3) assertion (2) remains validff,(z) is replaced by1/x) log cosh x (or by (1/x) log(sinh x /x)),

and

(4) in some neighborhood of the graph- (1/x) log cosh x (or of (1/x) log(sinh z/x)) the
graphs of thef,,(x) are dense with respect to the uniform (supremum) norm?”

Let us note that both functiond /x) log cosh x and(1/x) log(sinh 2 /x) are concave func-
tions onR ;. — the nonnegative semi-axis and they increase from zero to anenaseases from
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2 EDWARD NEUMAN

zero to infinity. Thus these problems can be regarded as the approximation problems, in the
uniform norm, with the shape constraints imposed on the approximating functions. In what

follows we will refer to these problems as the first Stolarsky problem and the second Stolarsky
problem, respectively.

This paper is organized as follows. In Sectign 2 we recall definitions and basic properties
of two families of the bivariate means. They are employed in solutions of two slightly more
general problems than those mentioned earlier in this section. The main results are contained in
Sections B and|4.

2. GINI MEANS AND STOLARSKY MEANS

Letp,q € R and leta,b € R, —the positive semi-axis. The Gini me&h ,(a, b) of order
(p, q) of a andb is defined as

a? + bv? =
<m+m) ) P7#4q
(2.1) Gpqla,b) =
o aPloga + bPlogb
X =
p r , P=4q

(seel[1]). For later use, let us record some properties of this two-parameter family of means:

(P1) G, , increases with an increase in eithesindg (see [ 7]).

(P2) Ifp > 0andgq > 0, thenG,,, is log-concave in botp andg. If p < 0 andg < 0, then
G, 1s log-convex in bottp andg (see[6]).

(P3) Ifp # ¢, then

1 p
log Gp4(a,b) = —— [ log Ji(a,b)dt,

b—q q
where
(22) Jt(a, b) = tht(a, b) (t S R)
Let us note tha&,, o(a, b) = A,(a,b), p # 0, where
P v
2.3) A(a,b) = (a ;bp)

is the Holder mean (power mean) of orgenf a andb.

A second family of means used here has been introduced by K.B. Stolarsky in [9]. Through-
out the sequel we will denote them B, ,(a, b) where agaim, ¢ € Randa,b € R.. Fora # b
they are defined as

4 _1
qap_bp p—q
(]—mq_bq> , pa(p—q) # 0
P —
exp _1+aloga bP log b Cp=q40
aP — bp
(2.4) D, q(a,b) = p
al — bP P
0,¢=0
[p(loga—logb)] ’ P#0: g
Vab, p=q=0

andD, ,(a,a) = a.
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They have the monotonicity and concavity (convexity) properties analogous to those listed in
(P1) and (P2) (se€e[3].[8].19])- Also, {f # q, then

1 P
(2.5) log D, ,(a,b) = —— [ logI(a,b)dt,
pb—q q
where
(26) It(a, b) = Dm(a, b)

is the identric mean of ordel(t € R) of « andb (seel[9]). Let us note that,(a,b) = Dy, ,(a,b)
andL,(a,b) = D,(a,b) is the logarithmic mean of order(p € R) of « andb.
Comparison results for the Gini means and Stolarsky means are discussed in a recent paper

[5].
3. A GENERALIZATION OF THE FIRST STOLARSKY PROBLEM AND |TS SOLUTION

In this section we deal with a generalization of the first Stolarsky problem. Its solution is also
included here.
For (p,q) € R? let

1 log (coshp) D44
(3.1) fpa) =g p—4q coshq )’

tanh p, p=q.

A function to be approximated in the first Stolarsky problem is equ#(i00) (see Sectiop|1).
Making use of|[(2.]1) we see that

(32) f(pa Q) = log GP#Z(67 6_1)'

It follows from (P1)—(P3),[(3]1), andl (3.2) that

(i) 0< f(p.g) <1,
(i) f(p,q) increases along any ray= \(«, 3), whereX > 0, («, 8) € R (a+ 3 > 0),
(iii) function f(p, q) is concave in both variablgsandq, and

) 1 p
(iv) f(p,q) = —/ tanh t dt
. P—4qJq
providedp # q.
For later use we define functions
1 n
k=1
where
2k —1
(3.4) a = Be=1-a, (1<k<n).

on '

One can easily verify that the functign(p, q) is a ratio of two exponomial$) < g,(p, q) < 1,

andg,(p, ¢) increases along any ray = \(«, 3), where\, «, andg are the same as in (ii).

Moreover,g, (p, q) is a concave function oR?. In order to prove the last statement, let
¢k(p7 Q) = tanhta

wheret = axp + Orq (1 < k < n). An easy computation shows that the Hesdiap, of ¢ is

equal to

H@y, = —2tanh(t) sech?(t) {OZ%;C O‘g@’“] .
k
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The eigenvalueg; and \, of H¢, satisfy\, < A; = 0. This in turn implies that the function
¢x(p, q) is concave orR?. The same conclusion is valid for the functign(p, ¢) because of

@B-3).

We are in a position to prove the main result of this section.

Theorem 3.1.Let0 < p, ¢ < oo and let

(3.5) fm(p, @) = gom(p,q)  (m=0,1,...).
Then
(@) fm(p,q)isa ratlo of two exponomials.
(b) 0 < fulp,q) <
(€) fm(p,q) increases along any ray = \(«a, ), where\, «, and3 are the same as in (ii).

(d) fm(p,q) is a concave function oR? .
(e) lim ||f — fimllo =0, where|| - ||OO stands for the uniform norm dR? .

(f) Theinequalitiesf (p, ¢) < fi+1(p,q) < fim(p,q) are valid forallm = 0,1, . ...

Proof. Statements (a)—(d) follow from the properties of the functjpfp, ¢), established earlier
in this section, and fronj (3.5). For the proof of (e) it suffices to show that

(3.6) Jim |~ gull =0

To this aim we recall the Composite Midpoint Rule (see €.g., [2])

(3.7) /01 Zh o)

where the numbers,, are defined in[(3]4) and < ¢ < 1. Application of [3.7) to (iv), with
h(t) = tanht, gives

h”(é) (n=1),

f(prq) = / tanh(up + (1 — u)q) du

B 1 (p—g ? tanh(&p 4 (1 — €)q)
= gn(pq) ( " ) cosh®(€p + (1 = €)q)

12
This in conjunction with the inequality < tanh x/ cosh® z < 1/2 (z > 0) gives

(3.8) 0 < gu(p,a) = f(p,0) < 5= — )

(n =1,2,...). The convergence resulfs (8.6) and (e) now follow. Moreover, the first inequality
in (3.8) give, together witH (3]5), the first inequality in (f). To complete the proof of (f) we use

@3.9), [3:3), and (3]4) to obtain

2m+1
1
(3.9) Fnr(P:0) = 5oy > tanh(yp + 6xq),
k=1
where
2k —1
%ZW and 5k:1_7k7 1§]€§2m+1
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Sincetanh ¢ is concave fot > 0, (3.9) gives

1 1
fonva) =50 D2 5 [tanh(p +640) + tanh(yap + 0eaq)]

1 Yk + Vrs1 Ok + Okt1
< — tanh
Spp Xt (T ’

2
k=1,3,..,2m+1_1

1 —
= 2_m Ztanh(akp + ﬁkQ) = fm(p7 q)v

k=1

where now

2k —1
2m+1 )

The proof is complete. O

ay = Br=1—ag 1<k<2™

4. A GENERALIZATION AND A SOLUTION OF THE SECOND STOLARSKY PROBLEM

This section is devoted to the discussion of a generalization of the second Stolarsky problem.
In what follows we will use the same symbols for both, a function to be approximated and the
approximating functions, as those employed in Se¢tjon 3.

For (p,q) € RZ, let

(1 g sinh p

——1o (—. ) pq(p —q) #0;

p—q psinhq

1

cothp — —, p=q#0;
(4.1) f(p,q) = p

1 inh

- log (Sm p), p#0,q=0;

p p

L0, p=q=0.

Stolarsky’s function of his second problem is a particular casé mfq), namelyf(z,0). Mak-
ing use of [(2.4) we obtain

(4.2) f(p,q) =log Dp,q(ev 6_1)'

Function f(p, q) defined in [(4.]l) possesses the same properties as those listed in (i)—(iii) (see
Sectior] 8). A counterpart of the integral formula in (iv) reads as follows

(4.3) f(p,q) = p%q qp (cotht - %) d  (p#q).

This is an immediate consequence[of|2[5),|(2[6)] (4.2),[and (4.1).
Forn=1,2,..., we define

n

(4.4) 9n(p:q) = % > [Coth(akp + Brq) — m} ,
k=1

wherea;, and gy, are defined in[(3]4). Again, one can easily verify that the funajidp, ¢) has
the same monotonicity and concavity properties as its counterpart defifed]in (3.3). Also, we
define functionsf,,,(p, ¢) as

fm(p7 Q) = ng(pa Q) (m - 07 17 .- )
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Since the main result of this section can be formulated in exactly the same way as Theo-
rem[3.1, we omit further details with the exception of the proof of uniform convergence of the
functionsf,, (p, ¢) to the functionf (p, q).

Application of the Composite Midpoint Rulg (3.7) to the integral on the right sidé of (4.3)
gives

1 N2
(4.5) f(p.q) = gn(p,q) — D (p - q) P(t),
where . s
CO
qb(t):t—g—m, t=¢p+(1-8)g 0<E<1.

Function¢(u) is nonnegative for, > 0. This follows from the Lazare@iinequalitycosh u <
(sinhu/u)? (see, e.g.[]4, p. 270]). Moreover,

1 4, 1 1
=y — — < =
o(u) = 50— Tgg¥ + 5" = 15"

where the last inequality is valid provided> 0. This in conjunction with[(4]5) gives

0<ga(p.0) = f(p,0) < ;553 (P — @) max(p,q)  (n=1,2,..).
Sincep andq are nonnegative finite numbers, we conclude that

T [|f — galloo = 0.

The uniform convergence of the sequekgg (p, ¢) }3° to the functionf (p, ¢) now follows.
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