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ABSTRACT. The aim of this paper is to study the stability problem of the generalized sine func-
tional equations as follows:

s =1 () (T5)
f(@)g(y) = 1 (x;—y)Q -f <x+20y>27

9(x)g(y) = f (1; ;r y)2 ~f (m 2”)2 :
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1. INTRODUCTION

The stability problem of functional equations was raised by S. M. Ular [11]. Most research
follows the Hyers-Ulam stability method which is to construct convergent sequences using an
iteration process. In 1979, J. Baker, J. Lawrence and F. Zorzitta in [4] postulated that if
satisfies the stability inequality, (f) — Ex(f)| < e, then eitherf is bounded otF, (f) =
Es(f). This is now frequently referred to &uperstability Baker [3] showed the superstability
of the cosine functional equatiofiz + y) + f(x — y) = 2f(x)f(y) which is also called the
d’Alembert functional equation. The stability of the generalized cosine functional equation has
been investigated in many papers ([1], [2], [3], [8], [9]).

The superstability of the generalised sine functional equation
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2 GWANG Hul Kim

has recently been investigated by Cholewa [5], and by Badora and Ger [2].
In this paper, we will introduce the generalized functional equations of the sine equiation (S)
as follows :

(50 s = () s (25
510 s =1 (75 - (Y
(Sg0) g(2)g(y) = f (x;yf—f (x J;Uy)z-

For the casg = f, they imply
2 2
) rrn =1 (52) -1 (52

Considering the particular caséy) = —y in the above functional equations, they imply the
following functional equationsf (S),

(5.0) s =1 (50) s (552)
(510 rwaw =1 (50) s (552
(S4q) 9(x)g(y) —f(x;y)Q—f(x;yf-

Given mappingy, g : G — C, we define a difference operatBrS*gf :GxG—Cas

DSyy(w,y) == g(x)f(y) — f (x ;r y>2 + f (‘T zay)é

The aim of this paper is to investigate the stability for the generalized sine functional equa-
tions (S, ), (Sy,), (Sye) under the conditionsDS, s (z, y)| < &, |DSyy(2,y)| < e, and| DS, (z, )|
< e. From the obtained results, we obtain naturally the stability for the equa@)nS@
(S1y). (S4y) as corollaries, which can be found in the paper [10].
In this paper, let{G, +) be a uniquely 2-divisible Abelian grouf; the field of complex
numbersR the field of real numbers, and letbe an endomorphism of with o (o (z)) = « for
all z € G with a notations(z) = ox. The propertieg(z) = g(ox) andg(x) = —g(ox) with
respect tar will be represented respectively, as even and odd functions for convenience.
We may assume thgtandg are nonzero functions andis a nonnegative real constant. If
all the results of this article are given by the Kannappan condjtiont-y + 2) = f(x + 2 + )
in [[7], we will obtain the same results for the semigrdiagp +).

2. STABILITY OF THE EQUATION (S, )

We will investigate the stability of the generalized functional equa(of the sine func-
tional equation). From the results we obtain the stability of the functional equeﬁio,S), (
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STABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONSII 3

Theorem 2.1. Suppose that, g : G — C satisfy the inequality
2 2

T+ rT+o
sor) - £ (550) + 1 (57)

Then eithely is bounded orf and g are solutions of the functional equati(

(2.1) <e Var,yedad.

Proof. Let g be unbounded. Then we can choose a sequénggin G such that

(2.2) 0 # |g(2z,)| — o0, as n — oco.
Inequality [2.1) may equivalently be written as
(2.3) 9(22)f(2y) = f(z +y)* + f(x +oy)’| <e Va,yed.
Takingz = z,, in (2.3) we obtain

ot y) — flaa +oy) e

e o) = Jo2el

that is, using[(2]2)
(2.4) £(29) = tim L& v’ — e toy) y€G.

o 9(2a,)

Using (2.1) we have

2 2
2e > g(2$n+x)f(y)—f(xn+x;‘y> +f($n+:c+2c7y) '
oxr + 2 U(l'—f— ) 2

> [(9(2zn + ) + 9220 + o)) f(y)

)
(5 )

forall z,y € G and everynh € N. Consequently,

2¢ 92z, + ) + 922, + ox)
et o2a,) W
[ (@n + %)2 —f (xn + —U(x;y)y
B g(2x,,)
e = g ()

9(2z,)
for all z,y € G and everyn € N. Taking the limit as: — oo with the use of[(2]2) andl (2.4),
we conclude that, for every € G, there exists the limit

h(z) = lim 92z, + x) + g(2x, + ox)
n—o00 9(23771)

Y
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where the functiork : G — C satisfies the equation

(2.5) h(z)f(y) = flx +y) — flz+oy) Va,yed.

From the definition of:, we get the equality(0) = 2, which jointly with (2.8) implies thaff
is an odd function w.r.to, namely,f(y) = — f(oy). Keeping this in mind, by means ¢f (2.5),
we infer the equality

flx+y)? = flx+oy)’ =[f@+y) + flx+oyllfz+y) — flz+oy)]
f@+y)+ flz+oy)lh(z) f(y)

= [fQz+y)+ f2z+oy)| f(y)

= [fly+22) = fly + o (22))] f(y)
= h(y)f(2z)f(y).

The oddness of forcesf(z + ox) = 0 for all z € G. Puttingz = y in (2.5) we conclude with
the above result that

fQy)=[fhly) Vyed.
This, in turn, leads to the equation
(2.6) flx+y)? = fle+oy)’=f20)f(2y) Va,yed,

which, in the light of the unique 2-divisibility ofz, gives @)
Next, by showing thay = f, we will prove thaty is also a solution o'
If fis bounded, choosg € G such thatf(2y,) # 0, and then by{(2]3) we obtain

f@+y0)* — fz+ oyo)? flz+y0)* — flz + oy)?
o)l (2w) <[l ~ o)

and it follows thaty is also bounded o6&.

Since the unbounded assumptiongoimplies thatf is also unbounded, we can choose a
sequencdy, } such thab # |f(2y,)| — oo asn — oo.

A slight change applied after equatign (2.2) gives us

— lim f(x+yn)2 — f(x—i—ayn)Q
9(2e) = ”l*"o f(2yn)

Since we have shown thtsatisfies[(2./6) wheneveris unbounded, the above limit equation
is represented as

Vr € G.

g(2x) = f(2x) Vo e G.

By the 2-divisibility of groupG, we obtainf = ¢. Therefore we have shown thatalso
satisfies|§). O

Theorem 2.2. Suppose that, g : G — C satisfy the inequality
T+ r+o
9(@)f(y) — f ( y) + f < y)

(2.7) <e

Y

2

which satisfies one of three casg) = 0, g(z) = —g(oz), f(z)? = f(ox)? forall z,y € G.
Then eitherf is bounded oy satisfies[@
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Proof. We use an equivalent equation [of (2.7)

(2.8) 9(22)f(2y) = fz +y)* + fla+oy)?’|<e  Vayedl.
Let f be unbounded. Then we can choose a sequgpngein G such that
(2.9) 0 # [f(2yn)| — 00, as n — oo.

Takingy = v, in (2.8) we obtain

flz+yn)? — flx+oy,)? €

2x) — < )

9ze) 72u.) = Trw)]

forall z € G and alln € N. This with (2.9) implies that
. flr+ yn)2 — flz+ Uyn)Q

2.10 2z) = lim

(2.10) 9(2z) = lim o)

An obvious slight change in the steps of the proof applied after formula (2.4) of Th¢orgm 2.1
allows one to state the existence of a limit function

f(y +2y,) + floy + 2y,)

forall zed@.

ha(y) := lim ,
2< ) n—00 f(23/n>
whereh, : G — C satisfies the equation
(2.11) g(@)ha(y) = gz +y) + gz +0y)  Vr,yed.

From the definition of.,, we have the equalitys(y) = hs(oy). Clearly, this applies also to the

functionhy, := 3h,. Moreoverh,(0) = 1h,(0) = 1 and

(2.12) g(z +y) + g(z + oy) = 29(2)ha(y) Vr,y € G.
Under [2.12), we know that
(2.13) 9(0) =0 = g(z) = —g(oz) = g(z + ox) = 0 = ¢(0) = 0.

Puttingy = = in (2.12), we get by{(2.13) a duplication formula

9(2x) = 29(x)hy ().
Using the oddness and duplicationgfwe obtain, by means df (2.]12), the equation
gl +y)* = g(z +0y)* = (9(z +y) + g(z + oy)(9(x +y) — g(z + oy)
= 29(x)h2(y)[9(z + y) — g(z + oy)]
= g(2)[g(x +2y) — g(z + 20y)]
= g(z)[g(z +2y) + g(ox + 2y)]
= 2g(2)g(2y)ha(2) = g(22)9(2y),
which holds true for all;, y € G, and, in the light of the unique 2-divisibility a¥, gives .

In the last casg (z)? = f(ox)?, the proof is completed by showing thgt)) = 0. Suppose
that this is not the case. Then in what follows, without loss of generality, we may assume that
g(0) = 1 (replacing, if necessary, the functigrby ¢g/¢(0) and f by f/g(0)).

Puttingz = 0 in (2.§) with a given condition and the 2-divisibility of grodp we obtain the
inequality

fy)l<e Vyed.

This inequality means that is globally bounded — a contradiction. Thus the clajff) = 0
holds, so the proof of the theorem is completed. O
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By puttingox = —z in Theorem$ 2]1 ar{d 3.2 respectively, we obtain the following corollar-
ies, respectively.

Corollary 2.3 ([10]). Suppose thaf, g : G — C satisfy the inequality

9@)f ()~ f <“”;y>2+f (“”;y)

forall z,y € G. Then either is bounded orf and g are solutions of the equatiop|(S).

<e

Corollary 2.4 ([10Q]). Suppose thaf, g : G — C satisfy the inequality

x+y2 x—yQ
oof - (52) +1(*5Y)
which satisfies one of three casg$) = 0, g(—z) = —g(z), f(z)* = f(—=z)*forall z,y € G.
Then eitherf is bounded oy satisfies|(S).

Corollary 2.5. Suppose thaf : G — C satisfies the inequality
2 2

T+ T +o
‘f(x)f(y) - (—2 y) +f ( > y)

Then eitherf is bounded orf is a solution of the equatio@).

<e,

<e Vaz,yed.

Corollary 2.6 ([5]). Suppose that : G — C satisfies the inequality

‘f(m)f(y) - (””‘2”’) w1 ("3 y)2

Then eitherf is bounded orf is a solution of the equation|(S).

<eg Vz,yed.

3. STABILITY OF THE EQUATION (S},)

We will investigate the stability of the generalized functional equa(for the sine
functional equation[ (S). The obtained results imply the stability for the functional equations

. 15). (51.

Theorem 3.1. Suppose that, g : G — C satisfy the inequality
x+y2 x+0y2
st - (52) + 1 (5

Then eitherf is bounded oy satisfies.

Proof. Let f be an unbounded solution of the stability inequality |(3.1). Then, there exists a
sequenc€z, } in G such that) # | f(2x,)| — oo asn — .

Puttingz = 2z, y = 2y in inequality [3.1), taking: = x,, in the obtained inequality, dividing
both sides by f(2z,)| and taking the limit as& — oo we obtain that
- flan ) = flaa+oy)’
(3.2) 9(2y) = lim F2wn)

An obvious slight change in the steps of the proof applied (2.4) of Thdorém 2.1 in the
stability inequality [(3.]L) allows, with an application ¢f (B.2), us to state the existence of a limit
function

(3.1) <e Vaz,yed.

Yy € G.

o fQry 4 ) + f(2, + o)
hg([E) o nlggo f(an) )
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where the functiorh; : G — C satisfies the equation

(3.3) hs(z)g(y) = g(x +y) — g(x +0y) Yo,y €G.

From the definition of;, we obtain the equaliti;(0) = 2, which with {3.3) implies tha is
odd, i.e.,g(y) = —g(oy). The oddness of implies thatg(z + ox) = 0 for all x € G. Keeping
this in mind and putting: = y in (3.3) we conclude that

9(2y) = g(y)hs(y) forall =z,yeG.

Keeping all of these in mind, and by means [of {3.3), if we make a slight change of the
calculations applied after formula (2.5) of Theorer 2.1, we conclude that the equation

g(x +y)* = g(z + 0y)* = g(22)g(2y)
is valid for all z, y € G which, in the light of the unique 2-divisibility of, ¢ gives @) O

Theorem 3.2. Suppose that, g : G — C satisfy the inequality
2 2
T+ r+o
f(x)g(y)—f( Qy) +f< > y)

which satisfies one of the three casé®) = 0, f(z) = —f(ox), f(x)> = f(oz)? for all
z,y € G. Then either is bounded orf satisfies@.

(3.4) <e,

Proof. For an unbounded solutiop of the stability inequality[(3]4), there exists a sequence
{yn} In G such that) # |¢(2y,)| — oo asn — oo.
Following a slight modification in the steps of the proof applied after fornjuld (2.9), we may
state the existence of a limit function
o 9+ 2y0) + g(oy + 2y,)
haly) = lng, 9(2y5)
whereh, : G — C satisfies the equation

f(@)ha(y) = f(x +y) + flx +0y) Va,y€G.

Using similar proof steps applied after formula (2.11) in Thedrer 2.2, we then arrive at the
desired result. O

Considering the case(z) = —z in Theoren] 3.1 and Theorem B.2, we have the following
corollaries.

Y

Corollary 3.3 ([1Q]). Suppose thaf, g : G — C satisfy the inequality

‘f(a:)g(y)—f(%)xf (g)z

Then eitherf is bounded oy satisfies|(S).

<e Va,yed.

Corollary 3.4 ([10]). Suppose thaf, g : G — C satisfy the inequality

s - £ (550) 4o (550
which satisfies one of the three casél®) = 0, f(z) = —f(—=z), f(z)* = f(—=z)? for all

x,y € G. Then either is bounded orf satisfies[([S).

Remark 3.5. Applying ¢ = f in Theoren] 3.]l and Theorgm B.2, Corollary|3.3 and Corollary
[3.4, we obtain Corollary 2|5 and Corolldry P.6.

<eg,
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4. STABILITY OF THE EQUATION (S,,)

We will investigate the stability of the generalized functional equa(of the sine func-
tional equation[([S).

Theorem 4.1. Suppose that, g : G — C satisfy the inequality
2 2

T+ r+o
g(w‘)g(y)—f< 2y> +f< 5 y)

Then eithely is bounded o satisfies@.

(4.2)

<eg Va,yed.

Proof. Let g be an unbounded solution of the stability inequality |(4.1). Then, there exists a
sequencex, } in G such that the relationship (2.2) holds true.

Puttingz = 2z, y = 2y in inequality [4.1), taking: = z,,, dividing both sides byg(2z,,)|
and taking the limit as — oo, we obtain that

B () e et

forallxz € G.
A slight change in the steps of the proof applied after fornjulg (2.4) in the stability inequalities
(4.1) and[(4.P), allows one to state the existence of a limit function

2 2
n—00 9(2x,)
where the functiorh; : G — C satisfies the equation
(4.3) hs(2)g(y) = g(x +y) — g(z +0y) Yo,y €G.

From the definition ofh;, we obtain the equality.s(0) = 2, which with (4.3) implies that
9(y) = —g(oy). Keeping this in mind, by means df (4.3), a slight modification applied in the
proof after formula[(25) of Theorefm 2.1, gives us the equation

g(z +y)* — g(z + 0y)* = g(22)g(2y)
valid for all z, y € G which, in the light of the unique 2-divisibility ofr, implies @ O

By puttingoz = —z or g = f in Theoren] 41 we obtain the following corollary and the
above Corollary 2]5 and Corollary 2.6 as Renjark 3.5, respectively.

Corollary 4.2 ([10]). Suppose thaf, g : G — C satisfy the inequality

9(@)g(y) = f (x ;L y)2 +f (%)2

Then eithely is bounded oy satisfies[([S).

<e Ve,yeG

5. APPLICATIONS TO BANACH ALGEBRA

The stability results in Section$ 2[tp 4 can be extended to Banach algebra. For simplicity, we
will combine them according to the following theorems.

Theorem 5.1.Let (E, || - ||) be a semisimple commutative Banach algebra. Assumef that
G — FE satisfy the inequality

g(x)f(y) — f (“”;y>2+f (x J;Oyy

<e Vr,yeQq.
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For an arbitrary linear multiplicative functionat* € E*,

(i) either the superposition* o g is bounded orf and g are solutions of the equatio,
(ii) either the superposition* o f is bounded or for ¢ provides us with one of the
following caseg)(0) = 0, g(z) = —g(ox) or f(z)? = f(oz).

Proof. The proofs of each case are very similar, so it suffices to show the proof of case (i).
Assume that (i) holds and fix an arbitrarily linear multiplicative functiomake E. As is well
known we have|z*|| = 1 whence, for every, y € G, we have

9(2)f(y) — f (x . y) +f (x i "y)2

2 2
= sup

o et v (9(33)f(y) —f (x-;y)2+f (xJ;ny)‘
ctoen-rtn- (1 (52) ) oo (1 (252

which states that the superpositiariso g andz* o f yield a solution of the stability inequality
(2.7) of Theoren 2]1. Since, by assumption, the superpositiery is unbounded, an appeal
to Theoreni 2]1 shows that the superpositiens g andz* o f solve the generalized sine
equation, respectively. In other words, bearing the linear multiplicativity:b6in mind, for
all z,y € G, the generalized sine differenSéz, y) for the functionsf or ¢ falls into the kernel
of z*, respectively. Therefore, in view of the unrestricted choice*ofve infer that

€2

>

Y

S(z,y) € ﬂ{ker z* : " is a multiplicative member of* }

for all x,y € G. Since the algebr& has been assumed to be semisimple, the last term of the
above formula coincides with the singletén}, i.e.

s -1 (550) 41 () =0 vewee

as claimed, also this is true fgr Case (ii) is similar. O

Since the proofs of the following two theorems also use the same argument as Thegrem 5.1,
we will omit their proofs for the sake of brevity.

Theorem 5.2.Let(E, || - ||) be a semisimple commutative Banach algebra. Assum¢ that
G — E satisfy the inequality

f@)gly) = f (x;ry>2+f (x _ggy)z

<e Vx,yeda.

For an arbitrary linear multiplicative functionat* € E*,

(i) either the superposition* o f is bounded oy is a solution of the equatiors(,
(i) either the superposition* o g is bounded orf is a solution of the equatiofsf) under
one of the caseg(0) = 0, g(z) = —g(ox) or f(z)? = f(ox)>.

Theorem 5.3.Let(E, || - ||) be a semisimple commutative Banach algebra. Assumg that
G — F satisfy the inequality

9(x)g(y) — f <“’ ; y>2 oy (I n Oy)2

5 <e Var,yeQaq.
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For an arbitrary linear multiplicative functionat* € E*, either the superposition* o g is
bounded ory is a solution of the equatio@).

Remark 5.4. By applyingox = —x or g = f in Theorenj 5.1 to Theorem %.3, we can obtain
the same number of corollaries in Sectidn 2 to Sedflon 4.
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