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Abstract

In this paper we present sharp estimates for the difference of general integral
means with respect to even different finite measures. This is achieved by the
use of the Ostrowski and Fink inequalities and the Geometric Moment The-
ory Method. The produced inequalities are with respect to the supnorm of a
derivative of the involved function.

2000 Mathematics Subject Classification: 26D10, 26D15, 28A25, 60A10, 60E15.
Key words: Inequalities, Averages of functions, General averages or means, Mo-
ments.
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Here our work is motivated by the works of J. Duoandikoetxgaid P. Cerone
[4]. We use Ostrowski’s {]]) and Fink’s ([]) inequalities along with the Geo-
metric Moment Theory Method, se€][[1], [3], to prove our results.

We compare general averages of functions with respect to various finite mea-
sures over different subintervals of a domain, even disjoint. Our estimates are
sharp and the inequalities are attained. They are with respect to the supnorm of

a derivative of the involved functiofi.
To the best of our knowledge this type of work is totally new.
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Part A

As motivation we give the following proposition.

Proposition 2.1. Let p;, uo be finite Borel measures o, b C R, [c,d],
[é7 g] - [CL?b]’ f € Ol([au b]) DenOteﬂl([Q d]) =my >0, /’LQ([éJ g] =mg > 0.

Then

1 [ 1 [9

2.1) \— [ 5@~ o [ sty
mq c ma e

Proof. From the mean value theorem we have

[f(@) = FOI < 1 loe(b—a) =y, Va,y € [a,b],

<N oo (b — ).

that is,
- < fl@) = fly) <7, Va,y€lab],
and by fixingy we get

d
-y < mil/ flx)dp — f(y) <.

The last statement holdg € [¢, g]. Hence

d 9
_ygi/ f(x)dul—mLQ/ flx)dps <7,

ma

proving the claim.
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As a related result we have

Corollary 2.2. Let f € C'([a,b]), [¢,d], [é, g] C [a,b] C R. Then we have

1 I
(2.2) ‘E/c f(x)da:—ﬁ/é f(z)dz

We use the following famous Ostrowski inequality, sk [~].
Theorem 2.3.Let f € C''([a,b]), = € [a,b]. Then

< 1 lloe - (b= a).

Difference of General Integral

Means
(2.3) ‘ / f ‘ “l{ﬂoz) ((x a)2 + (m — b)2)’ George A. Anastassiou
and inequality 2.3) is sharp, seed]. Title Page
We also have Contents
Corollary 2.4. Let f € C'([a,b]), z € [¢,d] C [a,b] € R. Then 4 dd
< 4

Go Back

e |10 -2 [ o

||fl||oo Close

< 00— max {((c — a)> + (c — b)), (d — a)* + (d — b))} .

Quit
Proof. Obvious. H Page 5 of 28
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Theorem 2.5.Let f € C'([a,b]), 1 be a finite measure of|c, d], P([c, d])),
where[c, d] C [a,b] C R andm := u([c,d]) > 0. Then

1.
1
25) |— [ [fl@)dp—— f
M Jle,d)
1/l 2 2 2 2
< a7/ .\ - - - - .
- 2<b — a) maX{((C a> + (C b) )’ ((d a) + (d b) >} Difference of General Integral
Means
2. Inequality @.5) is attained wheml = b. George A. Anastassiou
Proof. 1) By (2.4) integrating against/m. _
2) Here @.5) collapses to Title Page
b , Contents
(2.6) 1 f(z)dp — L/ flz)dz| < If Hoo(b —a).
m [c,b] b —Qa a - 2 “ >>
. . < >
We prove thatZ.6) is attained. Take
Go Back
f(z) = w, a<x<b. Close
b—a
) ) Quit
*/ _ 2 */ — 2 i
Thenf*(z) = 7=, and|| /||l = 7=, along with Page 6 of 28
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Therefore 2.6) becomes

2.7) f*(:r)du‘ <1

‘ m [e,b]

Finally pick £ = 4, the Dirac measure supported{at, then @.7) turns to
equality. O

We further have

Corollary 2.6. Letf € C'([a,b]) and|c, d] C [a,b] C R. LetM (c,d) := {u: p
a measure ot[c, d], P([c, d])) of finite positive mags denotedn := u([c, d]).
Then

1. The following result holds

1

[ [ S [ o

@8) < g = max{(le - @ + (e~ b (- af 4 (- 1))
:&X{(d—a)hr(d—b)?, ifd+cZa+b}
2(b—a) (c—a)?+(c—b? ifd+c<a+b

9 < ”f;'“(b —a).

Inequality €.9) becomes equality if = b or ¢ = a or both.
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2. The following result holds

1 1 b
— [Cyd]f(ﬁ)dﬂ—m/a f(x)dx

m

all e,d HEM (c,d)
a<c<d<b

(2.10)  sup < sup

)

17l ),

<
-2

Next we restrict ourselves to a subclass\ofc, d) of finite measureg with .
given first moment and by the use of the Geometric Moment Theory Method, ~ Pifference ot General integral
see [], [1], [3], we produce an inequality sharper thangj. For that we need

Lemma 2.7. Letv be a probability measure ofia, b], P([a, b])) such that

George A. Anastassiou

(2.11) / xdv = dy € [a, D] Title Page
[2.8] Contents
is given. Then
44 44
) < >
(2.12) Uy:=  sup / (x —a)*dv = (b—a)(d, — a), Go Back
vasine.ii) Jabl
Close
and Quit
i) Page 8 of 28
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Proof. i) We observe the graph
Gi={(z,(z —a)*): a <z < b},

which is a convex arc above theaxis. We form the closed convex hull 6f;
and we call itGG; which has as an upper concave envelope the line segment
from (a,0) to (b, (b — a)?). We consider the vertical line = d; which cutst,

at the pointQ,. ThenU; is the distance fronid;, 0) to @);. By using the equal
ratios property of similar triangles related here we get

dl—a U1

b—a (b—a)?’
which proves the claim.
i) We observe the graph

Gy ={(z,(x = )*): a <z < b},

which is a convex arc above theaxis. We form the closed convex hull 6f,
and we call itGG, which has as an upper concave envelope the line segiment
from (b, 0) to (a, (b—a)?). We consider the vertical line = d; which intersects
/5 at the pointQ),.

ThenU, is the distance frond;, 0) to @),. By using the equal ratios property
of the related similar triangles we obtain

U,  b—d
(b—a)? b—a’

which proves the claim. ]
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Furthermore we need

Lemma 2.8.Let|c,d] C [a,b] C R and letv be a probability measure afic, d],

P([c,d])) such that
2.14 xdv =dy € lc,d
(2.14) /[ ) e.d

is given. Then

(i)
(2.15) U;:= sup / (z — a)’dv = di(c + d — 2a) — cd + a®,
v asin@.19 [e,d]
and
(ii)
(2.16) U, := sup / (z —b)*dv = dy(c+d — 2b) — cd + b*.
vasin .14 Jicd]

(i) The following also holds:

(2.17) sup /[ ; [(z — a)® + (z — b)*]dv = Uy + Us.

v asin@.19

Proof. (i) We see that

d d
/ (x —a)*dv = (c—a)* +2(c—a)(dy —c) + / (z — c)?dv.
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Using .12 which is applied orjc, d], we find

d
sup / (z —a)’dv = (c — a)* +2(c — a)(d; — ¢)

v asin@.14
d
+  sup / (z — ¢)*dv
vasin@.ld Jc
=(c—a)*+2(c—a)(dy — )+ (d—c)(d, —¢c)
=di(c+d—2a) —cd + a?
proving the claim.
(if) We see that

d d
/ (= b)2dv = (b—d)? +2(b — d)(d — dy) + / (z — d)%dv.

Using .13 which is applied orjc, d|, we obtain

d
sup / (z —b)*dv = (b—d)* +2(b— d)(d — dy)
vasin@.ld Jc

d
+ sup / (x — d)*dv
vasin@.ld Jc
=(b—d)?+20b—d)(d—d)+ (d—c)(d—dy)
= di(c+d —2b) — cd + b?,
proving the claim.

(iii) Similar to Lemma2.7 and above and obvious on noting that- a)? + (z —
b)? is convex, etc. O
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Now we are ready to present

Theorem 2.9.Let[c,d] C [a,b] C R, f € C'([a,b]), p a finite measure on

([e,d], P([c,d])) of massn := u([e,d]) > 0. Assume that

d
(2.18) l/ xdu=d;, c<d; <d,
m C
is given.
Then
1 d
(2.19) sup J— f(z)dp — / f(z
u as abovel 110 /.
Hf’Hoo a’ + b
< d d) — b)) —cd
S -a 1((C+ )—(a+ )) cd + 5

Proof. Denote

) = g5 (o = @+ (o = B),

then by Theoren2.3we have

b
/ f(x)dz < B(z), Vz € e d.

~Bla) < f(2) — ;—

Thus

— / " Bla)n < -~ / " fa)du " / ' o < ~ / " Sz,
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and

Hi[vm u———i/f dx<—i/ﬁ dyi = 9.

Herev := £ is a probability measure subject .18 on ([c, d], P([c, d])) and

_ % (/Cdm a)dv + /cd(x - b)de/) .

Using 2.14), (2.19), (2.16 and €.17) we get

H < 2|(|g/ﬂ°:b){(d1(c+d—2a)—cd+a2)+(d1(c+d—26)—cd+62)}
_|umm{d e o aw+w}
G [Blle+d) = (o+0) —ad+ ,
proving the claim. O

We make the following remark.

Remark 1 (Remark on Theorem?2.9).
d we obtain

1. Caseot+d > a+b, usingd; <

a4+ b _ (d—a)?+ (d—b)’

(2.20) dy((c+d)— ;

(a+0b)) —cd+
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2. Case ofc + d < a + b, usingd; > ¢ we find that

a? + b? - (c—a)*+ (c—b)?

(221) di((c+d) —(a+b) —cd+—— < 2

Hence underZ.18 inequality .19 is sharper thanZ.8).
We also give

Corollary 2.10. Let all the assumptions in Theoreéh® hold. Then

@ﬂ)&[?(@———/f

1l ) e
= {d1(<c+d) (a+b)) —cd+

By Remarki, inequality .22 is sharper thanZ.5).

a? + b?
2

Part B

Here we follow Fink’s work {]. We require the following theorem.

Theorem 2.11 (p]). Let f: [a,b] — R, f*~V is absolutely continuous on
la,b],n > 1. Then

@23) 1) =" [ s
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(n - k) (f(’”)(b)(:r - b)f; - f’f“(a)(:v - a>’“>

1 b
— " Yt ) £ () dt
= L Ok 0
where
t—a, a<t<xz<b,
(2.24) k(t,x) =
t—0b, a<z<t<hb.

Forn = 1the sumin2.23 is taken as zero.
We also need Fink’s inequality

Theorem 2.12 (F]). Let £~ be absolutely continuous dn, b] and f™ ¢
Ly(a,b),n > 1. Then

(225) |- (f(x) +§_:Fk(x)> e R
k=1 @
1/l [(b—2)" + (x —a)"*"], Vz € [a,b]
“nn+1)I(b—a) ’ T
where
_(n= kY (1500 - @) = b - b
ez no- () ( )

Inequality .25 is sharp, in the sense that it is attained by an optith&dr any
x € [a,b].
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We give

Corollary 2.13. Let f(~1) be absolutely continuous ¢m b] and f™ € L. (a, b),
n > 1. Thenvz € [¢,d] C [a, b] we have

n—1 b
1 1
— F — d
. (f(x) D3 k<x>) = |t
||f(N)||OO [(b - x)nJrl 4 (l’ - a)nJrl}
— n(n + 1)!(b _ CL) Difference of General Integral
Means
(2.27) w(b — a)". George A. Anastassiou
~ n(n+1)!
Also we have Title Page
Proposition 2.14. Let f("~Y be absolutely continuous da,b] and ™ ¢ Contents
Ly (a,b),n > 1. Letu be a finite measure of mass > 0 on P o
([e,d], P(le,d])), [c,d] € [a,b] CR. < >
Then Go Back

Close

1 1 n—1 1
- (— Fht 3 /[ ) Fk(fv)du> Quit

M Jled)
Page 16 of 28
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1™ 1 n
n(n+ Db —a) {E /{qﬂ(b-@ Hdy

+l (x — a)"“d,u}
fe.d

Hf(”)H "

SEEITICAUR

Proof. By (2.27). O

(2.29)

Similarly, based on Theorem A ofJwe also conclude

Proposition 2.15. Let f™~Y) be absolutely continuous o, b] and f™ ¢

L,(a,b), wherel < p < oo, n > 1. Lety be a finite measure of mass> 0 on
([e.d], P([e.d))), [e, d] < [a,b] € R,

Herep’ > 1 such thatl + i, = 1. Then

1 /(1
ﬁ(a a’ d‘”z /]F d“)‘_/f

< <B(<n_ D'+ 1,p + 1) r|f<">|rp>
= nl(b—a)

. l _\np'+1 o np'+1\1/p’ )
(m Ldl((x Q)P (b — ) g

/ / 1/p n71+§
(2.30) < (B((n nbY At ) R Unl) ) 1LF]-

n!
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We make the following remark.

Remark 2. Clearly we have the following for
231) g@)=0b-2)""+(z-a)""' < (b—a)"", a<z<h,

wheren > 1. Herex = “7“’ is the only critical number of and

J (a+b) :n(n+1)M >0,

2 2n—2

giving thatg (%2) = L=2"" - ( is the global minimum of over [a, b]. Also

g is convex ovefa, b]. Therefore folc, d| C [a, b] we have
e . A\n+l o n+1
M = Crgggd{(x a)"™ 4+ (b— )"

(2.32) =max{(c—a)"" + (b—0c)""", (d—a)"" + (b—d)""}.
We get further that

(d—a)""™ +(b—ad)", ifc+d>a+b
(2.33) M =

(c—a)"™ +(b—c)"™, ifc+td<a+b.
If d = b or ¢ = a or both then
(2.34) M= (b—a)"*"

Based on RemarkR we give
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Theorem 2.16. Let all assumptions, terms and notations be as in Proposition

2.14 Then
1.
< Hf(n)HOO max{(c o a)n—f—l + (b o C)n-i—l
~n(n+1D(b—a) ’
(2.35) (d—a)"™ + (b—d)"'}
™)
n(n+ 1)(b—a)
(d—a)"™ +(b—d)"™, fc+td>a+0,
X
(c—a)"™ +(b—c)"™ ifc+d<a+b
1/l n
(236) = it

whereK is as in .29. If d = b or ¢ = a or both, then 2.36 becomes
equality. Whenl = b, £ = dgy and f(z) = @2, ¢ < 2 < b, then

inequality .39 is attained, i.e. it becomes equality, proving that is
a sharp inequality.

. We also have

(2.37) sup K <R.H.S2.3H

nEM (c,d)
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and

all ¢,d M(e.d
an Sy, \HEM(cd)

(2.38) sup ( sup K) <R.H.S2.39

Proof. It remains to prove only the sharpness, via attainability208% when
d = b. In that case4.35 collapses to

YCITS 2 e Ry o

AR
~ n(n+1)!

(2.39)

(b—a)".

The optimal measure here will e = d;;; and then2.39 becomes

1 AR P
(2.40) ‘ﬁ (f(b)+kz:;Fk ) b_a/ flx ‘_ TS — (b —a)".
The optimal function here will be
n.

Then we see that

(I - a)n—k’-‘rl

f*(k:fl)(x): k—l:O,l,...,n—Q,
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and f*#(a) = 0fork —1 = 0,1,...,n — 2. Clearly hereF,(b) = 0,
k=1,...,n— 1. Also we have

1 b b—a)"

Putting all these elements i@.40 we have
(b—a)" (b—a)"| _ (b—a)"

nn! (n+D!'  nm+1D!"
. . Difference of General Integral
proving the claim. O Means
Next, we again restrict ourselves to the subclast/ ¢f, d) of finite measures CRHIED /s (R T
1 with given first moment and by the use of the Geometric Moment Theory
Method, seeT], [1], [3], we produce an inequality sharper th&n3{?). For that Title Page
we need the follwing result.
- Contents
Lemma 2.17. Let]c,d] C [a,b] € R andv be a probability measure ofic, d],
P([e, d])) such that b 4
< | 2
(2.41) / rdv =d; € [c,d]
[e,d] Go Back
is given,n > 1. Then Close
(2.42) W= sup / (x —a)"Mdv ot
v as IN(2.41) 7 [cd] Page 21 of 28

(2-43) = <Z<d - a)nik@ - a)k> (dl - d) + (d - a)n+1' J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006
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Proof. We observe the graph
Gy ={(z,(x —a)""): c <z < d},

which is a convex arc above theaxis. We form the closed convex hull 6f;
and we call itG;, which has as an upper concave envelope the line segiment
from (c, (c — a)"*!) to (d, (d — a)™*'). Call ¢, the line througlY;. The line/,
intersects ther-axis at(¢,0), wherea < t < ¢. We need to determine the
slope of?; is

(d _ a)n+1 _ (C _ a)n—l—l n

= — => ([d—a)"*(c—a)

The equation of liné; is
y=m-x+(d—a)""" —md.

Hencemt + (d — a)"™! — md = 0 and

(d _ a)n-i—l

m

Next we consider the moment right triangle with verti¢es)), (d,0) and
(d,(d—a)™*). Clearly(dy, 0) is betweer(t, 0) and(d, 0). Consider the vertical
line z = d,, it intersects; atQ. Clearly thenl¥; = length((dy, 0), Q), the line
segment of which length we find by the formed two similar right triangles with
vertices{(t,0), (d,0), Q} and{(¢,0), (d,0), (d,(d — a)"*')}. We have the
equal ratios

t=d—

di—t W
d—t (d—a)tl’
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di —t
”r — d— n+1 1_ )
1=(d=a) (d—t)

We also need

Lemma 2.18. Let|c,d] C [a,b] € R andv be a probability measure ofic, d],
P([c,d])) such that

Difference of General Integral

(2.44) / vdv =d, € [e,d] Means
[e,d] George A. Anastassiou
is given,n > 1. Then
Title Page
1.
Contents
Wy:=  sup / (b—2)"dv pp S
v as in(2.44) Jed]
n < | 2
(2.45) = (kZ(b — )b — d)k> (c—dy)+ (b— )" o Back
=0
Close
2. The following result holds .
Quit
(2.46) sup / [(z —a)"™ + (b—z)"]dv = Wy + W, Page 23 of 28
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Proof. 1. We observe the graph
Gy = {(z,(b—2)"™): c <x < d},

which is a convex arc above theaxis. We form the closed convex hull
of G, and we call itGG5, which has as an upper concave envelope the line
segment, from (c, (b — ¢)"*') to (d, (b — d)"*!). Call 4, the line through

/5. The line/, intersects the-axis at(t*, 0), whered < t* < b. We need

to determing*: The slope of; is

m* = (b — C)n—‘ri : E{b - d)n+1 _ (i(b . c)n—k(b _ d)k) )

k=0

The equation of linés is

y=m*z+ (b—c)" —m*c
Hence
mt* + (b— )" —m*c=0
and b n+1
t"=c ( NCE
m

Next we consider the moment right triangle with verti¢egb — ¢)"1),
(c,0), (t*,0). Clearly(d;,0) is between(c,0) and(t*,0). Consider the
vertical linex = d,, itintersectd, atQ*. Clearly then

W, = length((dy, 0), Q*),
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the line segment of which length we find by the formed two similar right
triangles with vertice§Q*, (d1,0), (¢*,0)} and{(c, (b —

(t*,0)}. We have the equal ratios

tr — dl W2

tr—c (b —c)nt1’

t* —c

wa= (b= oret (520,

2. Similar to that above and obvious.

)", (c,0),

Difference of General Integral
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n < 4
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k:On Close
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We present the following important result.

Theorem 2.19.Let f(*~1) be absolutely continuous d@ b] and f™ € L. (
n > 1. Letu be a finite measure of mass > 0 on ([¢,d], P([c,d])), [c,d
la,b] C R. Furthermore we assume that

),

a,b
] C

1
(2.48) . » rdyp =d; € [e,d]
is given. Then
(n)
(2.49) sup K< 1/ ‘”OO ,
. as above n(n+ 1)I(b—a)
and
(2.50) K < RH.S .49,

whereK isasin .28 and\is asin @.47).
Proof. By Proposition2.14and Lemmag.17and2.18 O

We make the following remark.

Remark 4. We comparel/ asin .32 and .33 and)\ as in 2.47). We easily
obtain that

(2.51) A< M.

As a result we have tha? (50 is sharper thanZ.35 and 2.49 is sharper than
(2.37. That is reasonable since we restricted ourselves to a subclagsofd)
of measures by assuming the moment conditich48).
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We finish with the following comment.

Remark 5.

I) Whenc = a andd = b thend; plays no role in the best upper bounds we

)

found with the Geometric Moment Theory Method. That is, the restriction
on measureg via the first moment; has no effect in producing sharper
estimates as it happens when< ¢ < d < b. More precisely we notice
that:

)

(2.52) R.H.S(2.19) = ”f;”w(b — a) = RH.S(2.9),

(b) by 2.47) here\ = (b — a)"*! and

(2.53)  R.H.S(2.49) = %(b — a)" = R.H.S(2.36).

Further differences of general means over day d;] and [cy, d3] Sub-
sets ofla, b] (even disjoint) with respect te@; and 1.2, respectively, can be
found by straightforward application of the above results and the triangle
inequality.
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