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ABSTRACT. The article presents and refines the results which were provén in [1]. We give a
condition for obtaining the optimal constant of the integral inequality for the numerical analysis
of a nonlinear system of PDEs.
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1. INTRODUCTION

In [1] the following problem is considered and its application to nonlinear system of PDEs is
described.

Theorem A. Leta,b € R,a < 0,b > 0andf € C[a,b], such that:0 < f < 1onfa,b], fis
decreasing ofja, 0] and
0 b
/ fdx = / fdx
a 0
then
(@) If p > 2, the inequality

: =gt
(1.1) / fPdx < Ap/ fdx
holds for all 4, > 2.

(b) If 1 <p < 2, the inequality
b =3
1.2) / fPde < Ap/ fdz
holds for all 4, > 4.
In this note we improve the optimal, for the casd < p < 2.
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2. RESULTS
Theorem 2.1.Leta,b € R,a < 0,b > 0and f € Cla,b], such thad < f < 1onJa,b], fis

decreasing orja, 0] and
0 b
/fdx:/ fdx.
a 0

() Ifa+0b>0,thenforl < p, this inequality holds
b s
(2.1) / fPdx < 2/ fdx.

(i) If a+b < 0then
(@) If p > 2, the inequality

a+b

(2.2) /ab frda < Ap/aQ fdx

holds for all A, > 2.
(b) If 1 < p < 2, the inequality

b e
(2.3) / fPdx < Ap/ fdx

holds for all 4, > 2%, wherel < z,.« < 1is the solution of
(2.4) P p—2)+ 2" 2(p—-1)—1=0.

(c) For p = 1 the inequality
b o

(2.5) / fdx < 4/ fdx

holds.

Proof. As in the proof in[[1], we consider two cases: i} b > 0 and (ii)a + b < 0.
(i) First, we suppose that + b > 0. Using the properties of the functiofy we conclude, for
p > 1, that:

a+b

/abfpdmg/abfdx:2/a0fdx§2/aQfdx.

The constantd, = 2 is the best possible. To prove sharpness, we chfoesd.
(i) Now we suppose that + b < 0. Lety : [a,0] — [0, b] be a function with the property

/x i fdt = /O - fdt.

So, () is differentiable ang(a) = b, ¢(0) = 0.
For arbitraryz € [a, 0], such thatr + ¢(x) > 0, according to case (i) fgs > 1, we obtain
the inequality

z+p(x)
2

()
/ frdt < 2/ fdt.

T

b o4
/ FPdt < 2 / fdt.

If we suppose that + ¢(z) < 0 for arbitraryz € [a, 0], then we define a new function

In particular, forr = a,
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Y a,0] — Rby

z+<§(z) o(x)
o(z) = A, / fdt / frt.

The functiony is differentiable and

V@) = 54,0+ @D (L) - 4y fi@) - o)) + @)

2
andy(0) =
If we prove that)’(x) < 0 then the inequality

zto(z)

o(x) —3
/ fPdt < A, / fdt
holds.

Using the properties of the functions ¢ and the fact thalf (p(z))¢'(x) = —f(z), we
considerf(¢(z))y'(x) and try to conclude that(p(z))¢’'(x) < 0 as follows:

Fle() (x)
= fe) |34+ ¢ @Nf () < (o) = Ploo) o) + )]

= st f (FEED) 4 Lot @ (T2 ) - ) ot
— P () () + ) ()
= sttt (FEAD) - s (FEED) - apf(ateta)
+ Pl (@) + ) (o)
= 3Ar et = lf (FEE) - A po (et
(

2
+ (@) f (@) + f7(2) f(p(2)).
Forp > 1,if [f(¢

2)) — f(z)] < 0, then
flp(@)y'(z)

< 541G~ f (FEED) A pf(eta)

(
)

2

+ [flo(@) f(x) + f(2)f(o(x))]
r + ()

= %Ap[f(go(x)) — f2))f (T) — (A = 2)f (@) f (p(2)).

Then, obviouslyy)'(x) < 0for A, —2 > 0.
If we suppose thdtf (¢o(z)) — f(z)] > 0 then using the properties gf we can conclude that

f (M) < f(z) and we estimatg (¢(z))v’(z) as follows:
)Y (@)
plf (@) = f(@)]f (x) = Apf (@) f(p(2)) + fP(e(@)) f(2) + [ (2)f(o(2))

plf(0(2)) = f(0)]f () = Apf(2) f(o(2)) + f(e(2) f(2) + f(2)f(o(x))

flp(z
<ia
=2
4
2

IA
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1

< —5 (4 = D).

So,¢'(z) <0for A, —4 > 0.
Now, we will consider the sign of (¢(x))y'(z) forp=1,p > 2,andl < p < 2.
(a) Forp > 2, we try to improve the constant, > 4 for the caser + b < 0 and[f(p(x)) —

f(z)] > 0. We can estimatg (o(x))y’(z) as follows:

flp(a))y'(x)

< A f (o)) — F@))f (@) = Apf@) Fp(@) + o) f(2) + @) f(pla))
Al f(p(2)) = f@)]f(2) — Apf (@) f (@) + f2(0(2)) f(2) + F2(2) f((2)
F@)f (@) + flp(@))][2f (p(2) = Apl.

Hencey'(z) < 0for 4, > 2.
(b) Forl < p < 2, we can improve the constadi, > 4 for the case: + b < 0 and[f(p(z)) —

f(z)] > 0. We can estimatg (¢(x))y'(z) (for 0 < f(z) =y < f(¢(x)) = z < 1), as follows:
fle())d! (w)
S%%U@@D—ﬂMﬂ@—AM@ﬁw@»+ﬂ@@»mw+ﬁ@ﬁW@D

2
1
2
1
2

1 1
<y {_514192 - §Apy + 2P + yp_lz]

y{—%/%z(l%—%)-%zp<1%-<%)p1)]

SyZ{—%Ap<L+y>4—1+<ny1.

z z

So, we conclude that'(z) < 0 if
1
{—;%O+ﬂ+1+ﬁ”ﬂ<0,

for0<t=%<1.
Pt

Therefore, forl < p < 2 the constantl,, > 2 maxg«i<; 24—

The function1+1ft_1 is concave on0, 1] and the point,,., where the maximum is achieved
is a root of the equation

i p—2)+tP 2 (p—1)—1=0.
Numerically we get the following values of;, :
forp =1.01, the constant4, > 3.8774,

for p = 1.99, the constant4,, > 2.0056,
for p =1.9999, the constant4, > 2.0001.
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If we consider the sequengg = 2 — %, then thelim,, ., 1+1ti"t " = 1, but we find that the

point ¢,,.. where the functlonl% achieves the maximum is a fixed point of the function
g(x) = (1 L=y,
We use fixed point iteration to find the fixed point for the functigfx) = (1 — £52)!%° by

starting witht, = 0.2 and iterating;, = g(tx—1), k=1,2,..7:

to = 0.200000000000000,

t1 = 0.299016021496423,

to = 0.270488141422931,

t3 = 0.278419068898826,

ty, = 0.276191402436672,

ts = 0.276815328895026,

te = 0.276640438571483,

t; = 0.276689450339917.

Whenn — oo, i.e. p, — 2, the pointt,,.. where the functiod+2“— achieves the maximum

1+t
is a fixed point of the functiog(z) = e~ (+2).
We use fixed point iteration to find the fixed point for the functigix) = e~(1+*) by starting
with ¢, = 0.2 and iterating, = g(tx_1),k =1,2,..7:

to = 0.200000000000000,
11 = 0.301194211912202,
to = 0.272206526577512,
t3 = 0.280212642489384,
ty = 0.277978184195021,
t5 = 0.278600009316777,
te = 0.278426822683543,
t7 = 0.278475046663319

If we consider the sequengg = 1+ 1 thenlim, .« 1+fi’;71 = 1+t, andsup;¢ I%Lt =2
fort — 0+.
(c) Forp =1,
o if [F((x)) — f()] < 0 theny!(x) < 0for A, —2 > 0;
o if [f(p(2)) — f(z)] > 0theny’(z) < 0for Ay —4 >0,
S0, the best constantis, = 4. O
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