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ABSTRACT. We study the boundary behaviour of some certain maximal implicit function. We

give estimates of the maximal balls on which some implicit functions are defined and we consider

some cases when the implicit function is globally defined. We extend in this way an earlier result
. . . B . . . . ah

from 3] concerning an meqqa_hty sat_|sf|ed by the partial denvan%%sand e of the maph

which verifies the global implicit function problem

h(t,z) =h(a,b), x(a)=0.
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The implicit function theorem is a classical result in mathematical analysis. Local versions
can be found in[[1].I8],[[10],[13],[125],[17], [18] and some papers deal with some global
versions (see [2], [3]/19]/[16]).

We first give some local versions of the implicit function theorem, using our local homeo-
morphism theorem from [4].

Theorem 1. Let £, F' be Banach spaceslim ' < oo, U C FE open,V C F open,h :
U xV — F continuous such that there exigtsC U x V' countable such thdt is differentiable
on (U x V) \ K and 3 (z,y) € Isom (F, F) for every(z,y) € (U x V) \ K and letA =

Pry K C U. Then, for everya,b) € U x V there exists;, § > 0 and a unique continuous map
¢ : B(a,r) — B (b,d) such that

¢ (a) =bandh (z,¢(x)) = h(a,b) foreveryx € B (a,r)
and is differentiable onB (a, r) \ A.
Proof. Let (a,b) € U x V be fixed andf : U x V — E x F be defined by
f(z,y) = (x,h(x,y) +b—h(a,b)) for (z,y) e U x V.
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Also, letT: U xV — ExXF,
T(x,y) =0,y —h(x,y)+h(a,b)—b) for (z,y) €U x V.

ThenImT C F, henceT is compact and we see thgt= I — T, f is differentiable on
(UxV)\ Kandf'(z,y) € Isom (F x F,E x F) for every(z,y) € (U x V) \ K. Using
the local inversion theorem froml[4], we see tlfais a local homeomorphism dii x V. Let
W €V ((a,b)) andd > 0 be such that

f|B(a,0) x B(b,0) : B(a,0) x B(b,0) = W
is @ homeomorphism and let
g=1(91,92) : W — B(a,0) x B(b,0)

be its inverse. We také > 0 such that) = B (a,b) x (b,¢) C W and letr = min {/,d}. We
have

(z,2) = f (g (z,2))
= [(91(x,2), 92 (2, 2))
= (gl (1:7 Z) ) h (gl (:L'7 Z) y 92 (l’, Z)) + b—nh (CL, b))
for every(z, z) € @), hence
J,’:gl(fE,Z), h(ZE,gQ(ZE7Z)):Z+h(CL,b)—b
for x € B(a,r), z € B(b,{).

We define nowp : B (a,r) — B (b,6) by p (z) = g2 (x,b) for everyz € B (a,r) and we
see that (z, ¢ (x)) = h(a,b) for everyx € B (a,r). We havef (a,b) = (a,b) = f (a, ¢ (a))
and using the injectivity off on B (a,d) x B (b,0), we see thatp (a) = b. Also, if ¢ :
B (a,r) — B (b,0) is continuous and (a) = b, h (x,1 (x)) = h(a,b) for everyz € B (a,r),
thenf (z,¢(z)) = (x,b) = f (x,¥ (z)) for everyx € B (a,r) and using again the injectivity
of the mapf on B (a, §) x B (b, ), we find thatp = ¢ on B (a, ).

Let nowzy € B (a,r)\A. Then(zg,b) = f (xo, ), with (z¢, 3) € (B(a,r) x B(b,0)\K),
hencef is differentiable in(z, 3) , f' (zo, 3) € Isom (E x F, E x F) and sincef is a homeo-
morphism onB(a, ) x B(b,d), it results thay is also differentiable iz, b) = f (o, 3) and
g (z0,b) = [f (0, 3) '], and we see that is differentiable inz,. O

Theorem 2. Let F be an infinite dimensional Banach spaden F' < oo, U C E,V C F be
open setsh : U x V — F be continuous such that there exisfsc U x V/,

K = GK,,
p=1

with K, compact sets fop € N such thath is differentiable onU x V') \ K, there exist%‘
onU xV and‘g—z (z,y) € Isom (F, F) for every(z,y) € U x V and letA = P, K. Then,

for every(a,b) € U x V there exists,§ > 0 and a unique continuous implicit functian :
B (a,r) — B (b, 0) differentiable onB (a, ) \ A such thaty (a) = bandh (z, ¢ (x)) = h(a,b)
for everyz € B (a,r).

Proof. We apply Theorem 11 of [8]. We see that in an infinite dimensional Banach #paxe
set K which is a countable union of compact sets is a "thin" set,ine X’ = ¢ and B\ K is
connected and simply connected for every #alirom E. Also, sinceA is a countable union
of compact sets, we see that A = ¢.
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If £, F are Banach spaces adde L (E, F'), we let
[Al = sup [|A ()]

llzll=1

and

andifD C E, A > 0, we let
AD = {z € E| there existy € D such thatr = \y}.
If X,Y are Banach spaceb, C X isopen, € D andf : D — Y isamap, we let

yoz Iy — 7]
and we say thaf is a light map if for every: € D and everyU € V (z), there exists) € V ()
such thaty c U andf (z) ¢ f (0Q) . O

Remark 3. We can replace in Theoref 1 and Theofgm 2 the conditibm ' < oo™ by
"There exists3! on U x V and it is continuous o/ x V and §! (z,y) € Isom (F, F) for

every(z,y) € U x V" to obtain the same conclusion, and this is the classical implicit function
theorem. Also, keeping the notations from Theofém 1 and Thejorem 2, we see(that)ife
B (a,r) x B(b,6) is such that («, 3) = h(a,b), theng = ¢ (a) .

We shall use the following lemma from|[7].

Lemma 4. Leta > 0, f : [0,a] — [0,00) be continuous and let : [0,00) — [0,00) be
continuous such that > 0 on (0, co) and

()= f(o)] < /bcw(f(t))dtforeveryo <b<c<a.

Then, if
m=inf f(t), M= sup [(t),

te[o’a] tE[O,a]

M dS
< q.
/m wis) ="

We obtain now the following characterization of the boundary behaviour of the solutions of
some differential inequalities.

it results that

Theorem 5. Let F, F' be Banach space$] C E a domain,K C U at most countabley :
U — F continuous orV/ and differentiable o/\ K such that there exists : [0, c0) — [0, c0)
continuous with|¢' (z)]| < w (||¢ (z)||) for everyz € U\K. Then, ifa € OU andC C U is

convex such that € C, either there exists
lim () = £ € For lim || ()] = o

zeC zeC

/100 wd<Z> —

lim o (z) = £ € F.
veC

or,ifw >0o0on(1,00) and

there exists
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If w>00n(0,1)and

/1 ds ~
0 w(s)
and there exista € U such thaty («) = 0, it results thaty (z) = 0, for everyz € U.

Proof. Replacing, if necessary; by w + A for someX > 0, we can suppose that > 0 on
[0,00). Leta € OU, C C U convex such that € C'and letq : [0,1) — C be a path such that

Prrllq(t) =«
and there existd > 0 such thatD (t) < L for everyt € [0,1). Then
lg(s) —q @)l < L-(s—1)
forevery0 <t < s < landlet) < c < d < 1 be fixed,
A = co(q([c.d]))
ande > 0. Letg : A — R be defined by
g(2) =w(|lp(z)]) foreveryz € A.

Then A is compact and convex ands uniformly continuous o, hence we can find. > 0
such that

g (z1) —g(z9)] <eforz;,z € A

)
with ||z; — 22|l < éL. Sincegq : [¢,d] — C'is uniformly continuous, we can findk > 0 such
that||q (t) — g (s)|| < oL if s,t € [c,d] are such thalts — ¢| < d.. Let now

A=(c=tg<ty < - <ty =d) €D(cd)
be such thaf A|| < §.. Using Denjoi-Bourbaki’s theorem we have

e (g @) =Nl (g (DI < lle (g (d) = (g ()]

m—1
<D ela(ti) —¢ (g (tk))H
k=0
< > g (trsa) —a @)l - sup " (2)]]
=0 z€lq(tr),q(tk+1)] \ K
m—1
<L- (tis1 — te) - sup w(lle @)
k=0 Ze[‘](tk)H(thrl)]
m—1
<L) (e —t) - (wllelg )l +¢)-
k=0

Letting||A|| — 0 and there — 0, we obtain

[l (g (@Dl = lle (g (DI < Nl (a(d) = ¢ (g ()l

d
1) SL-/ w(lle(g@)])dtforo<c<d<1.

m= 1nf flp(g)], M= sup [lp(g@)],
€lo,1) tef0,1)
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we obtain from Lemmp]4 anf](1)

) /M 5o

Let nowz, — « be such that

1
lzp — a §2—P, z, € CforpeN

and suppose that there exigts- 0 such that|y (z,)|| < p for everyp € N. We take
O=to<ti < - <tp <tpp1 <---<1

such that, 1 and we defing : [0,1) — C by

2 (tepr — 1) + 21 (E— 1)

q (t) = fort e [tk;thrl] , k e N.
ler1 — tk

Then

Zhtl — 2

Drq(t) = o = 2 = tory e )

ter1 — th

and takingt, = # for k € N, we see that, — 0. Then
a, = sup DYq(t) =supcy — 0
t€(tp,1) k>p

and let

ay = inf [o@@)], b= sup [lp(g(®)] forpeN.
t€(tp,1) telty,1)

Using (2) we obtain that

b s
— <
/a,, 505 <ao,forpeN

and letpy € N be such that
< /Oo ds forp >
ap ) w (S) p - pO'
Suppose that there exigis> p, such thab, = co. Then, sincey (¢;,) = z;, we see that
ar < |le (g ()l = e (z)l| < pfork €N,

0</°° ds </bp ds “u </°O ds
p wi(s) =Sy, w(s) = P ), wls)
and we have reached a contradiction.

It results thab, < oo for p > py and let

K, = sup w(t)
t€[0,bp]

for p > po. Thenk, < oo and we see fron {1) that
o (g(d) = (g <oy Kp-|d—c|
fort, <c < d < 1andp > py, and this implies that
limep(q(t) =CeF

hence

It results that
lim ¢ (z,) = limg (¢ (t,)) =L € F.

p—00 p—00
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Now, if the case

lim [| (z)[| = oo

zeC

does not hold, there exists> 0 andz, — «, z, € C with

1
lo(z,)]] < pand||z, — o] < —

op
for everyp € N, and from what we have proved before, it results that

lim ¢ (z,) = € F.
p—00
If a, € C, ||a, — a| < 5 for everyp € N, then

lim ¢ (a,) = ¢, € F.
p—00
Let 2, = xp, 22p11 = ap fOr p € N. We see that

lim ¢ (2,) = {2 € F,
p—00
hence

(= lim ¢ (z,) = lim @ (29,) = {2
pP—00 p—00
and

b= lim o (ap) = lm ¢ (23p11) = L2,
hencel/ = ¢, = {,. We have proved that if, € C, [ja, — af < 2%, for everyp € N, then

lim ¢ (a,) = /.
p—00
We show now that ifi, € C,a, — «, then

lim ¢ (a,) = /.

p—0

Indeed, if this is false, there exists> 0 and(a,, ), .y such that

lp (ap) = £ > ¢

for everyk € N. Let (apk ) be a subsequence such that
1/ geN

1
Apy,, — ozH < =

for everyq € N. From what we have proved before it results that

lim ¢ (apk > =/
q—00 a
and we have reached a contradiction.

We have therefore proved that either

lim o (z) = £ € F,
vec
or

lim [[o(2)]| = oo.
zeC
Suppose now
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http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A NOTE ONGLOBAL IMPLICIT FUNCTION THEOREM 7

and let € OU. We taker € C' and letq : [0,1) — C be defined by
q(t)=(1—-1t)z+ta
fort € [0,1) and

m=if llelg@l, M= s ")
€[0,1) t€[o,1)

SinceD"q (t) = ||z — «| for everyt € (0,1), we see from[(2)

fasw=l <t
[l w( m

and this implies thal/ < co. Let

| A

b= sup w(t).
tel0,M]

Thenb < oo and using[(]L), we see that

le(q(d) =@ (g <b-[le—al-|d—c|
for 0 < ¢ < d < 1 and this implies that
lim ¢ (z) =C € F.
zeC
It results that the case
lim | (2)[] = o0

r—o
zeC

cannot hold, hence
limp(z) =¢ € F.

r—x

/1 ds

(s)

and that there exists € U such thatp (o) = 0. Letr = d(a,0U), y € B(a,r) and
t € [0,

q:[0,1] - B(a,r),q(t) = (1—t)a + ty fort 1]. ThenD*q(t) = ||y — «f| for
t €10,1] and let

Suppose now that

m = nf p(q ()

t€[0,1]
and
M = sup [l (q(t))].

te(0,1]
Thenm = 0 and we see fronj {2) that

[ <y —al
o wis) ™ .

This implies thatd/ = 0 and hencep (y) = 0. We proved thap = 0 on B («, ) and since/
is a domain, we see that= 0 onU. O

Remark 6. We proved that ifp is as in Theorerpn|2 and

/100 wd<ss> -

theny has angular limits in every poiat € OU.

We now obtain the following characterization of the boundary behaviour of some implicit
function.
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Theorem 7. Let £, F' be Banach space8] C ' adomain,K C U x F such thatd = Pr; K
is at most countable and lét : U x F — F be continuous oV x F, differentiable on
(U x F')\ K such that

E(Z—Z(x,y)> >0on (U x F)\K

and there exists : [0,00) — [0, 00) continuous such that

H )/ ¢ (5 w0) <o m

for every(z,y) € (U x F)\K. Suppose thap : U — F'is continuous ori/, differentiable on
U\A, ¢ (a) =band

h(z,¢(x)) = h(a,b)
for everyz € U. B
Then, ifa € OU andC C U is convex such that € C, either

lim [|¢ (z)| = £ € F,

r—o
zeC

or
lim [l ()]} = o0

r—«
zeC

/100 wd<Z> -

lim ¢ (z) =( € F.

zeC

Proof. We see that ift € U \ A, then(z, ¢ (z)) € (U x F) \ K, henceh is differentiable in
(x,¢ (z)) and we have

Also, ifw > 0on(1,00) and

then

oh oh b

5%%¢(D+aﬂawwﬁqﬂﬂ—0
and we see that

oh , _||on
I @l (G 0 @)) < |5 e @) @) = | G2 o o).
It results that
, ah
I @l < |52 @) /¢ (G e @)) < wllio@i

for everyz € U \ A and we now apply Theoren 5. O

Remark 8. If £ is an infinite dimensional Banach space and

K =|JK,withK, C E
p=1

are compact sets for evepye N andy € F, then the set

M (K,y) = {w € E| there exist$ > 0 andz € K such thatv = tz}
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is also a countable union of compact sets and hence a "thin" set. Keeping the notations from
Theoren b, we see that the basic inequality

3) lp (1) =@ ()l < sup w(llp(2)l)  if [z1,2]CU

z€[z1,22]
is also valid forK" a countable union of compact sets amds in Theorem|5.

If dim £ = n and K’ C E has as-finite (n — 1)-dimensional measure (i.é{ = |J,2, K
with m,,_, (K,) < oo for everyp € N, wherem, is the ¢-Hausdorff measure frort"), a
theorem of Gross shows thatif C E'is a hyperplane an® : £ — H is the projection on
H, thenP~! (z) N K is at most countable with the possible exception of aiset H, with
mn,_1 (B) = 0. Applying as in Theorerp|5 the theorem of Denjoi and Bourbaki on each interval
from P~!(z) N K for everyz € H \ B and using a natural limiting process, we see that if
dimE = nandK C E has as-finite (n — 1)-dimensional measure, then the inequality (3)
also holds. It is easy see now that Theofgm 5 and Thepfem 7 hold if ttié, sespectively
the setA = Pr; K are chosen to be a countable union of compact set&if = oo and
havingo-finite (n — 1)-dimensional measure dfim £ = n.

The following theorem is the main theorem of the paper and it gives some cases when the
implicit function is globally defined or some estimates of the maximal balls on which some
implicit function is defined.

We say that a domai® from a Banach space is starlike with respect to the poiat D if
la,z] C D for everyz € D, and if D is a domain in the Banach spa&eanda € D. We set

D, ={x € D|[a,z] C D}.

Theorem 9. Let F, F' be Banach spacedjm F' < oo, D C F adomain,K C D x F at most
countable, andd = Pr; K.Also, leth : D x F' — F be continuous o® x F' and differentiable
on (D x F)\K such that

6(2—5(1’,@) >0o0n (D x F)\K.

In addition, there exists : [0, c0) — [0, c0) continuous such that > 0 on (0, co) and

el (o) et

for every(z,y) € (D x F)\K. Then, if(a,b) € D x F and

> ds
Qap=D,NB (a’/bll m) ;

there exists a unique continuous map: @Q,, — F, differentiable on@,;\A such that
h(z,¢(x)) = h(a,b)foreveryz € Q,,. If D is starlike with respect te and

/°° ds ~
1 w(s) ’
then@,, = D andy : D — F'is globally defined orD.

Proof. Let z € Q,, and letB = {z € [q, z]| there exists an open, convex domain C @,
such thatja,z] € D,} and a continuous implicit functiop, : D, — F, differentiable on
D,\A such thatp, (a) = b andh (u, ¢, (u)) = h(a,b) for everyu € D,. We see tha3 is
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open, and from Theoref} B # 0. We show thaf3 is a closed set. Let, € B, =, — z, and
we can suppose tha}, € [a, z) for everyp € N, and let

Q =D,
p=1

We define¥ : Q — F' by ¥ (u) = ¢,, (u) foru € D,, andp € N and the definition is correct.
Indeed, ifp,q € N,p # ¢ letU,, = D,, N D,, . ThenU,, is a nonempty, open and convex set,
hence it is a nonempty domain. If

Vig = {u € qu\%q (u) = P, <u>} )

we see that € V,,, hencel,,, # () and we see thdt,, is a closed set itv,,,. Using the property

of the local unicity of the implicit function from Theorejm 1, we obtain thif is also an open

set. Sincd/,, is a domain, it results thdf,, = V,, and hence tha¥ is correctly defined. We

also see immediately that (a) = b, and¥ is continuous ord) and differentiable oid) \ A.
Letq: [0,1] — @ be defined by

q(t)=(1—t)a+txfort el0,1].
Then

+ = ||T —a .
D)=l —al < [

Let

m = inf |[W(q(@))[, M= sup [[¥(q(t))].
tel0,1) te[0,1)

As in Theorenj J7, we see that
W (u)]] < w (¥ (w)]]) for everyu € Q \A,

hence
[V (21) = ¥ (22)]| < sup w([|¥(2)]])

z€[z1,22]

if [21,22] C Q. This implies that relation$ (1) and|(2) from Theorgm 5 also hold and we see that

[ el
mw(s)_x all .

/T Mok /mM < <lle—a

and this implies thad/ < oo, hence

Then

(= sup w(t) < oc.
te[0,M]

Using (1) and Theorem 5, we see that
W (g(d) =Y (q(c))|| <Ll-||Jx—al-|d—c| forevery0 <c<d<1

and this implies that
lim W (u) =w € F.
u€lm g

Using Theoreni[1, we can findd > 0 and a unique continuous implicit functioh, :
B (z,r) — B (w,0), differentiable onB (z,r) \ A such that

U, (z) = wandh (u, ¥, (u)) = h(a,b)
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for everyu € B (z,r). Let0 < ¢ < r andp. € N be such that
lzp — ]| < eand ¥ (z,) —wl] <o
for p > p. and letp > p. be fixed. Since
P, (1) = ¥ (2p) € B (w,0),
we see from RemaiK 3 that,, (z,) = ¥, (x,,) and hence the set
U ={u€ Dy, N B (€)@, (u) = U, (u)}

is nonempty. We also see that,, N B (z, ) is an open, nonempty, convex set, hence it is a
domain and’ is an open, closed and nonempty subsebpf N B (z, ), and this implies that

U=D, NB(xce).
LetUy = D,, U B (z,e). We can now correctly defingé : Uy — F by
D (u) = @a, (u) if u e D,,

and

O (u) =V, (u) ifue B(x,¢)
and we see thab is continuous orty, differentiable on/, \ A, ® (a) = bandh (u, ® (u)) =
h (a,b) for everyu € Uy. It results thate € B, henceB is also a closed set and singez] is a
connected set, we see that= [a, 2] .

We have therefore proved that for everyg @), , there exists a convex domain, such that
la, z] C D, and a unique continuous implicit functign, : D, — F, differentiable onD, \ A
such that

¢, (a) = b, h(u,p, (u)) =h(a,b) foreveryu € D,.
We now definep : Q. — F by ¢ (z) = ¢, (x) for z € D, and we see, as before, that the
definition is correct, thap (a) = b, ¢ is continuous orQ), ;, differentiable on(),, \ A and
h(z,¢(x)) = h(a,b)foreveryzr € Qqp. O

Remark 10. The result from Theorein 9 extends a global implicit function theorem ffom [3].
The result from([3] also involves an inequality containing
G| and (5 )

and it says that if2, F' are Banach spaces,: £ x F' — Fis aC' map such thag—Z (x,y) €
Isom (F, F') for every(z,y) € E x F and there exists : [0,00) — (0, 00) continuous such

that
(145 @n]) /¢ (G @) <o maxel I

for every(z,y) € E x F, then, for(zoyo) € E X F, zy = h(xo,yo) and

/OO ds
r= s
max(||zoll,|lyoll) 14w (s)

there exists @' mapy : B(zg,7) X B(z9,7) — F such thath (z, ¢ (z,2)) = z for every
(x,2) € B(xg,r) % B (20, 7). The main advantage of our new global implicit function theorems
is that these theorems hold even if the niais defined on a proper subset Bfx F, namely,
onasetD x F'C E x F',whereD C F is an open starlike domain.
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Example 1. A known global inversion theorem of Hadamard, Lévy and John says thatfif
are Banach spacey, : £ — F is aC! map such thayf’ (z) € Isom (E, F) for everyz € E
and there exists : [0, c0) — (0, c0) continuous such that

> ds
=00 and ()7 < w (||
| == 7@ < w (el
for everyxz ¢ E, then it results thatf : £ — F is a C! diffeomorphism (sefl1], [14],
[12], 3], [7]). f E = F = R*orifdimE = oo and f = I — T with 7" compact, we can
drop the continuity of the derivative dii and we can impose the essential conditigh(’s)
Isom (F, F)" with the possible exception of a "thin" set (§d& [5],[6]) and we will still obtain
that f : £ — F'is a homeomorphism.

Now, let £, F' be Banach spaced) ¢ F a domain,a € D, b € F, g : D — F be
differentiable onD, f : ' — I be differentiable o’ such thatf’ (y) € Isom (F, F') for every
y € F and there exists : [0,00) — (0, c0) continuous such that

1" ()| < w(||lyl]) for everyy € F.

Leth : D x F — F be defined byi (z,y) = f(y) —g(x)forz € D,y € F,ry = d(a,0D)
and suppose that

M, = sup ||¢ (z)| < oo foreveryd < r < r.
z€B(a,r)

H_QH/< )<Hg 1 @) < M- w gl

if (z,y) € B(a,r)x Fand0 < r <rgand let

1 > ds
0, = mi S for 0 < 7g.
min {r, A /b” = (5) } or0<r <y

Using Theorem|9, we see that there exists a unique differentiableemdp(a, §,) — F such
thaty (a) = bandh (x, ¢ (z)) = h(a,b) foreveryx € B (a,d,),1.e. f (p(x)) = g (x)+h(a,b)
for everyz € B (a,r) and every) < r < ry.

If .
ro - M, < / 4
1 @ (5)

theny is defined onB (a, o). Additionally, if D = B (a, ), theny is globally defined orD
andf oy =g+ h(a,b)onD. Inthe special casP = E, g () = x for everyz € E,

> ds
=00 and b= f(a
| == /(a).
then f (p (z)) = « for everyz € E, andy is defined onE and is the inverse of and it
results thatf : F* — F'is a homeomorphism. In this way we obtain an alternative proof of the
Hadamard-Lévy-John theorem.

Then

Remark 11. The global implicit function problem
h(t,x) =h(a,b), z(a)=0>
considered before has two basic properties:

(1) It satisfies the differential inequalityy’ (z)|| < w (]l¢ (2)]|) -
(2) It has the property of the local existence and local unicity of the solutions around each
point (¢, zo) .
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This shows that by considering some other conditions of local existence and local unicity of
the implicit function instead of the conditions from Theorigm 1, we can produce corresponding
global implicit function results. Using the conditions of local existence and local unicity from
Theorem 11 of([B], we obtain the following corresponding version of Thedfem 9.

Theorem 12. Let E, F' be Banach spaceslim £ = oo, dim F' < oo, D C E a domain,

KcDxF,
K =| K,
p=1

with K, compact sets for evegye N, A = Pr; K, h: D x F — F continuous orD x F' and
differentiable on D x F') \ K such that

E(Z—Z(:p,y)) >0on (D x F)\K,

and there exists : [0, 00) — [0, c0) continuous such that > 0 on (0, o) and

H / (3—’; <x’y>) <w(lyl)

for every(z,y) € (D x F)\K. Suppose that the map— h (z,y) is a light map onF' for
everyr € D. Then, ifa,b € D x F and

* ds
Qa,b:DamB (au/b” w(s))a

there exists a unique continuous implicit function ), , — £, differentiable ort),;\ A such
thaty (a) = bandh (z,¢ (z)) = h(a,b) for everyz € Q,, and if D is starlike with respect to

a and
/°° ds Cx
1 W (3) ’

then®,, = D andy : D — F'is globally defined oD.

Remark 13 The condition "the mag — h (x,y) is a light map onF’ for everyz € D" is
satisfied |f eX|sts onD x F and

14 (? (x,y)) > 0 for every (z,y) € D x F.
Y

Using the conditions of local existence and local unicity from Theorem []of [8], we obtain
the following global implicit function theorem.

Theorem 14.Letn > 2, D C R™ be adomainj : D x R™ — R™ be differentiable and let

K cDxR™,
K =| K,
p=1
with K, closed sets such that,_, (Pr; K,,) = 0 for everyp € N, A = Pry K, such that
8’; (, y) € Isom (R™,R™) for every(z,y) € (D x R™)\K and the mapy — h(z,y) is a

light map onR™ for everyx € D. Suppose that there exists: [0, c0) — [0, 00) continuous
such thatv > 0 on (0, co) and

H— “y H/ ( ) < w(lyll) for every (z,y) € (D x F)\K.
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Then, if(a,b) € D x F and

> ds
Qa,b:DamB (aa/b” (4)(8))7

there exists a unique continuous implicit function Q,, — F, differentiable ort), ;\ A such
thaty (a) = bandh (z, ¢ (x)) = h(a,b) for everyz € Q,,, and if D is starlike with respect to

a and
/°° ds C
1 W (5> ’

then®,, = D andy : D — F'is globally defined oD.

Proof. We see thatn,,,—» (K,) = 0 for everyp € N and A haso-finite (n — 1)-dimensional
measure. We now apply the local implicit function theorem from Theorem [7| of [8], Rgmark 8
and the preceding arguments. O

Using the classical implicit function theorem, we obtain the following global implicit func-
tion theorem

Theorem 15. Let £/, F' be Banach space4) C F adomain,h : D x F — F be continuous
such thatg—z exists onD x F, itis continuous oD x F and

14 (? (x,y)) > 0 for every (z,y) € D x F.
Y

Also, letK' € Dx F be suchthatl = Pr; K is a countable union of compact setsiifn £/ = oo
and haso-finite (n — 1)-dimensional measure ifim £ = n. Additionally, suppose that is
differentiable on D x F') \ K and there exists : [0, 00) — [0, c0) continuous such that > 0

on (0, c0) and
5| [ ¢ (Gewn) <ot

for every(z,y) € (D x F)\K. Then, if(a,b) € D x F and

> ds
Qa,b = DaﬂB (aa/b” m) )

there exists a unique continuous implicit functipn @, , — F, differentiable o), ;\ A such
thaty (a) = bandh (x,¢ () = h(a,b) for everyz € Q,,. If D is starlike with respect ta

and
/°° ds ~ e
1 W (5) 7

thenQ,, = D andy : D — Fis globally defined.
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