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ABSTRACT. In this paper there are obtained new bounds for divisors of integer polynomials,
deduced from an inequality on Bombierils—weighted norm([il]. These bounds are given by
explicit limits for the size of coefficients of a divisor of given degree. In particular such bounds
are very useful for algorithms of factorization of integer polynomials.
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1. INTRODUCTION

Let P be a nonconstant polynomial £ X] and suppose th&p is a nontrivial divisor ofP
overZ. In many problems it is important to have a priori information@n For example in
polynomial factorization a key step is the determination of an upper bound for the coefficients
of such a polynomial) in function of the coefficients and the degree finding (see J. von zur
Gathen[[3], M. van Hoeij.[4]). Throughout this paper we will consider inequalities involving
the quadratic norm, Bombieri's norm and the height of a polynomial.

We derive upper bounds for the coefficients of a divisor in function of the weightetbrm
of E. Bombieri. Our main result is Theorém [3.1 in which we obtain upper bounds for the size
of polynomial coefficients of prescribed degree of a given polynomial over the integers. This
may lead to a significant reduction of the factorization cost. In particular we obtain bounds for
the heights which are an improvement on an inequality of B. Beauzamy [2].

We first present some definitions.
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2 LAURENTIU PANAITOPOL AND DORU STEFANESCU

Definition 1.1. Let P(X) = » " a; X’ € C[X]. The quadratic norm aP is
1Pl =

The weightedi,—norm of Bombieri is

The height ofP is
H(P) = max{|acl, [as]. ... |an]}-

The measure aof is
1
M(P) = exp { / log| P (e*™) \dt} :
0

Note that

1P < (| ) M) 1Pl () e ) <20 )

Bombieri’s norm and the height are used in estimations of the absolute values of the coefficients
of polynomial divisors of integer polynomials. This reduces to the evaluation of the height of
the divisors. We mention the evaluation of B. Beauzamy:

o If P(X)=3",a,X" € Z[X],n > 1andQ is a divisor of P in Z[X], then

33/4 . 3n/2

(1.1) H(Q) < W[Pb.

(B. Beauzamyl[2]).

2. INEQUALITIES ON FACTORS OF COMPLEX POLYNOMIALS

We derive inqualities on the coefficients of divisors of complex polynomials, using a well—
known inequality on Bombieri’'s norm [1] and an idea of B. Beauzamy [2].

Proposition 2.1. If
P(X)=a, X"+ a,1 X" '+ + a1 X +ao € C[X]\C,
P(0) #0,n > 3 and
Q(X) = b X+ b, 1 X4+ 4 b X + by € CX]
is a nontrivial divisor of P of degreel > 2, then

|a0|2 ’%’2 2 2 |bi|2 n 2 .
+ bol” + |bgl” + < P for all =12 ....,d—1.
(‘bo’Q ’bd|2 | U’ ‘ d‘ (d) — \d [ ]2’ ! T 7

1

J. Inequal. Pure and Appl. Mathb(4) Art. 89, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

NEW INEQUALITIES ON POLYNOMIAL DIVISORS 3

Proof. By an inequality of B. Beauzamy, E. Bombieri, P. Enflo and H. Montgomery [1] (cf.
also B. Beauzamy [2]), it is known that = QR in C[X], then

@) (%) 17 = Qi

Note that

R]3 > |ROO)|* + |le(R)|* = :
[ ]2—’ ()‘ | ( )’ ‘b0’2 |bd’2

Therefore, by[(Z2]1),

(fes + =) [l
; |

But a lower bound fofQ], is \/]b0|2 + [ba|? + lETl)Q Therefore

’CLO’Q ‘an‘Q 2 2 ’bi‘Q n 2
b b < Pls.
(|bo\2 + ‘bd‘z ‘ 0| + |d| + (4) =\4 [ ]2

)

(2.2) [Pla =

Corollary 2.2. Forall i € {1,2,...,d — 1} we have

= \/(d) (3) Gk ) 1= () ol

3. BOUNDS FORDIVISORS OF INTEGER POLYNOMIALS

For polynomials with integer cofficients Corolldry P.2 allows us to give upper bounds for the
heights of polynomial divisors.

Theorem 3.1. Let P(X) = Y0 ;X' € Z[X]\ Z and letQ(X) = Y7, a; X" € Z[X] be a
nontrivial divisor of P in Z[ X ], with1 < d <n — 1. If n = deg(P) > 4 and P(0) # 0, then

(3.1) b < \/(f> (% (Z) [P]g—ag—a3> forall i.

Proof. We consider first the caseé= 1. We have(?) = landi = 0 ori = 1. Thereforeb;
dividesq, or a,,, SO

b <aj+al.

Asn > 4 it follows that
1
<2} +a2) - (@ +a2) < JnlP -} — a2

Consider now! > 2.
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For: = 0 we have

bggaggag—i—ai:54(a3+ai)—a3—ai
1
< §n(ag+ai) —ap—a?
1/n
<3(h)@ra-a-a

d 1/n
< + 2 2y 22
(D) GO+ -i-a)
The same argument holds foe d.

We suppose now < i < d — 1. First we consider the case

Qo
bo

Qo 2 a 2
= ) =9
(i) (62)
and the inequality follows from Corollafy 2.2.
If

Qn

nl_ 1.
ba

We have

we have

and by Propositioh 2|1 we have

o () (e

To conclude, it is sufficient to prove that

1(n 1/n
() mg--n <5 (L)imE- - e,

1 1
(5—5) (Z)[PB > aj+al — by — b3,

—n[P]; > — (af + a2) > aj + a; — by — b},

which follows from

Corollary 3.2. If n = deg(P) > 4 andd = deg(R) we have

H(Q) < \/(Ld(;%) -\/%@)[P]%—a%—a%-

Corollary 3.3. If n = deg(P) > 6 we have

H(Q) < \/ 3(a1ay) - () 1P 20 + ).
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Proof. Ford = deg(Q) = 1 we putQ(X) = by + b X. Thenb, dividesa, andb, dividesa,,.
So

—4
H(Q)? < ag +a? < n (ag +a?).

But this is equivalent to the statement.

Ford > 2 we have(WQJ) > 2 and the inequality follows by Corolla.2. O
Corollary 3.4. For n = deg(P) > 6 we have
BQ) < 2Pl — o} - a2
Proof. By a B. Beauzamy result we have
1 d 3(2n+3)/2
2 (Ld/2 j) S Thrn
U
Corollary 3.5. If deg(P) > 6 we have
H(Q) < 2o g — 2005 + ).
- 4 n "
Proof. We use Corollary 3|3 and the proof of Corollary|3.4. O

4. EXAMPLES
We compare now the various results throughout the paper. We also compare them with esti-
mates of B. Beauzamy[2]. The computations are done usingghpackage.

4.1. Prescribed coefficients.In polynomial factorization we are ultimately interested in know-
ing the size of coefficients of an arbitrary divisor of prescribed degree. We consider the folllow-
ing bounds for théth coefficient of a divisor of degreéof the polynomialP:

Bi(P,d,i) = \/5(9) - (7) [Pa (B. Beauzamyi[2)),

(P, d, 1) \/> \/ P —at —a2 (Theorenj 3.11)

Let

Q=a"+z+1,

Qg = Ta° + 122 + 11,

Qs =11z" —2® + . +1,

Qi=1112" — 25 + 23 + z + 2,

Qs = 32" +122° — 2 + 37,

Qs =4 + 28+ 82" — 2P+ 23 2+ 2,

Q7 = 1132 +22% — 132% + 2" — 2* + 322 + 22 + 91,

Qs = z'° + 302" + 52% + 222 + 52 + 2.
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Pl d]|i]|Bi(P.di) BPdi)
0.1 30| 212 1.58

Q.1 31| 367 2.73

Q.| 32| 367 2.73

0.1 3[3] 212 1.58

Q.| 30| 3152 28.70
Q> | 31| 54.60 49.71
Qs 50| 3581 34.07
Qs 51| 80.09 76.19
Qs 5 2| 11326  107.79
Qs| 6 0| 20.68 17.48
Qs 61| 50.65 42.82
Qs 62| 80.09 67.71
Qs| 6 3| 92.48 78.18
Q.| 6 |5| 508.75  429.97
Qs| 61| 171.38 14527
Qs| 91| 70.88 69.59
Qs| 9 | 3| 21654  212.62
Qs | 10 1| 33.41 30.27
Qs | 10 4| 153.11  138.72
Q- | 8 |2| 6973.46  6931.07
Q, | 10| 2| 2282.60 2064.71
Qs | 13[1| 71.15 70.70
Qs | 13[5| 708.01  703.45
Qs | 14[2| 71.15 67.88
Qs | 14| 3| 14231  135.77
Qs | 14 6| 408.77  389.97

Table 1

4.2. Divisors of prescribed degree.We consider now bounds for divisors of given degiee
Let

Bi(P,d) = \/% (de/iQJ) (Z) - [P2 (B. Beauzamyi[2]),

By(P,d) = \/ (L dO/ZQ J) : \/ % (Z) (P2 — a2 — a2 (Corollary[3:2),

By(P,d) = \/%( d )(Z) (P2 — 2(a2 + a2) (Corollary[33)

1d/2]

We haveB;(P,d) < Bs(P,d) < Bi(P,d). The boundsBy(P,d) and Bs(P,d) are better
for polynomials with large leading coefficients and and large free terms.
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Considering the polynomials
Ry = 2% + 132" + = + 101,
Ry =112" — 25+ 2+ 1,
Ry = 112" — 25 + 2 + 34,
Ry = 142" — 322 + 2 + 29,

Ry = 122" — ' 4+ 212 — oM 4+ 22° + 52 + 523 + 222 + 5z + 16,

we obtain
P d [ B (P,d By(P,d) Bs(P4d)
Ry| 1] 159.96 143.96 —
Ry| 2| 319.93 303.57 —
Ry| 3| 391.84 371.80 —
Ry | 4| 391.84 350.61 —
Ry | 4] 113.26 111.64 109.99
Ry | 5] 113.26 11054 107.74
R;| 4| 366.20 360.93 355.58
Ry| 2| 238.84 236.66 234.46
R,| 9] 1895.80 1878.49 1861.02
R, 10| 1199.01 1143.22 1084.57
Rs| 1 54.89 53.04 51.12
Rs| 2| 205.41 204.43 203.45
Rs | 12| 9190.89 9180.83 9170.76
Rs | 13| 6016.85 5988.26 5959.54
Rs | 14| 3216.14 3107.60 2995.12

Table 2
4.3. Arbitrary divisors. Finally we consider bounds for an arbitrary divisor of a polynomial
P. We put
33/4 . 3n/2
By(P) = W - [Pz (B. Beauzamy [[2])

3(2n+3)/2
By(P) = [PI3 = a§ —a}

A n

3(2n+3)/2
Bs(P) = [P]3 —2(af + a3)

47 n
We always haveBs(P) < By(P) < By(P).
If we consider

(n > 4, Corollary[3.4).

(n > 6, Corollary[3.%)

Rg = 1225 — 2% + » + 11,
R; =% — 23 + 11,
Rg = 225 — 23 4+ 114,
Ry = 22° + 2% 4+ 11,
Ry = 22 — 2% + 25 + 119.

we get
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8 LAURENTIU PANAITOPOL AND DORU STEFANESCU

P Bi(P) B(P) By(P)
R¢ | 11547 114.33 113.1¢
R, 78.30 77.52 76.73
Rg | 808.15 800.07 791.90
Ry | 336.22 336.02 335.8%
Rig]19712.13 9711.41 9710.68

Table 3

\=X4
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