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ABSTRACT. In this paper, we prove Young’s inequality in quaternion matrices: forraryn
quaternion matricegl and B, anyp,q € (1,00) with % + % = 1, there exists: x n unitary
quaternion matrixysuch that/ | AB*|U* < L |A|P + L[| BJY.

Furthermore, there exists unitary quaternion maltfiguch that the equality holds if and only
if |B| = |A[P~L.
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1. INTRODUCTION

The two most important classical inequalities probably are the triangle inequality and the
arithmetic-geometric mean inequality.
The triangle inequality states thiat + 3| < || + | 5| for any complex numbers, (3.
Thompson(|7] extended the classical triangle inequality to n complex matrices: for any
n x n.complex matricesi and B, there are: x n unitary complex matrice§ andV” such that

(1.1) |A+ B| < U|A|U* + V|B|V*.

Thompson|[6] proved that, the equality in the matrix-valued triangle inequality (1.1) holds if
and only if A and B have polar decompositions with a common unitary factor.

Furthermore, Thompsonl[5] extended the complex matrix-valued triangle ineqiality (1.1) to
the quaternion matrices: for amyx n quaternion matricesl and B, there arex x n unitary
guaternion matrice§ andV such that

|A+ B| < U|A|U* + V|B|V*.
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2 RENYING ZENG

The arithmetic-geometric mean inequality is as follows: for any complex nunabers

Ve < WH+WD

or,
Bl < 5 OM”HM)

which is a special case of the classical Young s inequality: for any complex numbérsand
anyp,q € (1,00) with 1+ =1,

1 1
|| < —|af” + =131
p q

Bhatia and Kittaneh |2], Anda [1] extended the classical arithmetic-geometric mean inequality
and Young’s inequality ta x n complex matrices, respectively. This is Ando’s matrix-valued
Young's inequality: for any: x n complex matrices! and B, anyp, ¢ € (1,00) with 1 +1 =1,

there is unitary complex matriX such that

1 1
U|AB*|U* < ~|AP + -|B|".
p q

Bhatia and Kittaneh’s result is the casepf ¢ = 2, i.e., Young’s inequality recovers Bha-
tia and Kittaneh’'s arithmetic-geometric-mean inequality, likewise, Ando’s matrix version of
Young’s inequality captures the Bhatia-Kittaneh matricial arithmetic-geometric-mean inequal-
ity.

We mention that Erlijman, Farenick and the author [8] proved Young’s inequality for compact
operators.

This paper extends the Young’s inequalityrtox n quaternion matrices and examines the
case where equality in the inequality holds.

2. MATRIX -VALUED YOUNG’S INEQUALITY : THE QUATERNION VERSION

We useR, C, andH to denote the set of real numbers, the set of complex numbers, and the
set of quaternions, respectively.

For anyz € H, we have the unique representatioa: al + bi + ¢j + dk, where{1, i, j, k:} is
the basis ofl. It is well-known that/ is the multiplicative identity offl, and1? = ;2 = ;2
K> =—1, ij =k, ki=j,jk =1, andji = -k, ik = —j, kj = —i.

For each: = al + bi + ¢j + dk € H, define the conjugateof z by

zZ=ual —bi —cj —dk.

Obviously we havez = 2z = a? + b? + ¢® + d?. This implies thatz = 2z = 0 if and only if
z = 0. Soz is invertible inH if z # 0.

We note that as subalgebrasléf the meaning of conjugate iR, or C is as usual (for any

z € Rwe havez = z).
We can consideR andC as real subalgebras &f : R={al : a« € R}, andC={al + bi :

a,b € R}.
We define the real representatipnf H, i.e.,p : H — M,(R) by
a —b —c —d
p(z) = plal + bi+ cj + dk) = boa —d ¢
c d a =0 |’
d —c b a

wherez = al + bi + ¢j + dk € H.
Note thatp(2) is the transpose of(z).
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From the real representatignof H, we define a faithful representation py : M, (H) —
M,,(R) as follows:
P(A) = pnllgst]si=1) = ([p(gst)]51=1)
for all matricesA = [q.|7,—, € M, (H).
We note that each, is an injective and homomorphism; and for dlle 1, (H),

pn(A”) = pn(A)".

For the setV/,,(F) of n x n matrices with entries frorfi, whereF is R, C, or H, we useA* to
denote the conjugate transposed& M, (IF).
We considetM,,(R) and M,,(H) as algebras oveR, but M,,(C) as a complex algebra.

Definition 2.1. The spectrunz(A) of A € M,,(FF) is a subset of that consists of all the roots
of the minimal monic annihilating polynomigl of A. We note that iff = R or F = H, then
f € Rz]; butif F = H, thenf € Clz]. If F = R orF = C, then the spectrum(A) is the set
of eigenvalues ofA. But if F = H, theno(A) is the set of eigenvalues pf,(A). A is called
Hermitian if A = A*. A is said to be nonnegative definiteAfis Hermitian and-(A) are all
non-negative real numbersl is said to be unitary iA*A = AA* = I, wherel is the identity
matrix in M,,(FF).

If AandB are Hermitian, we defind < Bor B > Aif B — A is nonnegative definite.

For any Hermitian matrixd, A;(A) > X (A) > --- > A, (A) are its eigenvalues, arranged in
descending order; where the number of appearances of a particular eigenisakgual to the
dimension of the kernel ol — A\ and is known as the geometric multiplicity &f

Lemma 2.1([1]). If A, B € M,,(C), andifp, ¢ € (1, 00) with é +$ = 1, then there is a unitary
U € M,(C) such that

1 1
UIAB*|U™ < —|A[" + ~|BJ",
p q
where|A| denotes the nonnegative definite Hermitian matrix
Al = (474)=.
Lemma 2.2([3]). Let@ € M, (H), then@*Q is nonnegative definite. Furthermore, Af €

M, (H) is nonnegative definite, then there are matrite® < M, (H) such that

(i) U is unitary andD is diagonal matrix with nonnegative diagonal entri@sds, . .., d,,;
(i) U*AU = D;
(i) o(A) ={d1,ds,...,d,},
(iv) If 4 € o(A)appearst, times on the diagonal db , then the geometric multiplicity of
as an eigenvalue of, (A)is 4t,,.

Lemma 2.3.Forany A, B € M,(H),

() pu([A]) = [oa(A);
(i) pn(JAP) = |pn(A)|Pfor any nonnegative definife

(i) pu([AB]) = [pn(A)pn(B)]-
The meaning ofA| is similar to that in Lemml, i.dA| = (A*A)2.

Proof. (i) Note thatp,, : M, (H) — My, (R) is ahomomorphism, iK' € M, (H) is nonnegative
definite, then there is® € M, (H) such thatX = YY™*, so

Pn(X) = pu(YY) = pp(Y7") - pu(Y) = pu(Y)" - pu(Y) = |pn(Y)|,2
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which means thap,,(X) is also nonnegative definite. Hence, for akyc M, (H) we have
(sincep,, is a homomorphism),
1) 2 1 1 112
(pnl1XD3) " = pul1XD) = pu (IX13 - 1X13) = (o (1X1))
S0p,(|X])2 = pn (|X\%> . Therefore

pu(A]) = (pa(A"4))2 = (pu(A")pu(A))% = |pn(A)).
We get (i).
(if) For any nonnegative definite

pr(|AP7) = (pn(AD)” = |pn(A)P,
the first equality is because, : M, (H) — M4, (R) is a homomorphism, and the second
equality is from (i).
(i) Similar to (ii) we have

pr(|AB) = |pn(AB)| = |pn(A)pn(B)]
The proof is complete. O
The following Theorem 2}4 is one of our main results.

Theorem 2.4.For any A, B € M, (H), anyp,q € (1,00) with i + é = 1, there is a unitary
U € M,(H), such that

1 1
UIAB*|U* < —|A]P + -|BJ".
p q

Proof. By Lemmd 2.8, (|AB*|) = |pn(A)pn(B)*|, and

1 1 1 1

o (S1AP 4 21817) = a4+ S lpu( B
b q p q

Because reatl x n matrices p,,(A)p.(B)*| and]lo|pn(A) |p+§|pn(B)|q are nonnegative definite,

from Linear Algebra there ane x n unitary matriced/, W € M, (C) such that

Vi (Appa(BY 1" = and W (Slpu (A + (B ) W = D,
whereC' and D are diagonal matrices iy, (R).
Thus from Lemma 2]2(iv) one has
C=CieoCy,o---®C,, and D=D, ®Dyd---®d D,

with Cs = diag{cs, cs, ..., cs} andDg = diag{ds, ds, . . ., ds}, wherec, andd, are nonnegative
real numberss = 1,2, ..., n. By Lemmd 2. (iii) we have

o(|AB*|) = {c1,¢0, ..., s}
and
7 (IO + Ll (B = e ),
Furthermore, Lemma 2.2 implies that
C=C®0C,® - ®C,<D=D,®Dy®---®D,,.
Hence the equation above and Lenjma 2.3 yield that
diag{cy,cay ..., cn} < diag{dy,ds,...,dp}.
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Thus from Lemma 2]2 (i) (ii) (iii) there are unitary matric€s, U, € M,,(H) such that

1 1

GIABT; < 0 (S1AP+ 1181 ) U,

p q
then there is a unitary matrix € M,,(H) for which

1 1

UIAB*|U* < —|AlP + —|BJ‘.

p q

The proof is complete. O

3. THE CASE OF EQUALITY
Hirzallah and Kittaneh [4] proved a result as follows.

Lemma 3.1. Let A, B € M,(C) be nonnegative definite. #f ¢ € (1, co) with % + % =1,and
if there exists unitary/ € M,,(C) such that

1 1
U|AB|U* = —AP + -~ B¢
p q

thenB = Ar~1,

We have the following result.
Theorem 3.2. For any A, B € M, (H), anyp,q € (1, 00) with ]—1) + é = 1, there is a unitary
U € M, (H) such that
(3.1) U|AB*|U* = Z%\A[”Jréw\q
if and only if|B| = |A[P~1.
Proof. The sufficiencyin fact, if |[B| = |A|P~! then

on(B)| = pu(|Bl) = pul(|AP~) = |pu(A)[7".

Write X = p,,(A),Y = p,(B).

SupposeX = V|X|,Y = W|Y| are the polar decomposition of, Y respectively, where
V, W are4n x 4n unitary complex matrices. Then froin (B.1) we have

| XY™ = WIX|[Y[[W* = WIX["W™.

Simply computation yields

Xy = (xP

p q
So

WHXYHW = L |xp 4 Ly
SincelV is a unitary, using the notations in Tll)qeor%A, this implies
C=CieCy®---06C,=D=D®&Dy®---®D,,.
Hence Lemma 2|2 yields that
diag{cy,ca, ..., cn} = diag{dy,da, ..., d,}.

Again, by Lemma 2]2, there is a unitaly € M, (H) such that

1 1
U|AB*|U* = ~|A| + | B|".
p q
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The necessityAssume there exists unitaty € M, (H) such that[(3]1) holds, i.e.
1 1
U|AB*|U* = ~|A]” + ~|B|".
p q
Then . .
UIAB0) = o (HaP+ 111 ).
Writing X = p,(A),Y = pn(B), andT = p,(U), one gets
TIXYHT* = x4 Ly,
p q
This and Lemma 3]1 imply that
Y] = (X])7 = |X],
which means

pu(|BI) = pu(|A])"™" = pu(JAPPTY).
Therefore (note thas,, : M, (H) — M,,(R) is a faithful representation)

|B| = AP~
This completes the proof. O
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