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ABSTRACT. In [8] the notion of “projected differential equation” has been introduced and the
stability of solutions has been studied by means of Stampacchia type variational inequalities.
More recently, in [20], Minty variational inequalities have been involved in the study of proper-
ties of the trajectories of such a projected differential equation.
We consider classical generalizations of both problems, namely projected differential inclusions
and variational inequalities with point to set operators, and we extend results stated in [20] to
this setting. Moreover, we also apply the results to describe the convergence of the trajectories
of a generalized gradient inclusion method.
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1. I NTRODUCTION

The relations of Minty and Stampacchia Variational Inequalities [21] with differentiable opti-
mization problems have been widely studied. Basically, it has been proved that the Stampacchia
Variational Inequality (for short, SVI) is a necessary condition for optimality (see e.g. [14]),
while the Minty Variational Inequality (for short, MVI) is a sufficient one (see e.g. [7, 11, 15]).
Generalizations of SVI and MVI to point to set maps have been introduced (see e.g. [4, 9]) and
the previous results have been proved also for non differentiable optimization problems (see
e.g. [5]).

On the other hand, Dynamical Systems (for short, DS) are a classical tool for dealing with
a wide range both of real and mathematical problems. Recently, the existence and stability of
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2 GIOVANNI P. CRESPI ANDMATTEO ROCCA

equilibria of a (projected) DS have been characterized by means of variational inequalities. In
this context it has been proved that existence of a solution of SVI is equivalent to existence of
an equilibrium, while MVI ensures the stability of equilibria (see [8, 20]).

The latter results proved to be useful in deriving a wide variety of applications and a deeper
insight on the dynamic of the adjustment towards an equilibrium. Basically, variational in-
equalities are used to model static equilibria of several economies, such as Cournot oligopoly,
spatial oligopoly, general economic equilibrium and so on [18], while dynamical systems (or
more realistically differential inclusions) are used to describe the path to equilibrium, starting
from a given state of the world (see e.g. [10]). Therefore, the application of variational in-
equalities to dynamical systems allows us to unify static and dynamic aspects in the study of
economic phenomena ([8, 19]). Since both variational inequalities and dynamical systems have
been generalized by means of point to set maps, in this paper we focus on the relations among
variational inequalities with set-valued operator and differential inclusions. As the study in the
single-valued case has dealt with projected DS, we recall in Section 2 the notion of projected
differential inclusion (as in [1]), together with the basic results on variational inequalities. Main
results are proven in Section 3, where existence of solutions of Minty type variational inequali-
ties is related to the monotonicity of trajectories of a projected differential inclusion. Finally, in
Section 4, we apply the results to a generalized gradient inclusion.

2. PRELIMINARIES

We first recall basic results on differential inclusions and variational inequalities. In order
to simplify the notation, we need to make the following standing assumptions, which hold
throughout the paper unless otherwise stated:

i) K denotes a convex and closed subset ofRn;
ii) F denotes an upper semi-continuous (u.s.c.) map fromRn to 2Rn

, with nonempty con-
vex and compact values.

For the sake of completeness, we recall the definition of upper semi-continuity for a set-
valued map:

Definition 2.1. A mapF from Rn to 2Rn
is said to be u.s.c. atx0 ∈ Rn, if for every open setN

containingF (x0), there exists a neighbourhoodM of x0 such thatF (M) ⊆ N . F is said to be
u.s.c. when it is so at everyx0 ∈ Rn.

2.1. Differential Inclusions. We start by recalling from [1] the following result about projec-
tion:

Theorem 2.1.We can associate to everyx ∈ Rn a unique elementπK(x) ∈ K, satisfying:

‖x− πK(x)‖ = min
y∈K

‖x− y‖.

It is characterized by the following inequality:

〈πK(x)− x, πK(x)− y〉 ≤ 0, ∀y ∈ K.

Furthermore the mapπK(·) is non expansive, i.e.:

‖πK(x)− πK(y)‖ ≤ ‖x− y‖.

The mapπK is said to be the projector (of best approximation) ontoK. WhenK is a linear
subspace, thenπK is linear (see [1]). We setπK(0) = m(K) (i.e. m(K) denotes the element of
K with minimal norm). For our aims, we set also:

πK(A) =
⋃
x∈A

πK(x).
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M INTY VI AND MONTONE TRAJECTORIES OFDI 3

The following notation should be common:

C− = {v ∈ Rn : 〈v, a〉 ≤ 0,∀a ∈ C}
is the (negative) polar cone of the setC ⊆ Rn, while:

T (C, x) = {v ∈ Rn : ∃vn → v, αn > 0, αn → 0, x + αnvn ∈ C}
is the Bouligand tangent cone to the setC atx ∈ clC andN(C, x) = [T (C, x)]− stands for the
normal cone toC atx ∈ clC.

It is known thatT (C, x) andN(C, x) are closed sets andN(C, x) is convex. Furthermore,
when we consider a closed convex setK ⊆ Rn, thenT (K, x) = cl cone (K − x) (cone A
denotes the cone generated by the setA), so that the tangent cone is also convex.

Proposition 2.2([1]). LetA be a compact convex subset ofRn, T be a closed convex cone and
N = T− be its polar cone. Then:

(2.1) πT (A) ⊆ A−N.

The elements of minimal norm are equal in the two sets:

m(πT (A)) = m(A−N)

and satisfy:
sup
z∈−A

〈z, m(πT (A))〉+ ‖m(πT (A)‖2 ≤ 0.

We recall that, given a mapG : K ⊆ Rn → 2Rn
, a differential inclusion is the problem of

finding an absolutely continuous functionx(·), defined on an interval[0, T ], such that:{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ G(x(t)).

The solutions of the previous problem are called alsotrajectoriesof the differential inclusion.
Moreover, anyx(·) such that:{

∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) = m(G(x(t)))

is called aslow solutionof the differential inclusion.
We are concerned with the following problem, which is a special case of differential inclu-

sion.

Problem 1. Find an absolutely continuous functionx(·) from [0, T ] into Rn, satisfying:

(DV I(F, K))

{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ −F (x(t))−N(K, x(t))

In [1], the previous problem is referred to as a “differential variational inequality” (for short,
DV I) and it is proven to be equivalent to a “projected differential inclusion” (for short,PDI).

Theorem 2.3.The solutions of Problem 1 are the solutions of:

(PDI(F, K))

{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ πT (K,x(t)) (−F (x(t)) ,

and conversely.

Remark 2.4. We recall that whenF is a single-valued operator, then the corresponding “pro-
jected differential equation” and its applications have been studied for instance in [8, 19, 20].

Theorem 2.5([1]). The slow solutions of (DV I(F, K)) and (PDI(F, K)) coincide.
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4 GIOVANNI P. CRESPI ANDMATTEO ROCCA

Definition 2.2. A point x∗ ∈ K is an equilibrium point for (DV I(F, K)), when:

0 ∈ −F (x∗)−N(K, x∗).

We recall the following existence result.

Theorem 2.6. a) If K is compact, then there exists an equilibrium point for (DV I(F, K)).

b) If m(F (·)) is bounded, then, for anyx0 ∈ K there exists an absolutely continuous
functionx(t) defined on an interval[0, T ], such that:{

x(0) = x0, x′(t) ∈ −F (x(t))−NK(x(t)) for a.a.t ∈ [0, T ],
∀t ∈ [0, T ], x(t) ∈ K.

Finally we recall the notion of monotonicity of a trajectory of (DV I(F, K)), as stated in [1],
which plays a crucial role for our main results.

Definition 2.3. Let V be a function fromK to R+. A trajectoryx(t) of (DV I(F, K)) is mono-
tone (with respect toV ) when:

∀t ≥ s, V (x(t))− V (x(s)) ≤ 0.

If the previous inequality holds strictly∀t > s, then we say thatx(t) is strictly monotone w.r.t.
V .

We are mainly concerned with the case when the previous definition applies w.r.t. the func-
tion:

Ṽx∗(x) =
‖x− x∗‖2

2
,

wherex∗ is an equilibrium point of (DV I(F, K)).
We need also the following result which relates the monotonicity of trajectories and Liapunov

functions.

Theorem 2.7([1]). LetK be a subset ofRn and letV : K → R+ be a differentiable function.
Assume that for allx0 ∈ K, there existsT > 0 and a trajectoryx(·) defined on[0, T ) of the
differential inclusionx′(t) ∈ F (x(t)), x(0) = x0, satisfying:

∀s ≥ t, V (x(s))− V (x(t)) ≤ 0.

ThenV is a Liapunov function forF , that is∀x ∈ K, ∃ξ ∈ F (x), such that〈V ′(x), ξ〉 ≤ 0.

2.2. Variational Inequalities. Although we are mainly concerned with Minty type variational
inequalities, in this section we also state the Stampacchia variational inequality and exploit some
relations between the two formulations. The Minty lemma, which constitutes the main result
for this section, legitimizes the Minty formulation we present for the variational inequality. The
notation is classical (see for instance [4, 9, 12]):

Definition 2.4. A point x∗ ∈ K is a solution of a Stampacchia Variational Inequality (for short,
SVI) when∃ξ∗ ∈ F (x∗) such that:

(SV I(F, K)) 〈ξ∗, y − x∗〉 ≥ 0, ∀y ∈ K.

Definition 2.5. A point x∗ ∈ K is a solution of a Strong Minty Variational Inequality (for short,
SMV I), when:

(SMV I(F, K)) 〈ξ, y − x∗〉 ≥ 0, ∀y ∈ K, ∀ξ ∈ F (y).
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Definition 2.6. A point x∗ ∈ K is a solution of a Weak Minty Variational Inequality (for short,
WMV I), when∀y ∈ K, ∃ξ ∈ F (y) such that:

(WMV I(F, K)) 〈ξ, y − x∗〉 ≥ 0.

Definition 2.7. If in Definition 2.5 (resp. 2.6), strict inequality holds∀y ∈ K, y 6= x∗, then we
say thatx∗ is a “strict” solution of (SMV I(F, K)) (resp. of (WMV I(F, K))).

Remark 2.8. WhenF is single valued, Definitions 2.5 and 2.6 reduce to the classical notion of
MV I. (see e.g. [2, 21]).

The classical Minty Lemma (see for instance [17]) relates the Minty Variational Inequalities
and Stampacchia Variational Inequalities, whenF is a single valued operator. The following
result gives an extension to the case in whichF is a point-to-set map. We recall first the
following definition (see e.g. [12]).

Definition 2.8. F is said to be:

i) monotone, if for allx, y ∈ K, we have:

∀u ∈ F (x), ∀v ∈ F (y) : 〈v − u, y − x〉 ≥ 0;

ii) pseudo-monotone (resp. strictly pseudo-monotone), if for allx, y ∈ K (resp. for all
x, y ∈ K with y 6= x) the following implication holds:

∃u ∈ F (x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ F (y) : 〈v, y − x〉 ≥ 0;(
∃u ∈ F (x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ F (y) : 〈v, y − x〉 > 0

)
Remark 2.9. The following relations among different classes of monotone maps are classical:

monotone⇒ pseudomonotone
⇑

strictly pseudomonotone.

Lemma 2.10. i) Anyx∗ ∈ K, which solves (WMV I(F, K)), it is a solution of (SV I(F, K))
as well.

ii) If F is a pseudo-monotone map, any solution of (SV I(F, K)) also solves (SMV I(F, K)).
iii) If F is a strictly pseudo-monotone map, any solution of (SV I(F, K)) is a strict solution

of (SMV I(F, K)).

Proof. i) Let z be an arbitrary point inK and considery = x∗ + t(z − x∗) ∈ K, where
t ∈ (0, 1). Sincex∗ solves (WMV I(F, K)), we have that∀t ∈ (0, 1), ∃ξ = ξ(t) ∈
F (x∗ + t(z − x∗)), such that:

〈ξ(t), t(z − x∗)〉 ≥ 0,

that is:
〈ξ(t), z − x∗〉 ≥ 0.

SinceF is u.s.c., we get that for any integern > 0, there exists a numberδn > 0 such
that, fort ∈ (0, δn] the following holds:

F
(
x∗ + t(z − x∗)

)
⊆ F (x∗) +

1

n
B.

Hence, fort ∈ (0, δn], ξ(t) = f(t)+γ(t), wheref(t) ∈ F (x∗) andγ(t) ∈ 1
n
B. Without

loss of generality we can assumeδn < 1 ∀n and we have:

0 ≤ 〈ξ(t), z − x∗〉 = 〈f(t), z − x∗〉+ 〈γ(t), z − x∗〉.
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Furthermore, by the Cauchy-Schwartz inequality, we get:

|〈γ(t), z − x∗〉| ≤ ‖γ(t)‖ ‖z − x∗‖ ≤ 1

n
‖z − x∗‖,

so that, choosing in particular,t = δn, we obtain:

〈f(δn), z − x∗〉 ≥ − 1

n
‖z − x∗‖.

Recalling thatF (x∗) is a compact set, whenn → +∞ we can assume thatf(δn) →
f̄ ∈ F (x∗) and we get:

(2.2) 〈f̄ , z − x∗〉 ≥ 0.

By the former construction, we have that∀z ∈ K, there exists̄f = f̄(z) ∈ F (x∗) such
that (2.2) holds.

SinceF is convex and compact-valued, then, from Lemma 1 in [3], we get the result.
The proof of ii) and iii) is trivial. �

Remark 2.11.
i) Since every solution of (SMV I(F, K)) is also a solution of (WMV I(F, K)), then,

from the previous theorem we obtain that, ifF is pseudo-monotone, the solution sets of
(WMV I(F, K)), (SMV I(F, K)) and (SV I(F, K)) coincide.

ii) It is easy to prove that if (SMV I(F, K)) admits a strict solutionx∗, then,x∗ is the
unique solution of (SV I(F, K)).

iii) It is also seen thatx∗ ∈ K is an equilibrium point for (DV I(F, K)) if and only if it is a
solution of (SV I(F, K)).

3. VARIATIONAL I NEQUALITIES AND M ONOTONICITY OF TRAJECTORIES

Our main results concern the relations between the solutions of Minty variational inequalities
and the monotonicity of trajectories of (DV I(F, K)), w.r.t. the functionṼx∗.

Theorem 3.1.If x∗ ∈ K is a solution of (SMV I(F, K)), then every trajectoryx(t) of (DV I(F, K))
is monotone w.r.t. functioñVx∗.

Proof. We observe that, under the hypotheses of the theorem,x∗ is an equilibrium point of
(DV I(F, K)) (recall Lemma 2.10 and Remark 2.11 point iii)). Sincex(t) is differentiable a.e.,
so isv(t) = Ṽx∗(x(t)) and we have (at least a.e.):

v′(t) = 〈Ṽ ′
x∗(x(t)), x′(t)〉

= 〈x′(t), x(t)− x∗〉
= 〈−ξ(x(t))− nK(x(t)), x(t)− x∗〉,

whereξ(x(t)) ∈ F (x(t)) andnK(x(t)) ∈ N(K, x(t))). Hencev′(t) ≤ 0 for a.a. t ≥ 0 and
hence, fort2 > t1:

v(t2)− v(t1) =

∫ t2

t1

v′(τ)dτ ≤ 0.

�

Corollary 3.2. Let x∗ be an equilibrium point of (DV I(F, K)) and assume thatF is pseudo-
monotone. Then every trajectory of (DV I(F, K)) is monotone w.r.t. functioñVx∗.

Proof. It is immediate upon combining Lemma 2.10 and Theorem 3.1. �

The following theorem, somehow reverts the previous implication.
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Theorem 3.3. Let x∗ be an equilibrium point of (DV I(F, K)). If for any pointx ∈ K there
exists a trajectory of (DV I(F, K)) starting atx and monotone w.r.t. functioñVx∗, thenx∗ solves
(WMV I(F, K)).

Proof. Let x̄ ∈ ri K (the relative interior ofK) be the initial condition for a trajectoryx(t)
of (DV I(F, K)) and assume thatx(t) is monotone w.r.t.Ṽx∗. If we denote byL the smallest
affine subspace generated byK and setS = L − x̄, for x ∈ K ∩ U , whereU is a suitable
neighbourhood of̄x, we haveT (K, x) = S andN(K, x) = S⊥ (the subspace orthogonal to
S). So, if x(t) is a trajectory of (DV I(F, K)) that starts at̄x, then, fort "small enough" (say
t ∈ [0, T ]), it remains inri K ∩ U and satisfies (recall Theorem 2.3):{

for all t ∈ [0, T ], x(t) ∈ K;
for a.a.t ∈ [0, T ], x′(t) ∈ πS(−F (x(t)).

SinceS is a subspace,πS is a linear operator; henceπS(−F (x(t)) is compact and convex
∀t ∈ [0, T ] and furthermoreπS(−F (·)) is u.s.c.

Applying Theorem 2.7 we obtain the existence of a vectorµ ∈ πS(−F (x̄)), such that
〈Ṽ ′

x∗(x̄), µ〉 ≤ 0. Taking into account inclusion (2.1), we haveµ = −ξ(x̄) − n(x̄), where
ξ(x̄) ∈ F (x̄) andn(x̄) ∈ S⊥. Hence:

〈Ṽ ′
x∗(x̄), µ〉 = 〈−ξ(x̄)− n(x̄), x̄− x∗〉

= 〈−ξ(x̄), x̄− x∗〉+ 〈n(x̄), x∗ − x̄〉 ≤ 0,

from which it follows, since〈n(x̄), x∗ − x̄〉 = 0:

〈ξ(x̄), x̄− x∗〉 ≥ 0.

Sincex̄ is arbitrary inri K, we have:

〈ξ(x), x− x∗〉 ≥ 0, ∀x ∈ ri K.

Now, let x̃ ∈ cl K\ri K. Sincecl K = cl ri K, thenx̃ = lim xk, for some sequence{xk} ∈ ri K
and:

〈ξ(xk), xk − x∗〉 ≥ 0, ∀k.

There exists a closed ball̄B(x̃, δ), with centre inx̃ and radiusδ, such thatxk is contained in the
compact set̄B(x̃, δ) ∩K and sinceF is u.s.c., with compact images, the set:⋃

y∈B̄(x̃,δ)∩K

F (y)

is compact (see Proposition 3, p. 42 in [1]) and we can assume thatξ(xk) → ξ̃ ∈
⋃

y∈B̄(x̃,δ)∩K F (y).

From the upper semi-continuity ofF , it follows alsoξ̃ ∈ F (x̃) and so:

〈ξ̃, x̃− x∗〉 ≥ 0.

This completes the proof. �

Theorem 3.1 can be strengthened with the following:

Proposition 3.4. Letx∗ be a strict solution of (SMV I(F, K)), then:

i) x∗ is the unique equilibrium point of (DV I(F, K));
ii) every trajectory of (DV I(F, K)), starting at a pointx0 ∈ K and defined on[0, +∞) is

strictly monotone w.r.t.̃Vx∗ and converges tox∗.
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Proof. The uniqueness of the equilibrium point follows from Remark 2.11 point i). The strict
monotonicity of any trajectoryx(t) w.r.t. Ṽx∗ follows along the lines of the proof of Theorem
3.1. Now the proof of the convergence is an application of Liapunov function’s technique.

Let x(t) ∈ K be a solution of (DV I(F, K)), starting at some pointx0 ∈ K, i.e. with
x(0) = x0. Assume, ab absurdo, thatα = limt→+∞ v(t) > 0 = miny∈K Ṽx∗(·), wherev(t) =

Ṽx∗(x(t)). We observe that the limit definingα exists, because of the monotonicity ofv(·) and
to assume it differs from0, it is equivalent to say thatx(t) 6→ x∗. Thus, sincex(t) is monotone
w.r.t. Ṽx∗, we have∀t ≥ 0:

α ≤ v(t) ≤ δ =
‖x0 − x∗‖2

2
.

Let

L :=

{
x ∈ K : α ≤ ‖x− x∗‖2

2
≤ δ

}
,

we have thatL is a compact set andx∗ 6∈ L, whilex(t) ∈ L, ∀t ≥ 0. Sincex∗ is a strict solution
of (SMV I(F, K)), we have:

〈ξ, y − x∗〉 < 0, ∀y ∈ K, y 6= x∗, ∀ξ ∈ −F (y)

and, in particular:
〈ξ, y − x∗〉 < 0, ∀y ∈ L, ∀ξ ∈ −F (y).

Now, we observe that there exists a numberm > 0, such that:

max
ξ∈−F (y)

〈ξ, y − x∗〉 ≤ −m, ∀y ∈ L.

In fact, if such a number does not exist, we would obtain the existence of sequencesyn ∈ L and
ξn ∈ F (yn), such that:

〈ξn, yn − x∗〉 ≥ − 1

n
.

Sendingn to +∞, we can assume thatyn → ȳ ∈ L. Furthermore, sinceF is u.s.c. with
compact images, the set: ⋃

y∈L

F (y)

is compact and we can also assumeξn → ξ̄ ∈
⋃

y∈L F (y). By the upper semi-continuity ofF ,
it follows alsoξ̄ ∈ F (ȳ) and we get the absurdo:

〈ξ̄, ȳ − x∗〉 ≥ 0.

We have:
v′(t) = 〈x′(t), x(t)− x∗〉 = 〈a(t) + b(t), x(t)− x∗〉,

with a(t) ∈ −F (x(t)), b(t) ∈ −N(K, x(t)) and hence:

v′(t) = 〈a(t), x(t)− x∗〉+ 〈−b(t), x∗ − x(t)〉.
Sincex(t) ∈ L, for t ≥ 0, we have〈a(t), x(t) − x∗〉 ≤ −m, while 〈−b(t), x∗ − x(t)〉 ≤ 0.
Thereforev′(t) ≤ −m, for t ≥ 0. Now, we obtain, forT > 0:

v(T )− v(0) =

∫ T

0

v′(τ)dτ ≤ −mT.

If T = v(0)
m

, we getv(T ) ≤ 0 = miny∈KV (·). But we also have:

v(T ) ≥ α > min
y∈K

V (·) = 0.

Hence a contradiction follows and we must haveα = 0, that isx(t) → x∗. �
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Corollary 3.5. Let x∗ be an equilibrium point of (DV I(F, K)) and assume thatF is strictly
pseudo-monotone. Then properties i) and ii) of the previous proposition hold.

Proof. It is immediate on combining Lemma 2.10 and Proposition 3.4. �

Example 3.1.Let K = R2 and consider the system of autonomous differential equations:

x′(t) = −F (x(t)),

whereF : R2 → R2 is a single-valued map defined as:

F (x, y) =

[
−y + x|1− x2 − y2|
x + y|1− x2 − y2|

]
.

Clearly(x∗, y∗) = (0, 0) is an equilibrium point and one has〈F (x, y), (x, y)〉 ≥ 0 ∀(x, y) ∈
R2, so that(0, 0) is a solution of (SMV I(F, K)) and hence, according to Theorem 3.1, every
solutionx(t) of the considered system of differential equations is monotone w.r.t.Ṽx∗. Anyway,
not all the solutions of the system converge to(0, 0). In fact, passing to polar coordinates, the
system can be written as: {

ρ′(t) = −ρ(t)|1− ρ2(t)|,
θ′(t) = −1

and solving the system, one can easily see that the solutions that start at a point(ρ, θ), with
ρ ≥ 1 do not converge to(0, 0), while the solutions that start at a point(ρ, θ) with ρ < 1
converge to(0, 0). This last fact could be checked by observing that for everyc < 1, (0, 0) is a
strict solution of (SMV I(F, Kc)) where:

Kc := {(x, y) ∈ R2 : x2 + y2 ≤ c}.

4. AN APPLICATION : GENERALIZED GRADIENT I NCLUSIONS

Let f : Ω ⊆ Rn → R be a differentiable function on the open setΩ. Equations of the form:

x′(t) = −f ′(x(t)), x(0) = x0

are called “gradient equations” (see for instance [13]). In [1] an extension of the classical gra-
dient equation to the case in whichf is a lower semi-continuous convex function is considered,
replacing the above gradient equation, with the differential inclusion:

x′(t) ∈ −∂f(x(t)), x(0) = x0,

where∂f denotes the subgradient off .
Here, we consider a locally Lipschitz functionf : Ω ⊆ Rn → R, whereΩ is an open set

containing the closed convex setK, and the DVI:

(DV I(∂Cf, K))

{
∀t ∈ [0, T ], x(t) ∈ K,
for a.a.t ∈ [0, T ], x′(t) ∈ −∂Cf(x(t))−N(K, x(t)),

where∂Cf(x) denotes Clarke’s generalized gradient off atx [6], with the aim of studying the
behaviour of its trajectories. For the sake of completeness we recall the following definitions.

Definition 4.1. Let f be a locally Lipschitz function fromK to R. Clarke’s generalized gradient
of f atx is the subset ofRn, defined as:

∂Cf(x) = conv
{
lim f ′(xk) : xk → x, f is differentiable atxk

}
(heref ′ denotes the gradient off andconv A stands for the convex hull of the setA ⊆ Rn).
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Definition 4.2 ([16]). We say that∂Cf is semistrictly pseudo-monotone onK, when for every
x, y ∈ K, with f(x) 6= f(y), we have:

∃u ∈ ∂Cf(x) : 〈u, y − x〉 ≥ 0 ⇒ ∀v ∈ ∂Cf(y) : 〈v, y − x〉 > 0.

Clearly, if ∂Cf is strictly pseudo-monotone, then it is also semistrictly pseudo-monotone.

Definition 4.3. i) f is said to be pseudo-convex onK when∀x, y ∈ K, with f(y) > f(x),
there exists a positive numbera(x, y), depending onx andy and a numberδ(x, y) ∈
(0, 1], such that:

f(λx + (1− λ)y) ≤ f(y)− λa(x, y), ∀λ ∈ (0, δ(x, y)).

ii) f is said to be strictly pseudo-convex if the previous inequality holds wheneverf(y) ≥
f(x), x 6= y.

Theorem 4.1([16]). i) Assume that∂Cf is semistrictly pseudo-monotone on an open con-
vex setA ⊆ Rn. Thenf is pseudo-convex onA.

ii) Assume that∂Cf is strictly pseudo-monotone on an open convex setA. Thenf is strictly
pseudo-convex onA.

Remark 4.2. Strictly pseudo-monotone and semistrictly pseudo-monotone maps are called re-
spectively “strictly quasi-monotone” and “semistrictly quasi-monotone” in [16].

Definition 4.4. We say that a functionf : Rn → R is inf-compact on the closed convex setK,
when∀c ∈ R, the level sets:

lev≤cf :=
{
x ∈ K : f(x) ≤ c

}
are compact.

Remark 4.3. Clearly, if f is inf-compact onK the setargmin(f, K) of minimizers off over
K is compact. The converse does not hold.

Proposition 4.4. Let x(t) be a slow solution of (DV I(∂Cf, K)) defined on[0, T ]. Then,
∀s1, s2 ∈ [0, T ] with s2 ≥ s1, we have:

f(x(s2))− f(x(s1)) ≤ −
∫ s2

s1

‖m(−∂Cf(x(s))−N(K,x(s)))‖2ds.

Hence the functiong(t) = f(x(t)) is non-increasing andlimt→+∞ f(x(t)) exists.

Proof. Since a locally Lipschitz function is differentiable a.e., the functiong(t) = f(x(t)) is
differentiable a.e., withg′(t) = f ′(x(t))x′(t) andx′(t) ∈ m(−∂Cf(x(t))−N(K, x(t))) for a.a.
t . Recalling (Theorem 2.5) that the slow solutions of (DV I(∂Cf, K)) coincide with the slow
solutions ofPDI(∂Cf, K) and thatf ′(x(t)) ∈ ∂Cf(x(t)) [6], we have from Proposition 2.2:

sup
z∈∂Cf(x(t))

〈z, m(−∂Cf(x(t))−N(K, x(t)))〉+ ‖m(−∂Cf(x(t))−N(K, x(t)))‖2 ≤ 0

and for a.a.t, we get:

g′(t) = f ′(x(t))x′(t) ≤ −‖m(−∂Cf(x(t))−N(K, x(t)))‖2 ≤ 0,

from which we deduce:

f(x(s2))− f(x(s1)) ≤ −
∫ s2

s1

‖m(−∂Cf(x(s))−N(K, x(s)))‖2ds ≤ 0.

The second part of the theorem is now an immediate consequence. �
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Proposition 4.5. Suppose thatf achieves its minimum overK at some point. Assume that∂Cf
is a semistrictly pseudo-monotone map and thatf is inf-compact. Then every slow solutionx(t)
of (DV I(∂Cf, K)) defined on[0, +∞), is such that:

lim
t→+∞

f(x(t)) = min
x∈K

f(x).

Furthermore, every cluster point ofx(t) is a minimum point forf overK.

Proof. Letx(t) be a slow solution starting atx0 = x(0) and ab absurdo, assume thatlim
t→+∞

f(x(t))

= α > minx∈K f(x). The set:

Z = {x ∈ K : α ≤ f(x) ≤ f(x0)}.
is compact, sincef is inf-compact andargmin(f, K) ∩ Z = ∅. If we setA = {x(t), t ∈
[0, +∞)}, then we getcl A ⊆ Z (recall Proposition 4.4), and henceargmin(f, K) ∩ cl A = ∅.
If x∗ ∈ argmin(f, K), then it is an equilibrium point of (DV I(∂Cf, K)) (see [6]), that is:

0 ∈ ∂Cf(x∗) + N(K, x∗),

and this is equivalent (see point iii) of Remark 2.11) to the fact thatx∗ solves(SV I(∂Cf, K)),
that is, to the existence of vectorv ∈ ∂Cf(x∗) such that:

〈v, x− x∗〉 ≥ 0, ∀x ∈ K.

It follows also:〈v, a−x∗〉 ≥ 0, ∀a ∈ cl A and since∂Cf is semistrictly pseudo-monotone, we
have (observe thatf(a) 6= f(x∗) ∀a ∈ cl A):

〈w, a− x∗〉 < 0, ∀w ∈ −∂Cf(a), ∀a ∈ cl A.

Observing thatcl A is a compact set, as in the proof of Theorem 3.4, it follows that there exists
a positive numberm such that:

〈w, a− x∗〉 < −m, ∀w ∈ −∂Cf(a), ∀a ∈ cl A.

Hence, lettingv(t) = ‖x(t)−x∗‖2
2

, as in the proof of Theorem 3.4, we obtainv′(t) ≤ −m for a.a.
t and hence, forT > 0:

v(T )− v(0) =

∫ T

0

v′(τ)dτ ≤ −mT.

For T = v(0)/m, we obtainv(T ) ≤ 0, that isv(T ) = 0 and hencex(T ) = x∗, but this is
absurdo, since the setA does not intersectargmin(f, K).

Now the last assertion of the theorem is obvious. �

The previous result can be strengthened using the results of Section 3.

Proposition 4.6. Let f be a function that achieves its minimum overK at some pointx∗ and
assume thatx∗ is a strict solution of(SMV I(∂Cf, K)). Then every solution defined on[0, +∞)
of (DV I(∂Cf, K)) is strictly monotone w.r.t.̃Vx∗ and converges tox∗.

Proof. It is immediate recalling that ifx∗ is a minimum point forf overK, then it is an equi-
librium point of (DV I(∂Cf, K)) and applying Proposition 3.4. �

Remark 4.7. If x∗ is a strict solution of(SMV I(∂Cf, K)), then it can be proved thatf is
strictly increasing along rays starting atx∗. The proof is similar to that of Proposition 4 in [7].

Corollary 4.8. Letf be a function that achieves its minimum overK at some pointx∗. If ∂Cf is
strictly pseudo-monotone, thenx∗ is the unique minimum point forf overK and every solution
of (DV I(∂Cf, K)) defined on[0, +∞) converges tox∗.
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Proof. Recall that, under the hypotheses,f is strictly pseudo-convex (Theorem 4.1) and hence it
follows easily thatx∗ is the unique minimum point off overK. The proof is now an immediate
consequence of Corollary 3.5. �
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