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ABSTRACT. The aim of this paper is to study the stability problem of the generalized sine func-
tional equations as follows:
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1. I NTRODUCTION

The stability problem of functional equations was raised by S. M. Ulam [11]. Most research
follows the Hyers-Ulam stability method which is to construct convergent sequences using an
iteration process. In 1979, J. Baker, J. Lawrence and F. Zorzitto in [4] postulated that iff
satisfies the stability inequality|E1(f) − E2(f)| ≤ ε, then eitherf is bounded orE1(f) =
E2(f). This is now frequently referred to asSuperstability. Baker [3] showed the superstability
of the cosine functional equationf(x + y) + f(x − y) = 2f(x)f(y) which is also called the
d’Alembert functional equation. The stability of the generalized cosine functional equation has
been investigated in many papers ([1], [2], [3], [8], [9]).

The superstability of the generalised sine functional equation
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2 GWANG HUI K IM

has recently been investigated by Cholewa [5], and by Badora and Ger [2].
In this paper, we will introduce the generalized functional equations of the sine equation (S)

as follows :

g(x)f(y) = f
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For the caseg = f , they imply

(S̃) f(x)f(y) = f
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Considering the particular caseσ(y) = −y in the above functional equations, they imply the
following functional equations: (S),

g(x)f(y) = f
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Given mappingsf, g : G → C, we define a difference operatorDS̃gf : G×G → C as

DS̃gf (x, y) := g(x)f(y)− f
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.

The aim of this paper is to investigate the stability for the generalized sine functional equa-
tions (S̃gf ), (S̃fg), (S̃gg) under the conditions|DS̃gf (x, y)| ≤ ε, |DS̃fg(x, y)| ≤ ε, and|DS̃gg(x, y)|
≤ ε. From the obtained results, we obtain naturally the stability for the equations (S), (S̃), (Sgf ),
(Sfg), (Sgg) as corollaries, which can be found in the paper [10].

In this paper, let(G, +) be a uniquely 2-divisible Abelian group,C the field of complex
numbers,R the field of real numbers, and letσ be an endomorphism ofG with σ(σ(x)) = x for
all x ∈ G with a notationσ(x) = σx. The propertiesg(x) = g(σx) andg(x) = −g(σx) with
respect toσ will be represented respectively, as even and odd functions for convenience.

We may assume thatf andg are nonzero functions andε is a nonnegative real constant. If
all the results of this article are given by the Kannappan conditionf(x + y + z) = f(x + z + y)
in [7], we will obtain the same results for the semigroup(G, +).

2. STABILITY OF THE EQUATION (S̃gf )

We will investigate the stability of the generalized functional equation (S̃gf ) of the sine func-
tional equation (S). From the results we obtain the stability of the functional equations (S), (S̃),
(Sgf ).
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STABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONSII 3

Theorem 2.1.Suppose thatf, g : G → C satisfy the inequality

(2.1)

∣∣∣∣∣g(x)f(y)− f

(
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2

)2
∣∣∣∣∣ ≤ ε ∀ x, y ∈ G.

Then eitherg is bounded orf andg are solutions of the functional equation (S̃).

Proof. Let g be unbounded. Then we can choose a sequence{xn} in G such that

(2.2) 0 6= |g(2xn)| → ∞, as n →∞.

Inequality (2.1) may equivalently be written as

(2.3) |g(2x)f(2y)− f(x + y)2 + f(x + σy)2| ≤ ε ∀ x, y ∈ G.

Takingx = xn in (2.3) we obtain∣∣∣∣f(2y)− f(xn + y)2 − f(xn + σy)2

g(2xn)

∣∣∣∣ ≤ ε

|g(2xn)|
,

that is, using (2.2)

(2.4) f(2y) = lim
n→∞

f(xn + y)2 − f(xn + σy)2

g(2xn)
∀ y ∈ G.

Using (2.1) we have

2ε ≥

∣∣∣∣∣g(2xn + x)f(y)− f

(
xn +

x + y

2

)2

+ f

(
xn +

x + σy

2

)2
∣∣∣∣∣

+

∣∣∣∣∣g(2xn + σx)f(y)− f

(
xn +

σx + y

2

)2

+ f

(
xn +

σ(x + y)

2

)2
∣∣∣∣∣

≥ | (g(2xn + x) + g(2xn + σx)) f(y)

−

(
f

(
xn +

x + y

2

)2

− f

(
xn +

σ(x + y)

2

)2
)

+

(
f

(
xn +

x + σy

2

)2

− f

(
xn +

σ(x + σy)

2

)2
)∣∣∣∣∣

for all x, y ∈ G and everyn ∈ N. Consequently,

2ε

|g(2xn)|
≥
∣∣∣∣g(2xn + x) + g(2xn + σx)

g(2xn)
f(y)

−
f
(
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for all x, y ∈ G and everyn ∈ N. Taking the limit asn −→ ∞ with the use of (2.2) and (2.4),
we conclude that, for everyx ∈ G, there exists the limit

h(x) := lim
n→∞

g(2xn + x) + g(2xn + σx)

g(2xn)
,
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where the functionh : G → C satisfies the equation

(2.5) h(x)f(y) = f(x + y)− f(x + σy) ∀x, y ∈ G.

From the definition ofh, we get the equalityh(0) = 2, which jointly with (2.5) implies thatf
is an odd function w.r.t.σ, namely,f(y) = −f(σy). Keeping this in mind, by means of (2.5),
we infer the equality

f(x + y)2 − f(x + σy)2 = [f(x + y) + f(x + σy)][f(x + y)− f(x + σy)]

= [f(x + y) + f(x + σy)]h(x)f(y)

=
[
f(2x + y) + f(2x + σy)

]
f(y)

=
[
f(y + 2x)− f(y + σ(2x))

]
f(y)

= h(y)f(2x)f(y).

The oddness off forcesf(x + σx) = 0 for all x ∈ G. Puttingx = y in (2.5) we conclude with
the above result that

f(2y) = f(y)h(y) ∀ y ∈ G.

This, in turn, leads to the equation

(2.6) f(x + y)2 − f(x + σy)2 = f(2x)f(2y) ∀ x, y ∈ G,

which, in the light of the unique 2-divisibility ofG, gives (̃S).
Next, by showing thatg = f , we will prove thatg is also a solution of (̃S).
If f is bounded, choosey0 ∈ G such thatf(2y0) 6= 0, and then by (2.3) we obtain

|g(2x)| −
∣∣∣∣f(x + y0)

2 − f(x + σy0)
2

f(2y0)

∣∣∣∣ ≤ ∣∣∣∣f(x + y0)
2 − f(x + σy0)

2

f(2y0)
− g(2x)

∣∣∣∣
≤ ε

|f(2y0)|
and it follows thatg is also bounded onG.

Since the unbounded assumption ofg implies thatf is also unbounded, we can choose a
sequence{yn} such that0 6= |f(2yn)| → ∞ asn →∞.

A slight change applied after equation (2.2) gives us

g(2x) = lim
n→∞

f(x + yn)2 − f(x + σyn)2

f(2yn)
∀x ∈ G.

Since we have shown thatf satisfies (2.6) wheneverg is unbounded, the above limit equation
is represented as

g(2x) = f(2x) ∀x ∈ G.

By the 2-divisibility of groupG, we obtainf = g. Therefore we have shown thatg also
satisfies (̃S). �

Theorem 2.2.Suppose thatf, g : G → C satisfy the inequality

(2.7)

∣∣∣∣∣g(x)f(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ε,

which satisfies one of three casesg(0) = 0, g(x) = −g(σx), f(x)2 = f(σx)2 for all x, y ∈ G.
Then eitherf is bounded org satisfies (̃S).
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STABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONSII 5

Proof. We use an equivalent equation of (2.7)

(2.8) |g(2x)f(2y)− f(x + y)2 + f(x + σy)2| ≤ ε ∀ x, y ∈ G.

Let f be unbounded. Then we can choose a sequence{yn} in G such that

(2.9) 0 6= |f(2yn)| → ∞, as n →∞.

Takingy = yn in (2.8) we obtain∣∣∣∣g(2x)− f(x + yn)2 − f(x + σyn)2

f(2yn)

∣∣∣∣ ≤ ε

|f(2yn)|
,

for all x ∈ G and alln ∈ N. This with (2.9) implies that

(2.10) g(2x) = lim
n→∞

f(x + yn)2 − f(x + σyn)2

f(2yn)
for all x ∈ G.

An obvious slight change in the steps of the proof applied after formula (2.4) of Theorem 2.1
allows one to state the existence of a limit function

h2(y) := lim
n→∞

f(y + 2yn) + f(σy + 2yn)

f(2yn)
,

whereh2 : G → C satisfies the equation

(2.11) g(x)h2(y) = g(x + y) + g(x + σy) ∀x, y ∈ G.

From the definition ofh2, we have the equalityh2(y) = h2(σy). Clearly, this applies also to the
functionh̃2 := 1

2
h2. Moreover,̃h2(0) = 1

2
h2(0) = 1 and

(2.12) g(x + y) + g(x + σy) = 2g(x)h̃2(y) ∀x, y ∈ G.

Under (2.12), we know that

(2.13) g(0) = 0 =⇒ g(x) = −g(σx) =⇒ g(x + σx) = 0 =⇒ g(0) = 0.

Puttingy = x in (2.12), we get by (2.13) a duplication formula

g(2x) = 2g(x)h̃2(x).

Using the oddness and duplication ofg, we obtain, by means of (2.12), the equation

g(x + y)2 − g(x + σy)2 = (g(x + y) + g(x + σy)(g(x + y)− g(x + σy)

= 2g(x)h̃2(y)[g(x + y)− g(x + σy)]

= g(x)[g(x + 2y)− g(x + 2σy)]

= g(x)[g(x + 2y) + g(σx + 2y)]

= 2g(x)g(2y)h̃2(x) = g(2x)g(2y),

which holds true for allx, y ∈ G, and, in the light of the unique 2-divisibility ofG, gives (̃S).
In the last casef(x)2 = f(σx)2, the proof is completed by showing thatg(0) = 0. Suppose

that this is not the case. Then in what follows, without loss of generality, we may assume that
g(0) = 1 (replacing, if necessary, the functiong by g/g(0) andf by f/g(0)).

Puttingx = 0 in (2.8) with a given condition and the 2-divisibility of groupG, we obtain the
inequality

|f(y)| ≤ ε ∀ y ∈ G.

This inequality means thatf is globally bounded – a contradiction. Thus the claimg(0) = 0
holds, so the proof of the theorem is completed. �
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By puttingσx = −x in Theorems 2.1 and 2.2 respectively, we obtain the following corollar-
ies, respectively.

Corollary 2.3 ([10]). Suppose thatf, g : G → C satisfy the inequality∣∣∣∣∣g(x)f(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε

for all x, y ∈ G. Then eitherg is bounded orf andg are solutions of the equation (S).

Corollary 2.4 ([10]). Suppose thatf, g : G → C satisfy the inequality∣∣∣∣∣g(x)f(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε,

which satisfies one of three casesg(0) = 0, g(−x) = −g(x), f(x)2 = f(−x)2 for all x, y ∈ G.
Then eitherf is bounded org satisfies (S).

Corollary 2.5. Suppose thatf : G → C satisfies the inequality∣∣∣∣∣f(x)f(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ε ∀ x, y ∈ G.

Then eitherf is bounded orf is a solution of the equation (̃S).

Corollary 2.6 ([5]). Suppose thatf : G → C satisfies the inequality∣∣∣∣∣f(x)f(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε ∀ x, y ∈ G.

Then eitherf is bounded orf is a solution of the equation (S).

3. STABILITY OF THE EQUATION (S̃fg)

We will investigate the stability of the generalized functional equation (S̃fg) for the sine
functional equation (S). The obtained results imply the stability for the functional equations
(S), (S̃), (Sfg).

Theorem 3.1.Suppose thatf, g : G → C satisfy the inequality

(3.1)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ε ∀ x, y ∈ G.

Then eitherf is bounded org satisfies (̃S).

Proof. Let f be an unbounded solution of the stability inequality (3.1). Then, there exists a
sequence{xn} in G such that0 6= |f(2xn)| → ∞ asn →∞.

Puttingx = 2x, y = 2y in inequality (3.1), takingx = xn in the obtained inequality, dividing
both sides by|f(2xn)| and taking the limit asn →∞ we obtain that

(3.2) g(2y) = lim
n→∞

f(xn + y)2 − f(xn + σy)2

f(2xn)
∀y ∈ G.

An obvious slight change in the steps of the proof applied after (2.4) of Theorem 2.1 in the
stability inequality (3.1) allows, with an application of (3.2), us to state the existence of a limit
function

h3(x) := lim
n→∞

f(2xn + x) + f(2xn + σx)

f(2xn)
,
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where the functionh3 : G → C satisfies the equation

(3.3) h3(x)g(y) = g(x + y)− g(x + σy) ∀x, y ∈ G.

From the definition ofh3, we obtain the equalityh3(0) = 2, which with (3.3) implies thatg is
odd, i.e.,g(y) = −g(σy). The oddness ofg implies thatg(x + σx) = 0 for all x ∈ G. Keeping
this in mind and puttingx = y in (3.3) we conclude that

g(2y) = g(y)h3(y) for all x, y ∈ G.

Keeping all of these in mind, and by means of (3.3), if we make a slight change of the
calculations applied after formula (2.5) of Theorem 2.1, we conclude that the equation

g(x + y)2 − g(x + σy)2 = g(2x)g(2y)

is valid for allx, y ∈ G which, in the light of the unique 2-divisibility ofG, g gives (̃S). �

Theorem 3.2.Suppose thatf, g : G → C satisfy the inequality

(3.4)

∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ε,

which satisfies one of the three casesf(0) = 0, f(x) = −f(σx), f(x)2 = f(σx)2 for all
x, y ∈ G. Then eitherg is bounded orf satisfies (̃S).

Proof. For an unbounded solutiong of the stability inequality (3.4), there exists a sequence
{yn} in G such that0 6= |g(2yn)| → ∞ asn →∞.

Following a slight modification in the steps of the proof applied after formula (2.9), we may
state the existence of a limit function

h4(y) := lim
n→∞

g(y + 2yn) + g(σy + 2yn)

g(2yn)
,

whereh4 : G → C satisfies the equation

f(x)h4(y) = f(x + y) + f(x + σy) ∀x, y ∈ G.

Using similar proof steps applied after formula (2.11) in Theorem 2.2, we then arrive at the
desired result. �

Considering the caseσ(x) = −x in Theorem 3.1 and Theorem 3.2, we have the following
corollaries.

Corollary 3.3 ([10]). Suppose thatf, g : G → C satisfy the inequality∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε ∀ x, y ∈ G.

Then eitherf is bounded org satisfies (S).

Corollary 3.4 ([10]). Suppose thatf, g : G → C satisfy the inequality∣∣∣∣∣f(x)g(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε,

which satisfies one of the three casesf(0) = 0, f(x) = −f(−x), f(x)2 = f(−x)2 for all
x, y ∈ G. Then eitherg is bounded orf satisfies (S).

Remark 3.5. Applying g = f in Theorem 3.1 and Theorem 3.2, Corollary 3.3 and Corollary
3.4, we obtain Corollary 2.5 and Corollary 2.6.
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4. STABILITY OF THE EQUATION (S̃gg)

We will investigate the stability of the generalized functional equation (S̃gg) of the sine func-
tional equation (S).

Theorem 4.1.Suppose thatf, g : G → C satisfy the inequality

(4.1)

∣∣∣∣∣g(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∣∣∣∣∣ ≤ ε ∀ x, y ∈ G.

Then eitherg is bounded org satisfies (̃S).

Proof. Let g be an unbounded solution of the stability inequality (4.1). Then, there exists a
sequence{xn} in G such that the relationship (2.2) holds true.

Puttingx = 2x, y = 2y in inequality (4.1), takingx = xn, dividing both sides by|g(2xn)|
and taking the limit asn →∞, we obtain that

(4.2) g(2y) = lim
n→∞

f(xn + y)2 − f(xn + σy)2

g(2xn)

for all x ∈ G.
A slight change in the steps of the proof applied after formula (2.4) in the stability inequalities

(4.1) and (4.2), allows one to state the existence of a limit function

h5(x) := lim
n→∞

g(2xn + x) + g(2xn + σx)

g(2xn)
,

where the functionh5 : G → C satisfies the equation

(4.3) h5(x)g(y) = g(x + y)− g(x + σy) ∀x, y ∈ G.

From the definition ofh5, we obtain the equalityh5(0) = 2, which with (4.3) implies that
g(y) = −g(σy). Keeping this in mind, by means of (4.3), a slight modification applied in the
proof after formula (2.5) of Theorem 2.1, gives us the equation

g(x + y)2 − g(x + σy)2 = g(2x)g(2y)

valid for all x, y ∈ G which, in the light of the unique 2-divisibility ofG, implies (S̃). �

By putting σx = −x or g = f in Theorem 4.1 we obtain the following corollary and the
above Corollary 2.5 and Corollary 2.6 as Remark 3.5, respectively.

Corollary 4.2 ([10]). Suppose thatf, g : G → C satisfy the inequality∣∣∣∣∣g(x)g(y)− f

(
x + y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε ∀ x, y ∈ G.

Then eitherg is bounded org satisfies (S).

5. APPLICATIONS TO BANACH ALGEBRA

The stability results in Sections 2 to 4 can be extended to Banach algebra. For simplicity, we
will combine them according to the following theorems.

Theorem 5.1. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra. Assume thatf, g :
G → E satisfy the inequality∥∥∥∥∥g(x)f(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∥∥∥∥∥ ≤ ε ∀ x, y ∈ G.
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For an arbitrary linear multiplicative functionalx∗ ∈ E∗,

(i) either the superpositionx∗ ◦ g is bounded orf andg are solutions of the equation (S̃),
(ii) either the superpositionx∗ ◦ f is bounded or (̃S) for g provides us with one of the

following casesg(0) = 0, g(x) = −g(σx) or f(x)2 = f(σx)2.

Proof. The proofs of each case are very similar, so it suffices to show the proof of case (i).
Assume that (i) holds and fix an arbitrarily linear multiplicative functionalx∗ ∈ E. As is well
known we have‖x∗‖ = 1 whence, for everyx, y ∈ G, we have

ε ≥

∥∥∥∥∥g(x)f(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∥∥∥∥∥

= sup
‖y∗‖=1

∣∣∣∣∣y∗
(

g(x)f(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
)∣∣∣∣∣

≥

∣∣∣∣∣x∗(g(x)) · x∗(f(y))− x∗

(
f

(
x + y

2

)2
)

+ x∗

(
f

(
x + σy

2

)2
)∣∣∣∣∣ ,

which states that the superpositionsx∗ ◦ g andx∗ ◦ f yield a solution of the stability inequality
(2.1) of Theorem 2.1. Since, by assumption, the superpositionx∗ ◦ g is unbounded, an appeal
to Theorem 2.1 shows that the superpositionsx∗ ◦ g and x∗ ◦ f solve the generalized sine
equation (̃S), respectively. In other words, bearing the linear multiplicativity ofx∗ in mind, for
all x, y ∈ G, the generalized sine differencẽS(x, y) for the functionsf or g falls into the kernel
of x∗, respectively. Therefore, in view of the unrestricted choice ofx∗, we infer that

S̃(x, y) ∈
⋂
{ker x∗ : x∗ is a multiplicative member ofE∗}

for all x, y ∈ G. Since the algebraE has been assumed to be semisimple, the last term of the
above formula coincides with the singleton{0}, i.e.

f(x)f(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2

= 0 ∀ x, y ∈ G,

as claimed, also this is true forg. Case (ii) is similar. �

Since the proofs of the following two theorems also use the same argument as Theorem 5.1,
we will omit their proofs for the sake of brevity.

Theorem 5.2. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra. Assume thatf, g :
G → E satisfy the inequality∥∥∥∥∥f(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∥∥∥∥∥ ≤ ε ∀ x, y ∈ G.

For an arbitrary linear multiplicative functionalx∗ ∈ E∗,

(i) either the superpositionx∗ ◦ f is bounded org is a solution of the equation (̃S),
(ii) either the superpositionx∗ ◦ g is bounded orf is a solution of the equation (̃S) under

one of the casesg(0) = 0, g(x) = −g(σx) or f(x)2 = f(σx)2.

Theorem 5.3. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra. Assume thatf, g :
G → E satisfy the inequality∥∥∥∥∥g(x)g(y)− f

(
x + y

2

)2

+ f

(
x + σy

2

)2
∥∥∥∥∥ ≤ ε ∀ x, y ∈ G.

J. Inequal. Pure and Appl. Math., 7(5) Art. 181, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 GWANG HUI K IM

For an arbitrary linear multiplicative functionalx∗ ∈ E∗, either the superpositionx∗ ◦ g is
bounded org is a solution of the equation (̃S).

Remark 5.4. By applyingσx = −x or g = f in Theorem 5.1 to Theorem 5.3, we can obtain
the same number of corollaries in Section 2 to Section 4.
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