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ABSTRACT. In this paper, using Leibnitz’s formula and pre-Griss inequality we prove some
inequalities involving Taylor’s remainder.
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1. INTRODUCTION

Recently, H. Gauchman_([1] +I[2]) derived new types of inequalities involving Taylor’s re-
mainder.

In this paper, we apply Leibnitz’s formula and pre-Griss inequality [3] to create several
integral inequalities involving Taylor's remainder.

The present work may be considered as an continuation of the results obtained in/[1] — [2].

Let R, ¢(c, ) andr, s (a,b) denote theath Taylor's remainder of functiorf with centerc,
and the integral Taylor's remainder, respectively, i.e.

) (e
Rusle.) = fa) =3 0 oy

k=0

and

b(h_ )
. f(a, b):/ uf("ﬂ)(x)dx.
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Lemma 1.1. Let f be a function defined da, b]. Assume thaf € C"([a,b]). Then,

(L1) / Rosla,2)d / n+1 O™ i) (1),

b
1)+ x—a) (n+1)
(1.2) /Rnfbx / s @O i) ()
Proof. Seel[1]. O
Lemma 1.2. Let f be a function defined oa, b]. Assume thaf € C"*1([a,b]). Then
A3 ) = F0) ~ fla) ~ (b—a)fO(a) — -~ LoD o)

2. RESULTS BASED ON THE LEIBNITZ 'S FORMULA
We prove the following theorem based on the Leibnitz’s formula.

Theorem 2.1.Let f be a function defined dja, b]. Assume thaf € C"*([a, ]).
Then

P k i p—1 i (b )n k+1
(2.1) > (“1FCER, g gla,x)| <D CE L | (a )!ﬁ
k=0 k=0 "
. p—1 . - (b _ a)n—kﬂ
0 —_ < " T T 1\
(2 2) ;CpRn k,f(bax) = r Cpfl |f (b)‘ (n—k—l—l)"
whereC* = (p_p—k'),k,

Proof. We apply the following Leibnitz’s formula
(FG)P) = FOG + C’;F(p_l)G(l) N Cg—lp(l)g(p—l) + FG®,

provided the functiong’, G € C?([a, 1]).
P
Let F(x) = f"=7*D(x), G(x) = “25. Then
n (p) P n—k+1
(n—p+1) (b —x) +1 _ _1\kCk pln—k+1) (b— )

(f TN ;0( SO G
Integrating both sides of the preceding equation with respecfriom a to b gives us
n (p—1) w=b n—k+1

(n—p+1) (b — LC) - k / n— k+1 b _ ':C)

[(f (=) (n+1)! - rofor n—k+1) ke

The integral on the right |§"ab R, 1 s(a, m)dm,and to evaluate the term on the left hand side, we
must again apply Leibnitz’s formula, obtaining

p—1 (b . a)n—kJrl p b
- Y D) = = o1 / Ry s, 2)dz.
k=0 ’ k=0 a

Consequently,

p

Z(—l)kaRn,k,f(a,x)

k=0
which proves|[(2]1).

(b o a)n—k+1

< A
- (n—k+ 1)’

p—
k

1
Gt [£7 P (a)]
0
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To prove ), sef(z) = fPH(z), G(z) = %, and continue as in the proof of
E.D. O
3. RESULTS BASED ON THE GRUSSTYPE INEQUALITY
We prove the following theorem based on the pre-Griiss inequality.

Theorem 3.1. Let f(x) be a function defined ofu, b] such thatf € C""!([a,b]) andm <
f0+(z) < M for eachx € [a, b], wherem and M are constants. Then

FO(b) = F)(a) M-m _ n__ (b—ant
(n+1)! 2 (2n+1)2 (+DDT

Proof. We apply the following pre-Griiss inequality [3]

(3.2) T(F,G*<T(F,F) T(G,G),

whereF, G € Ly(a,b) andT'(F, G) is the Chebyshev’s functional:

! /bF(x)G(:c)d:c - /bF(ac)dyc L /b G (x)da.

—a /, b—a /, b—a /,
If there exists constanis, M € R such thatn < F(z) < M on|a, b], specially, we have [3]
(M —m)*

(3.1) Tn.f(a,b) — b—a)"| <

T(F.G) =

T(F F) <

and

(3.3) m/abF(x)G(x)dx— bia/abF(x)dx- bia/abG(x)dx

g%(M—m) [bia/abGQ(x)dx— (bla/abG(:C)dxfr'

In formula ) replacing”(z) by f1(z), andG(x) by 2" we obtain ). O
Remark 3.2. Itis possible to define the similar expressign (a, b) by

b n
e = [ O @

n!

In exactly the same way as inequality (3.1) was obtained, one can obtain the following inequality

£ 0) — £(a)
(n+1)!

M—m n (b—a)"!
2 2n+1)z (+1!°

(b—a)"| <

(3.4) r;’f(a, b) —
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