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ABSTRACT. We prove that for any r.v.X such thatE{X} = 0, E{X2} = 1, andE{X4} = µ,
and for anyε ≥ 0

P (X ≥ ε) ≥ K0

µ
− K1√

µ
ε +

K2

µ
√

µ
ε,

where absolute constantsK0 = 2
√

3 − 3 ≈ 0.464, K1 = 1.397, andK2 = 0.0231. The
constantK0 is sharp forµ ≥ 3√

3+1
≈ 1.09. Some other bounds and examples are given.
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1. I NTRODUCTION AND RESULTS

Let X be a r.v. such thatE{X} = 0, E{X2} = 1, E{X4} = µ. It is well known (see, e.g.,
[4, Chapter XII, 3]) that for anyε ∈ [0, 1]

P (|X| > ε) ≥ (1− ε2)2

µ− 1 + (1− ε2)2
≥ (1− ε2)2

µ
.

The first inequality is sharp, the second is somewhat simpler, and is used, for example, for
proving the Paley-Zygmund inequality (see, e.g., [3]). (There is a reason to involve, not the
third absolute, but the fourth moment (see, e.g., [4]): the highest moment should be absolute,
and the third absolute moment is hard to calculate, for example, whenX is the sum of r.v.’s.)

Although there has been a great deal of interest in obtaining bounds of such a type, we have
been unable to find a handy and useful lower bound for the “one-sided” probabilityP (X > ε)
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2 F.D. LESLEY AND V.I. ROTAR

in the literature. Possibly it is because such a bound, as will be seen, is not so simple in proof,
and can be meaningful only for sufficiently smallε. However we suspect that such results may
exist.

A need for a convenient lower bound for the probability mentioned may arise in many prob-
lems. We encountered such a need recently in [1], in the study of the dimension of the sets of
convergence for some random series.

The main result of this note is

Proposition 1.1. For any r.v.X described above, and for anyε ≥ 0

(1.1) P (X ≥ ε) ≥ K0

µ
− K1√

µ
ε +

K2

µ
√

µ
ε,

where absolute constantsK0 = 2
√

3− 3 ≈ 0.464, K1 = 1.397, K2 = 0.0231.

In particular,

(1.2) P (X > 0) ≥ K0

µ
.

We show below that the last bound, and hence the constantK0 in (1.1), is sharp if

(1.3) µ ≥ 3√
3 + 1

≈ 1.098.

Whenµ ≤ 3√
3+1

, the sharp bound, as will be shown, is

(1.4) P (X > 0) ≥ 2

3 + µ +
√

(1 + µ)2 − 4
.

The r.-h.s of (1.2) is equal to the r.-h.s of (1.4) forµ = 3√
3+1

, and is less for all otherµ’s. For

µ ≤ 3√
3+1

we can choose (1.4), while forµ > 3√
3+1

the proper bound is (1.2). We do not obtain

here the counterpart of (1.1) with a sharp constant forµ < 3√
3+1

: first, this case is rather narrow:
1 ≤ µ < 1.1; second, (1.1) which is true for allµ, may serve well for this range ofµ as well:
say, forµ = 1 the sharp bound is certainly1

2
, which does not differ much from0.464.

SinceK2 is small and the denominator in the third term of (1.1) is larger than the denominator
in the second term, practically we can restrict ourselves to the bound

(1.5) P (X ≥ ε) ≥ K0

µ
− K1√

µ
ε.

This bound is meaningful if

(1.6) ε ≤ K3√
µ

,

whereK3 = K0

K1
≥ 0.332. The last constant is not sharp. However the restriction of type (1.6)

with some constant is necessary for the bound forP (X ≥ ε) to be meaningful. For example, as
will be shown, for anyµ ≥ 1 there exists a r.v.Ẋ with the above moment conditions, such that

(1.7) P

(
X >

1
√

µ

)
= 0.

Certainly, this does not mean thatK3 is equal to one. In particular, we will see below that there
existsµ > 1 and a r.v.X with the same moment conditions such that

(1.8) P

(
X >

√
3

2
√

µ

)
= 0.
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This means thatK3 should not exceed
√

3
2
≈ 0.866.

2. EXAMPLES

(1) The first example is simple and could be used in teaching. Letz ≥ 0, and

X =


√

z with probability 1
z+1

,

−1√
z

with probability z
z+1

.

For small (or for large)z the distribution is “strongly asymmetric”, butE{X} =
0, E{X2} = 1, and

E{X4} = z +
1

z
− 1,

which can be equal to any number≥ 1. Settingz + z−1 − 1 = µ, we getz1 = z(µ) =(
1 + µ +

√
(1 + µ)2 − 4

)/
2, z2 = 1

z(µ)
. It is easy to see thatµ ≤ z(µ) ≤ 1+µ, and

hence forz = z2 (1.7) is true. Straightforward calculations show thatminµ≥1

√
µ

z(µ)
=

√
3

2
, and is attained atµ = 3

2
. So, for thisµ (1.8) holds.

(2) As is known, and as will be seen in Section 3, the extreme distribution in our problem
is that concentrated at just three points. It is easy to realize also (see, for example, the
next section) that for the caseε = 0 one of these points is zero. Restricting ourselves
for a while to this case, consider

X =



√
µa with probabilityu,

0 with probability1− u− v,

−√µb with probabilityv,

wherea, b, u, v are positive numbers. ForE{X} = 0, E{X2} = 1, E{X4} = µ one
should have

(2.1) au = bv, a2u + b2v =
1

µ
, a4u + b4v =

1

µ
,

and

(2.2) 0 ≤ u + v ≤ 1.

It is easy to check that solutions to (2.1) may be represented as

u =
1

µ

x2 − x + 1

x + 1
, v =

1

µ

x2 − x + 1

x(x + 1)
,

a2 =
1

x2 − x + 1
, b2 =

x2

x2 − x + 1
,

wherex > 0 (one can setx = u
v
, and solve (2.1) directly). For example, settingx = 1,

we haveu = 1
2µ

, v = 1
2µ

, a = 1, b = 1, and

X =



√
µ with probability 1

2µ
,

0 with probability1− 1
µ
,

−√µ with probability 1
2µ

,
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which certainly is not the extreme case.

To check (2.2), we note thatu + v = 1
µ
(x + x−1 − 1).

Hence for (2.2) to be true, we should have1
z(µ)

≤ x ≤ z(µ), wherez(µ) is the same as

above. In this caseP (X > 0) = 1
µ
· x2−x+1

x+1
. The minimum of the last expression is attained at

x∗ =
√

3− 1, and in this caseP (X > 0) = 1
µ
(2
√

3− 3) = K0

µ
. Hence, ifx∗ ≥ 1

z(µ)
, the bound

(1.2) is sharp.
It is straightforward to verify thatx∗ ≥ 1

z(µ)
iff µ ≥ 3√

3+1
≈ 1.098. If µ ≤ 3√

3+1
, then

the minimum ofP (X > 0) is attained atx = z2(µ) = 1
z(µ)

. In this caseP (X = 0) = 0,
x2 − x + 1 = µx, and

(2.3) P (X > 0) =
z2(µ)

1 + z2(µ)
=

2

3 + µ +
√

(1 + µ)2 − 4
.

Thus, forµ ≤ 3√
3+1

we attain the bound (1.4). Forµ > 3√
3+1

the r.-h.s. of (2.3) is greater

than K0

µ
.

3. PROOF OF PROPOSITION 1.1

We consider an appropriateupperbound forP (X ≤ ε) following the well known method
based on the use of polynomials of a certain order (see, e.g., [2], [4]). In our case these are
polynomialsg(x) = a0 + a1x + a2x

2 + a4x
4 such that for allx

(3.1) I[−∞,ε](x) ≤ g(x).

Then for each such polynomial

(3.2) P (X ≤ ε) ≤ a0 + a2 + a4µ.

Minimizing the right-hand side over all polynomials satisfying (3.1), one obtains a sharp upper
bound for the left-hand side; see again, e.g., [2], [4]. Considering a smaller class of polynomials
with the same property one would get just an upper bound. Leta, b, k ≥ 0, and

g(x) = b(x− a)2
[
(x + a)2 + ka2

]
= b

[
(x2 − a2)2 + ka2(x− a)2

]
.

(In this case the coefficient forx3 vanishes). It is easy to check that fork < 1
2

the functiong has
a local maximum at the pointx1 = a(

√
1− 2k − 1)/2, and local minima at the pointsa and

x2 = −a(1 +
√

1− 2k)/2.
Let ν = ε

a
. Theng(ε) = ba4l(ν, k), wherel(ν, k) = (1− ν2)2 + k(1− ν)2. Assume that

(3.3) ν ≤ s,

where the numbers < 1 will be specified later. We have

l(ν, k) = 1 + k − 2ν2 + ν4 − 2kν + kν2

≤ 1 + k − 2kν − (2− s2 − k)ν2

≤ 1 + k − 2kν ≤ 1 + k,(3.4)

and

l(ν, k) = 1 + k − 2ν2 + ν4 − 2kν + kν2

≥ 1 + k − 2kν − (2− k)ν2

≥ 1 + k − 2kν − (2− k)sν

= 1 + k − (2k + (2− k)s)ν.(3.5)

J. Inequal. Pure and Appl. Math., 4(5) Art. 96, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


LOWER BOUNDS OFCHEBYSHEV’ S TYPE FORHALF-LINES 5

Furthermore,g(x2) = ba4q(k), where

q(k) = 4−1

[
4−1

((
1 +

√
1− 2k

)2

− 4

)2

+ k
(
3 +

√
1− 2k

)2
]

= 4−1
[
2 + 10k − k2 − (2− 4k)

√
1− 2k

]
.

The function∆(k) := q(k) − 1 − k is increasing;∆(.5) ≈ .1875, and∆(k0) = 0 for
k0 = 6

√
3− 10 ≈ .392, which one can verify by direct calculations. Thus, for anyk ∈

[
k0,

1
2

]
it is true thatq(k) ≥ 1 + k > l(ν, k) and if g(ε) ≥ 1, theng(x) ≥ g(x2) ≥ g(ε) ≥ 1 for all
x ≤ ε.

We set alsob = 1/a4l(ν, k) for g(ε) = 1.
Consider a r.v.X such thatEX = 0, EX2 = 1, EX4 = µ. Then

P (X ≤ ε) ≤ E{g(X)}
= bE

{
X4 − 2X2a2 + a4 + ka2(X2 − 2aX + a2)

}
= b

[
(1 + k)a4 − (2− k)a2 + µ

]
=

1 + k

l(ν, k)
− 2− k

l(ν, k)a2
+

µ

l(ν, k)a4
.

So, in view of (3.3), (3.4) and (3.5)

P (X ≤ ε) ≤ 1 + k

1 + k − (2k + (2− k)s)ν
− 2− k

(1 + k − 2kν)a2
+

µ

(1 + k − (2k + (2− k)s)ν)a4
.

To avoid cumbersome calculations we minimize the last expression ina, not taking into account
for a while thatν, as a matter of fact, depends ona. That is, we set

(3.6) a2 =
2µ(1 + k − 2kν)

(1 + k − (2k + (2− k)s)ν)(2− k)
,

which implies that

P (X ≤ ε) ≤ 1 + k

1 + k − (2k + (2− k)s)ν
− 1

4
· (2− k)2(1 + k − (2k + (2− k)s)ν)

(1 + k − 2kν)2
· 1

µ

= 1 +
(2k + (2− k)s)ν

1 + k − ((2− s)k + 2s)ν
− (2− k)2

4µ(1 + k)

+
(2− k)2

4µ(1 + k)

(
1− (1 + k)(1 + k − (2k + (2− k)s)ν)

(1 + k − 2kν)2

)
.

It is easy to check that the expression in the last brackets does not exceedν[−2(1+k)k+4k2s+
(1 + k)(2− k)s]/(1 + k − 2kν)2.

Note also that, fora chosen

2µ(1 + k − 2ks)

(1 + k)(2− k)
≤ a2 ≤ 2µ(1 + k)

(1 + k − (2ks + (2− k)s2)(2− k)
.

From this it follows that

P (X ≤ ε) ≤ 1− (2− k)2

4µ(1 + k)
+

(2k + (2− k)s)

1 + k − (2k + (2− k)s)s
· ε

a

+
(2− k)2

4µ(1 + k)
· (1 + k)(2− k)s + 4k2s− 2(1 + k)k

(1 + k − 2kν)2
· ε

a
.
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We now setk = k0 = 6
√

3− 10. Then

a2 ≤ 2.7847µ

(1.3923− (0.7847s + 1.6077s2))1.6076
=

1.7322µ

1.3923− 0.7847s− 1.6077s2
,

and

(3.7) a2 ≥ 2µ(1.3923− 0.7847s)

1.3924 · 1.6077
≥ 0.8934µ(1.3923− 0.7847s).

Furthermore, letK0 = (2 − k0)
2/4(1 + k0) = 2

√
3 − 3. We consider nows ≤ .38, which

implies that(1 + k)(2− k)s + 4k2s− 2(1 + k)k ≤ 2.90s− 1.09 < 0. Thus

P (X ≤ ε) ≤ 1− K0

µ
+

0.7847 + 1.6077s

1.3923− 0.7847s− 1.6077s2
· ε√

0.8934µ(1.3923− 0.7847s)

+
0.4641

µ
· 2.8540s− 1.0924

1.9386
·
√

1.3923− 0.7847s− 1.6077s2

√
1.7322µ

ε

≤ 1− K0

µ
+

(1.0570)(0.7847 + 1.6077s)

1.3923− 0.7847s− 1.6077s2
· ε√

µ(1.3923− 0.7847s)

− 0.1818 · (1.0924− 2.8540s)
√

1.3923− 0.7847s− 1.6077s2
ε

µ
√

µ

= 1− K0

µ
+

C1(s)ε√
µ

− C2(s)ε

µ
√

µ
.(3.8)

On the other hand, the requirement (3.3) meansε ≤ as, which is true if

ε ≤ C3(s)
√

µ = s
√

1.2438− 0.7011s
√

µ ≤ s
√

0.8934µ(1.3923− 0.7847s) .

(see (3.7)).
We chooses for which

C3(s) ≥
K0

C1(s)− C2(s)
.

The bound (3.8) is meaningful if

ε ≤
K0
√

µ

µC1(s)− C2(s)
≤

K0
√

µ

C1(s)− C2(s)
≤ C3(s)

√
µ.

Calculations show that we can chooses = 0.3375. In this caseC3(s) ≥ 0.3382, and
(K0/(C1(s)− C2(s)) ≤ 0.33793, C1(s) ≤ 1.3965, C2(s) ≥ 0.0231. �

Remark 3.1. The proof above is sharp in the case when the infimum of the r.-h.s. of (3.2) is
attained at some polynomial. This is not the case whenµ < 3√

3+1
: in this situation the infimum

is not attained, and, to make the proof sharp, one should consider a sequence of polynomials
gn(x) such thatgn(ε) → ∞. It is easy to see this, considering, for example, the extreme case
µ = 1. We skipped such calculations.

Remark 3.2. The representation for polynomials could be different. For example, to evaluate
justP (X > 0) it is convenient to consider polynomials of the typeg(x) = 1 + kx(x− u)2(x +
2u), wherek, u are constants, which practically immediately would bring us to (1.2). To get
a bound forP (X > ε), one could consider the same polynomial replacing the r.v.X by
X − ε (see, e.g., such a sort of reasoning in [2]). However in our calculations it led us to worse
constantsK2 andK3.
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Remark 3.3. The same concerns the direct way based on considering distributions concentrated
at three points (as we did in the previous section). The start is easy but in our calculations it led
to worse constants.
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