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integrable functions are obtained.
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The classical Hermite-Hadamard inequality gives us an estimate, from below and
from above, of the mean value of a convex functjonfa,b] — R :

(332 25t [ renes 10320

See P, pp. 50-51], for details. This result can be easily improved by applyitid) (
on each of the subintervals, (a + b) /2] and[(a + b)/2, b]; summing up side by side
we get

1 3a+0b a+ 3b
o 3o (35) 1 (552 <5 [ 1
a+b\  f(a)+[f()
< :

(SRHH) _Q[f( 5 )+ 5

Usually, the precision in the-H) inequalities is estimated via Ostrowski’s and
lyengar’s inequalities. Se&]| p. 63 and respectively p. 191, for details. Based
on previous work done by S.S. Dragomir and A.McAndrély yve shall prove here
several better results, that apply to a slightly larger class of functions.

We start by estimating the deviation of the support line of a convex function from
the mean value. The main ingredient is the existence of the subdifferential.

(HH)

Theorem 1. Assume thaf is Lebesgue integrable and convex(anb). Then

= fw)dy + () (x— ;b) - f(@)
’b—a/ 1)

forall x € (a,b).
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Here ¢
€ (a,b).

Proof. In fact,

fly) > f(z)+ (y -

forall z,y € (a,b), which yields
(Sd)  fly) = flz) = (y —2)p(z) =

: (a,b) — R is any function such thap(x)

)| dy — [o()]

and it remains to simplify both sides by- a.

Theoreml applies for example to convex functions not necessarily defined on
compact intervals, for example, fgz) =

z)p(z)

— f@)| = ly — 2oz dy

110 - @)y - ot r/\y—x\dy\

(x—a)’+

€ [f.(z), fi(x)] for all

(b— =)’

11—z z

€ (-1,

2
]

1), fora > 0.
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Theorem 2. Assume thaf : [a,b] — R is a convex function. Then

for all x

Proof. Without loss of generality we may assume tlias also continuous. Se@,[

b—a

/|f

€ (a,b).

3 |7+ f(”xb‘””””f(“)(x_“)] i [

rdy——/ \x—y\lf()ldy'

p. 22] (where it is proved that admits finite limits at the endpoints).

In this casef is absolutely continuous and thus it can be recovered from its deriva-
tive. The functionf is differentiable except for countably many points, and letting

& denote this exceptional set, we have

flx) =z fly) + («

—y)f'(y)
for all x € [a,b] and ally € [a, b]\E.This yields

f@) = fly) — (@ —y)f'(y) =If(z) -
> || f(x) —

f) = (=) f' )
f) =1z =yl [f'WIl,

so that by integrating side by side with respect twe get

(b—a)f(x

V=2 [ f@)dy+ FOB - 2) + @)~ o

> | [ -

b
v dy - / & — 41/ ()] dy
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equivalently,

f(b)(b—iv)Jrf(a)(fE—a)_bEa/ Fy)dy

b—a i
/ V@) - )l dy / e~ ol 1) dy'

and the result follows. O]

f(@) +

>

b—a

Avariant of Theoren?, in the case whergis convex only or{a, b), is as follows:

Theorem 3. Assume thaf : [a,b] — R is monotone otfa, b] and convex offa, b).
Then

5 |4 0= IO L [ pay
> ‘bia/ sgn(z —y) f(y)dy
+2(b1_ m [f(2)(a+b—22) + (x — a)f(a) + (b—2)f(b)]

forall = € (a,b).

Proof. Consider for example the case wheris nondecreasing o, b]. Then

INCEIE / @) 1

(x—a) /f dy+/f )y — (b — ) f(x)

|dy+/ @) — F)ldy
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=R2r—a—-0b)f

- [ 1 dy+/f

As in the proof of Theoren, we may restrict ourselves to the case whéres
absolutely continuous, which yields

b T b
/ o — gl |f' ()| dy = / (2 — ) (y)dy + / (v — o) (y)dy
— (a—2)f(@) + (b—2)f

0+ [ sy - / £l
By Theorem2, we conclude that
1 fO)b—y) + fla)(y —a) L/
[+ A=)

| o [ 1o

f@)2r —a—b) (z—a)f(a) +(b—2)f(b)
* b—a b—a '

The case wher¢ is nonincreasing can be treated in a similar way. O

Forxz = (a + b)/2, Theorem3 gives us
/ f(y)dy

oo ()
> ‘bia/absgn(a;b—y) f(y)dy+M ,

2 2
4
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which in the case of the exponential function means

1 a+b+expa+epr expb—expa
2 PP 2 2 b—a
I b b
= / sgn et -y eXpydy+—eXpa+eXp
b—a /, 2 4
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2 2 Inb—1Ina 4 Inb—1Ina
Title Page
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2 1 a+b b—a 4 44
Po —-Vab+ - - >
(Po) 5 VOt s T T b—Ina o S
since Page 7 of 9
2 1 a+b 1 a-+b—2vVab
—-Vab+ = - > —Vab .
3 “ +3 2 2 “ " Inb—1Ina Go Back
In fact, the last inequality can be restated as Full Screen
(z+1)°Inz > 3(x—1)° Close
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the logarithmic and the identric means:

Vab < (Van)"” (Hb)l/g

2
b—a 1 /b 1/(b—a)
< — < | —
Inb—Ina e (a“) - _
9 1 ot b Improving th(lenI;ZLr;litti—Hadamard
. g ’ CLb + g ' 2 Sabir Hussain and Matloob Anwar
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1 /a+b a+b Title Page
< = Vab ) <
2 ( y Ve ) 2
Contents
forall0 < a < b. <« N
Remarkl. The extension of Theorenis- 3 above to the context of weighted mea-
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