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ABSTRACT. We prove that for any r.vX suchthatz{ X } = 0, E{X?} =1, andE{X*} = 4,
and for anye > 0

S Ky K K,

> > e+ £,
VT VT
where absolute constant§, = 2v3 — 3 ~ 0.464, K; = 1.397, and K, = 0.0231. The

constantk is sharp foru > \/§?+1 ~ 1.09. Some other bounds and examples are given.
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1. INTRODUCTION AND RESULTS

Let X be ar.v. suchthab{X} =0, F{X?} =1, E{X*} = pu. Itis well known (see, e.g.,

[4, Chapter XII, 3]) that for any € [0, 1]

(1-e)? (e
p—1r (-2
The first inequality is sharp, the second is somewhat simpler, and is used, for example, for
proving the Paley-Zygmund inequality (see, e.g., [3]). (There is a reason to involve, not the
third absolute, but the fourth moment (see, eld., [4]): the highest moment should be absolute,
and the third absolute moment is hard to calculate, for example, whisrthe sum of r.v.’s.)

Although there has been a great deal of interest in obtaining bounds of such a type, we have
been unable to find a handy and useful lower bound for the “one-sided” probabilify> ¢)

P(X|>¢) =
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2 F.D. LESLEY AND V.I. ROTAR

in the literature. Possibly it is because such a bound, as will be seen, is not so simple in proof,
and can be meaningful only for sufficiently smallHowever we suspect that such results may
exist.

A need for a convenient lower bound for the probability mentioned may arise in many prob-
lems. We encountered such a need recentlylin [1], in the study of the dimension of the sets of
convergence for some random series.

The main result of this note is

Proposition 1.1. For any r.v. X described above, and for amy> 0

K, K K.
(1.1) PX>e)>0 - 2loyp 22
VT (Vi
where absolute constani§, = 2v/3 — 3 ~ 0.464, K; = 1.397, K, = 0.0231.
In particular,
K,
(1.2) P(X >0)> —2.

7!
We show below that the last bound, and hence the con&iaint (1.1), is sharp if

3
(1.3) o> ~ 1.098.
V3 +
Whenp < f , the sharp bound, as will be shown is
(1.4) P(X >0)>

3+pu++/(1+ u
Ther.-h.s of') is equal to the r.-h.s b 1 4) for= 2, and is less for all othew’s. For

nw< f—+ we can choos (14.4), while for > —+ the proper bound i.2). We do not obtain

1 < u < 1.1; second,|(1]1) which is true for gli, may serve well for this range of as well:
say, foru = 1 the sharp bound is certaingl which does not differ much frorn464.

SincekK, is small and the denominator in the third term[of[1.1) is larger than the denominator
in the second term, practically we can restrict ourselves to the bound

(1.5) P(X >¢)> Ko _ ﬁg.
T
This bound is meaningful if
< K
(1.6)
\/—

whereK3; = % > 0.332. The last constant is not sharp. However the restriction of (1.6)
with some constant is necessary for the bouncPf@K > ¢) to be meaningful. For example, as
will be shown, for any: > 1 there exists a r.vX with the above moment conditions, such that

(1.7) P (X > %) = 0.

Certainly, this does not mean thit is equal to one. In particular, we will see below that there
existsy > 1 and a r.v.X with the same moment conditions such that

V3
(1.8) P (X > 7) =0
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This means thak’s should not exceeelzg ~ 0.866.

2. EXAMPLES

(1) The first example is simple and could be used in teachingz Let), and

(2) As is known, and as will be seen in Se

(2.1)

(2.2)

vz with probability L

z+1?
X =

\7—; with probability 2.

For small (or for large): the distribution is “strongly asymmetric”, but{X} =
0, E{X?} =1, and

E{X4}:z+§—1,
which can be equal to any numberl. Settingz + 27! — 1 = u, we getz; = z(u) =
(1 + o+ \/m>/2, 2% = ;- Itis easy to see that < z(u) < 1+ p, and
hence forz = z, ) is true. Straightforward calculations show that > \/% =

¥ and is attained at = 2. So, for thisy d%) holds.

ct/gn 3, the extreme distribution in our problem
is that concentrated at just three points. It is easy to realize also (see, for example, the
next section) that for the case= 0 one of these points is zero. Restricting ourselves
for a while to this case, consider

Via  with probability u,
X=<¢0 with probability 1l — u — v,

—/1b  with probability v,

wherea, b, u, v are positive numbers. Fd&t{X} = 0, F{X?} =1, E{X*} = uone
should have

1 1
avw=bv, dPu+bdv=-, au+bdlv=-,

il
and
O0<u+4+v<1.
It is easy to check that solutions {o (2.1) may be represented as
12—z +1 1z —z+1
V= V=,
poor+1 u x(r+1)
a? = ;’ B = I—Q’
2 —x+1 2 —x+1

wherez > 0 (one can set = +, and solve[(2]1) directly). For example, setting- 1,

we haveu = 3-, v=5-, a=1, b=1,and
H 2p

Vi with probability 5,
x=00 with probability 1 — L,

—/ with probabilityi,
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which certainly is not the extreme case.

To check|(2.2), we note that+ v = (z + 2~ — 1).

Hence for |(2.2) to be true, we should ha%le;) < z < z(u), wherez(u) is the same as
above. In this cas@(X > 0) = L. £=2+1 The minimum of the last expression IS attained at

w z+1
= V3 -1, and in this cas®’(X > 0) = 1(2V/3 - 3) = Z2. Hence, ifz* > _ 5, the bound
(1.9) is sharp.
It is straightforward to verify that* > |ff wo> f— ~ 1.098. If u < —2—, then

V3+1'
the minimum of P(X > 0) is attained atn = zQ(u) = —L.. In this caseP(X = 0) = 0,

z(p)
2> —x+1=pux,and

(2.3) P(x > 0) = —2W

2
L+ 2() 34 p++/( 1+u 2—4
Thus, forpy < f— we attain the bound l 4). For> —=— the r-h.s. of.) is greater
thanfzO

3. PROOF OF PrRoOPOSITION [1.1

We consider an appropriateperbound for P (X < ¢) following the well known method
based on the use of polynomials of a certain order (see, €.9.| [2], [4]). In our case these are
polynomialsg(x) = ag + a7 + axx? + asx* such that for alk:

(31) [[_0075] (Q?) S g(l’)
Then for each such polynomial
(3.2) P(X <e¢) <ag+ ay+ agp.

Minimizing the right-hand side over all polynomials satisfying [3.1), one obtains a sharp upper
bound for the left-hand side; see again, elg., [2], [4]. Considering a smaller class of polynomials
with the same property one would get just an upper bounda liet: > 0, and

g(z) =b(z — a)® [(z + a)* + ka’] = b [(2® — a*)® + ka®*(z — a)?] .

(In this case the coefficient far’ vanishes). Itis easy to check that fok %the functiong has
a local maximum at the point; = a(+/1 — 2k — 1)/2, and local minima at the pointsand

g = —a(l+v1—2k)/2.
Letv = £. Theng(e) = ba*l(v, k), wherel(v, k) = (1 — v*)* + k(1 — v)*. Assume that

(3.3 v <s,
where the number < 1 will be specified later. We have
(v, k) =1+k— 2%+ v* — 2kv + ki/?
<l1+k—2kv—(2-5 -k’
(3.4) <1+4+k—-2kv<1+k,
and
(v, k) =1+k— 2%+ v* — 2kv + ki/?
>1+k—2kv—(2—k)?
>1+k—2kv—(2—Fk)sv
(3.5) =14+k—(2k+(2—-Fk)s)r
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Furthermoreg(x,) = ba*q(k), where
(k) =471 [41 ((1 + M)Q - 4>2 +k (3 + M)Ql

— 41 [2 10k — B — (2 — 4k)VI— Qk} .

The functionA(k) := q(k) — 1 — k is increasing;A(.5) ~ .1875, and A(kg) = 0 for
ko = 6v/3 — 10 ~ .392, which one can verify by direct calculations. Thus, for dng [k, 1]
itis true thatg(k) > 1+ k > l(v, k) and ifg(e) > 1, theng(x) > g(x2) > g(e) > 1 for all
r<e.

We set alsd = 1/a’l(v, k) for g(e) = 1.

Consider ar.vX suchthatt X = 0, EX? = 1, EX* = p. Then

P(X <¢) < B{g9(X)}
=bE { X' —2X%a* + a* + ka®(X? — 2aX + d*)}
=b[(1+k)a" — (2 - k)a® + p
1+k 2—k !

TR Iwhe i ke

So, in view of [3.8),[(3.4) and (3.5)

< 1+E B 2—k n I .
T 14+k—-Q2k+2—-k)s)v (1+k—2kv)a® (1+k—(2k+(2—k)s)v)a
To avoid cumbersome calculations we minimize the last expressiamit taking into account
for a while thatv, as a matter of fact, depends @nThat is, we set

2u(1 + k — 2kv)
1+k—2k+2—-Fk)s)v)(2—Fk)

P(X <¢)

(3.6) a’ =

which implies that

1+ k 1 2-k?Q+k—2k+(2-k)s)v) 1
P(Xég)g1+k—(2k+(2—k)s)u_1' (14 k — 2kv)? T
2k + (2 —Fk)s)v (2 —k)?

=1+

1+k—(2—s)k+2s)v  4u(l+Fk)
(2 — k)2 (1 A+ R +k— 26+ (2 k‘)s)l/)>
Ap(l + k) (14 k — 2kv)? '
It is easy to check that the expression in the last brackets does not exee¥d+ k )k +4k*s +
(1+k)(2—Fk)s]/(1 + Kk — 2kv)>.
Note also that, for, chosen
2u(1 + k — 2ks) < 2u(1+ k)
1+k)2—-k) = ~— (14+k—C2ks+(2—-Fk)s>)(2—-k)
From this it follows that

(2 — k)2 2k + (2 —k)s)
du(14+k) 1+k—2k+(2—-k)s)s
(2—k)? (1+k)(2—Fk)s+4k*s—2(1+k)k e

TSR (1+k — 2kv)? o

P(X<e)<1- -
a
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We now set; = ky, = 61/3 — 10. Then
2 2.7847) B 1.7322u
= (1.3923 — (0.7847s + 1.607752))1.6076  1.3923 — 0.7847s — 1.6077s2’

and
241(1.3923 — 0.7847s)

3.7 2> > 0.89344(1.3923 — 0.7847s).
(3.7) @ 2 = o0 > 0.89344(1.3923 — 0.7847s)

Furthermore, lety = (2 — ko)?/4(1 + ko) = 2v/3 — 3. We consider now < .38, which
implies that(1 + k)(2 — k)s + 4k*s — 2(1 + k)k < 2.90s — 1.09 < 0. Thus

Ky 0.7847 4+ 1.6077s €

P(X<eg)<1—-— .
(Xse)< po 1.3923 —0.7847s — 1.6077s* | /0.8934/1(1.3923 — 0.7847s)
n 0.4641 2.8540s — 1.0924 +/1.3923 — 0.7847s — 1'6077825
1 1.9386 V1.73224

<1_ K, N (1.0570)(0.7847 + 1.6077s) €

- ] 1.3923 — 0.7847s — 1.6077s2 \/M(1-3923 —0.7847s)
—0.1818 - (1.0924 — 2.85405)v/1.3923 — 0.7847s — 1.6077s2 c

/1
K,
(38) 1 No X 01(8)6 _ CQ(S>€

/N /T

On the other hand, the requiremgnt {3.3) meansas, which is true if
£ < C3(s)/in = 5/1.2438 — 0.7011s/;1 < 54/0.89341(1.3923 — 0.7847s) .
(see[B7)).

We chooses for which

Ko
RO T)
The bound|(3]8) is meaningful if
Ko\/li Ko/l
"= W) - G = Gl - Gty = OV

Calculations show that we can choose= 0.3375. In this caseC;(s) > 0.3382, and
(Ko/(Ci(s) — Cy(s)) <0.33793, Ci(s) < 1.3965, Ca(s) > 0.0231. O

Remark 3.1. The proof above is sharp in the case when the infimum of the r.-h.§. ¢f (3.2) is
attained at some polynomial. This is not the case when \/511: in this situation the infimum

iS not attained, and, to make the proof sharp, one should consider a sequence of polynomials
gn(z) such thatg,(¢) — oo. Itis easy to see this, considering, for example, the extreme case

1 = 1. We skipped such calculations.

Remark 3.2. The representation for polynomials could be different. For example, to evaluate
just P(X > 0) it is convenient to consider polynomials of the tyfe) = 1 + kz(z — u)*(z +

2u), wherek, u are constants, which practically immediately would bring ug td (1.2). To get
a bound forP(X > ¢), one could consider the same polynomial replacing the Kvby

X — ¢ (see, e.g., such a sort of reasonind_ in [2]). However in our calculations it led us to worse
constantg{, and K.
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Remark 3.3. The same concerns the direct way based on considering distributions concentrated
at three points (as we did in the previous section). The start is easy but in our calculations it led
to worse constants.
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