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ABSTRACT. In [8] the notion of “projected differential equation” has been introduced and the
stability of solutions has been studied by means of Stampacchia type variational inequalities.
More recently, in[[20], Minty variational inequalities have been involved in the study of proper-
ties of the trajectories of such a projected differential equation.

We consider classical generalizations of both problems, namely projected differential inclusions
and variational inequalities with point to set operators, and we extend results stdted in [20] to
this setting. Moreover, we also apply the results to describe the convergence of the trajectories
of a generalized gradient inclusion method.
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1. INTRODUCTION

The relations of Minty and Stampacchia Variational Inequalities [21] with differentiable opti-
mization problems have been widely studied. Basically, it has been proved that the Stampacchia
Variational Inequality (for short, SVI) is a necessary condition for optimality (see e.g. [14]),
while the Minty Variational Inequality (for short, MVI) is a sufficient one (see €.g. [7, 11, 15]).
Generalizations of SVI and MVI to point to set maps have been introduced (see€ €.g. [4, 9]) and
the previous results have been proved also for non differentiable optimization problems (see
e.g. [5]).

On the other hand, Dynamical Systems (for short, DS) are a classical tool for dealing with
a wide range both of real and mathematical problems. Recently, the existence and stability of
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2 GIOVANNI P. CRESPI ANDMATTEO ROCCA

equilibria of a (projected) DS have been characterized by means of variational inequalities. In
this context it has been proved that existence of a solution of SVI is equivalent to existence of
an equilibrium, while MVI ensures the stability of equilibria (see [8, 20]).

The latter results proved to be useful in deriving a wide variety of applications and a deeper
insight on the dynamic of the adjustment towards an equilibrium. Basically, variational in-
equalities are used to model static equilibria of several economies, such as Cournot oligopoly,
spatial oligopoly, general economic equilibrium and solon [18], while dynamical systems (or
more realistically differential inclusions) are used to describe the path to equilibrium, starting
from a given state of the world (see e.q. [[10]). Therefore, the application of variational in-
equalities to dynamical systems allows us to unify static and dynamic aspects in the study of
economic phenomena ([8,/19]). Since both variational inequalities and dynamical systems have
been generalized by means of point to set maps, in this paper we focus on the relations among
variational inequalities with set-valued operator and differential inclusions. As the study in the
single-valued case has dealt with projected DS, we recall in S€dtion 2 the notion of projected
differential inclusion (as ir J1]), together with the basic results on variational inequalities. Main
results are proven in Sectiph 3, where existence of solutions of Minty type variational inequali-
ties is related to the monotonicity of trajectories of a projected differential inclusion. Finally, in
Sectior] 4, we apply the results to a generalized gradient inclusion.

2. PRELIMINARIES

We first recall basic results on differential inclusions and variational inequalities. In order
to simplify the notation, we need to make the following standing assumptions, which hold
throughout the paper unless otherwise stated:

i) K denotes a convex and closed subsek'af
i) F denotes an upper semi-continuous (u.s.c.) map fkrto 28", with nonempty con-
vex and compact values.

For the sake of completeness, we recall the definition of upper semi-continuity for a set-
valued map:

Definition 2.1. A map F from R" to 2" is said to be u.s.c. at, € R", if for every open sefv
containingF'(x), there exists a neighbourhodd of x, such that?’(AM) C N. F'is said to be
u.s.c. whenitis so at eveny, € R".

2.1. Differential Inclusions. We start by recalling fromi |1] the following result about projec-
tion:

Theorem 2.1. We can associate to everyc R™ a unique elementy (z) € K, satisfying:
lz — 7 ()| = nain [l — y]].
It is characterized by the following inequality:
(T (z) — 2, mr () —y) <0, Vy € K.
Furthermore the mapx(+) is non expansive, i.e.:
7k (@) = 7 ()| < llz—yll.

The mapr, is said to be the projector (of best approximation) oRtoWhen K is a linear
subspace, then is linear (seel[1]). We setx (0) = m(K) (i.e. m(K) denotes the element of
K with minimal norm). For our aims, we set also:

mx(A) = | mx(2).

z€A

J. Inequal. Pure and Appl. Mathb(2) Art. 48, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MINTY VI AND MONTONE TRAJECTORIES ODI 3

The following notation should be common:
C™={veR": (v,a) <0,Va € C}
is the (negative) polar cone of the getC R", while:
TC,z)={veR": v, »v, a, >0, a, — 0, x+ v, € C}

is the Bouligand tangent cone to the 6eatz € clC andN(C, z) = [T(C, z)]~ stands for the
normal cone ta@' atz € clC.

It is known thatT'(C, z) and N(C, x) are closed sets an¥l(C, ) is convex. Furthermore,
when we consider a closed convex $etC R”, thenT (K, z) = clcone (K — z) (cone A
denotes the cone generated by thedeo that the tangent cone is also convex.

Proposition 2.2([1]). Let A be a compact convex subsefif, 7" be a closed convex cone and
N =T~ be its polar cone. Then:

(2.1) mr(A) CA—N.
The elements of minimal norm are equal in the two sets:
m(mr(A)) =m(A—N)

and satisfy:
sup {z,m(rr(A))) + lm(rz(A)]* < 0.
zEeE—
We recall that, given a ma@ : K C R* — 2®", a differential inclusion is the problem of
finding an absolutely continuous functief), defined on an interval, 7'], such that:

{ vt € [0,T), z(t) € K,
for a.a.t € [0,7], 2'(t) € G(z(t)).

The solutions of the previous problem are called atagectoriesof the differential inclusion.
Moreover, anyz(-) such that:

{ vt €10, 7], x(t) € K,
for a.a.t € [0,7], 2/(t) = m(G(z(t)))

is called aslow solutionof the differential inclusion.
We are concerned with the following problem, which is a special case of differential inclu-
sion.

Problem 1. Find an absolutely continuous functiai-) from [0, 7] into R, satisfying:
vt € [0, 7], x(t) € K,
for a.a.t €[0,7], 2/(t) € —F(z(t)) — N(K,z(t))

In [1], the previous problem is referred to as a “differential variational inequality” (for short,
DVI) and it is proven to be equivalent to a “projected differential inclusion” (for shfoR/).

(DVI(F, K))

Theorem 2.3. The solutions of Problefrj 1 are the solutions of:

{ vt €10, T, z(t) € K,

(PDI(F, K)) for a.a.t € [0,7], 2'(t) € Trrz) (—F(z(t)),

and conversely.

Remark 2.4. We recall that wherF' is a single-valued operator, then the corresponding “pro-
jected differential equation” and its applications have been studied for instance inl[8] 19, 20].

Theorem 2.5([1])). The slow solutions of @V I(F, K)) and (PDI(F, K)) coincide.
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Definition 2.2. A pointz* € K is an equilibrium point fofDVI(F, K)), when:
0€ —F(z") — N(K,z").
We recall the following existence result.

Theorem 2.6. a) If K is compact, then there exists an equilibrium point /(I (F, K)).

b) If m(F(-)) is bounded, then, for any, € K there exists an absolutely continuous
functionz(t) defined on an intervdD, 7], such that:

{ z(0) = zg, 2/(t) € —F(x(t)) — Ng(z(t)) fora.a.t € 0,77,
vVt e [0,T], «(t) € K.

Finally we recall the notion of monotonicity of a trajectory @Y I (F, K)), as stated in |1],
which plays a crucial role for our main results.

Definition 2.3. Let V' be a function fromik to R*. A trajectoryx(t) of (DV I(F, K)) is mono-
tone (with respect t&) when:

Vit >s, V(x(t)) —V(z(s)) <0.

If the previous inequality holds strictlyt > s, then we say that(¢) is strictly monotone w.r.t.
V.

We are mainly concerned with the case when the previous definition applies w.r.t. the func-
tion:
- lz — 2|2
Vi () = ————,
(2) =

wherez* is an equilibrium point off DVI(F, K)).
We need also the following result which relates the monotonicity of trajectories and Liapunov
functions.

Theorem 2.7([1]). Let K be a subset dR™ and letV : K — R* be a differentiable function.
Assume that for alk, € K, there existd” > 0 and a trajectoryz(-) defined on0,T") of the
differential inclusionz’(t) € F(x(t)), z(0) = z,, satisfying:

Vs >t, V(x(s)) —V(x(t)) <O.
ThenV is a Liapunov function fo¥', that isVx € K, 3¢ € F(z), such thatV’(z),£) < 0.

2.2. Variational Inequalities. Although we are mainly concerned with Minty type variational
inequalities, in this section we also state the Stampacchia variational inequality and exploit some
relations between the two formulations. The Minty lemma, which constitutes the main result
for this section, legitimizes the Minty formulation we present for the variational inequality. The
notation is classical (see for instance([4, 9, 12]):

Definition 2.4. A pointz* € K is a solution of a Stampacchia Variational Inequality (for short,
SVI) when3¢* € F(z*) such that:

(SVI(F,K)) (& y—a") >0, Vyek.

Definition 2.5. A pointz* € K is a solution of a Strong Minty Variational Inequality (for short,
SMVI), when:

(SMVI(F, K)) (& y—1a) >0, Yy € K, V¢ € F(y).
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Definition 2.6. A point z* € K is a solution of a Weak Minty Variational Inequality (for short,
WMVI), whenVy € K, 3¢ € F(y) such that:

(WMVI(F, K)) (§y—=7) 20

Definition 2.7. If in Definition[2.5 (resp[ 2J6), strict inequality holdg € K, y # =*, then we
say thatz* is a “strict” solution of SMV I(F, K))) (resp. of (¥ MV I(F, K))).

Remark 2.8. WhenF is single valued, Definitior]s 2.5 ahd P.6 reduce to the classical notion of
MVI. (see e.g.l]2, 21]).

The classical Minty Lemma (see for instancel[17]) relates the Minty Variational Inequalities
and Stampacchia Variational Inequalities, whéms a single valued operator. The following
result gives an extension to the case in whichs a point-to-set map. We recall first the
following definition (see e.gl [12]).

Definition 2.8. F'is said to be:
1) monotone, if for allx, y € K, we have:

Yu € F(x), Yo € F(y) : (v—u,y—x) >0

i) pseudo-monotone (resp. strictly pseudo-monotone), if forall € K (resp. for all
x,y € K with y # x) the following implication holds:

Jue F(z): (u,y—x) >0=>Yve F(y): (v,y —x) >0
(Gue Fz): (u,y—z) >0=VYv € F(y) : (v,y —x) > 0)
Remark 2.9. The following relations among different classes of monotone maps are classical:
monotone= pseudomonotone

i

strictly pseudomonotone.

Lemma 2.10. i) Anyz* € K, which solvesi’ MV I(F, K)), itis a solution of[(VI(F, K))
as well.

i) If F'is a pseudo-monotone map, any solutiofdf { (F, K)) also solves§ MV I(F, K)).

iii) If F'is a strictly pseudo-monotone map, any solutiofSf { (F, K)) is a strict solution
of (SMVI(F, K)).

Proof. i) Let z be an arbitrary point i and considey = z* + t(z — 2*) € K, where
t € (0,1). Sincez* solves [(VMVI(F, K)), we have thavt € (0,1), 3¢ = £(t) €
F(z* 4 t(z — x*)), such that:

{€(t),t(z —z7)) =20,

that is:

<§<t>72 - I*> 2 0.
SincefF’ is u.s.c., we get that for any integer> 0, there exists a numbeéy, > 0 such
that, fort € (0, 6,,] the following holds:

F(z* +t(z —2*)) C F(z*) + %B.

Hence, fort € (0,6,], £(t) = f(t)+~(t), wheref(t) € F(z*) andy(t) € + B. Without
loss of generality we can assude< 1 Vn and we have:

0 <€),z —a") = (f{t),z = 2") + {7(1), 2 = 27).
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Furthermore, by the Cauchy-Schwartz inequality, we get:

* * 1 *
[(r(#), 2 = 2)] < (@)l l2 — 27 < ~[lz = 27,

so that, choosing in particular= 9,,, we obtain:
* 1 *
(f(6n)2 = %) 2 =]l =],

Recalling thatF'(z*) is a compact set, whem — +oo we can assume thgt(é,) —
f € F(z*) and we get:

(2.2) (f,z—a*) >0.

By the former construction, we have that € K, there existy = f(z) € F(z*) such
that (2.2) holds.
SinceF is convex and compact-valued, then, from Lemma Llin [3], we get the result.
The proof of ii) and iii) is trivial. !

Remark 2.11.
i) Since every solution of {MVI(F, K)) is also a solution of i’ MV I(F, K)), then,

from the previous theorem we obtain thatFifis pseudo-monotone, the solution sets of
WMVIF,K)), (SMVI(F,K))and [SVI(F, K)) coincide.
ii) It is easy to prove that ifi§ A/ V I(F, K)) admits a strict solution*, then,z* is the

unique solution ofl§V I (F, K)).

iii) Itis also seen that* € K is an equilibrium point fofDVI(F, K)) if and only if it is a

solution of SV I(F, K)).

3. VARIATIONAL |INEQUALITIES AND MONOTONICITY OF TRAJECTORIES

Our main results concern the relations between the solutions of Minty variational inequalities

and the monotonicity of trajectories @by I(F, K )), w.r.t. the functionV,...
Theorem 3.1.1f z* € K isasolution of § MV I(F, K)), then every trajectory(t) of (DV I (F, K))
is monotone W.r.t. functiof,..

Proof. We observe that, under the hypotheses of the theoxéns an equilibrium point of

(recall Lemma 2.10 and Remdrk 2,11 point iii). Singe) is differentiable a.e.,
soisv(t) = V,-(z(t)) and we have (at least a.e.):
V() = (Vo (2(1)), 2/(2))
= (2'(t),z(t) — =7)
= (=&(x(t)) = nx (x(t)), x(t) — =7),
whereé(z(t)) € F(x(t)) andng(z(t)) € N(K,z(t))). Hencev'(t) < 0 for a.a.t > 0 and
hence, fort, > t;:

o(ts) — v(ty) = / " ()dr < 0.

t1

OJ

Corollary 3.2. Letz* be an equilibrium point of DV I(F, K)) and assume that' is pseudo-
monotone. Then every trajectory @(H{F K)) is monotone w.r.t. functiof...

Proof. It is immediate upon combining Lemrma 2/10 and Thedrerp 3.1. O
The following theorem, somehow reverts the previous implication.

J. Inequal. Pure and Appl. Mathb(2) Art. 48, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MINTY VI AND MONTONE TRAJECTORIES ODI 7

Theorem 3.3. Let z* be an equilibrium point of QVI(F, K)). If for any pointz € K there

exists a trajectory oflpV I (F, K)) starting atz and monotone w.r.t. functior,., thenz* solves
(WMVI(F,K)).

Proof. Let z € ri K (the relative interior ofi) be the initial condition for a trajectory(t)

of (DVI(F, K)) and assume that(t) is monotone w.r.tV,.. If we denote byL the smallest
affine subspace generated BRyand setS = L — z, forx € K N U, whereU is a suitable
neighbourhood off, we haveT' (K,z) = S and N(K,z) = S+ (the subspace orthogonal to
S). So, if z(t) is a trajectory of|[DV I(F, K)) that starts af;, then, fort "small enough" (say
t € [0, 7)), it remains inri K N U and satisfies (recall Theor¢m P.3):

{ forallt € [0,7], x(t) € K;
for a.at €0, 7], 2'(t) € ms(—F(x(t)).

Since S is a subspaceys is a linear operator; hences(—F(z(t)) is compact and convex
Vt € [0, 7] and furthermorerg(—F(-)) is u.s.c.

Applying Theoren{ 2]7 we obtain the existence of a vegtoe wg5(—F(z)), such that
(V'.(z),n) < 0. Taking into account |ncIu3|or. (2.1), we haue= —¢(z) — n(x), where

xT

&(7) € F(z) andn(z) € S*. Hence:
(Vi(®), 1) = (—€(7) — n(T),& — 27)

Sincez is arbitrary inri K, we have:
(&(x),x —2*) >0, Vr eri K.

Now, letz € cl K'\ri K. Sincecl K = clri K, thenz = lim x, for some sequende;} € ri K
and:

(E(xg), o —2%) >0, Vk.

There exists a closed ball(z, 6), with centre inz and radius), such thatr,, is contained in the
compact seB(z, ) N K and sincel’ is u.s.c., with compact images, the set:

U Fu)
yEB(2,6)NK

is compact (see Proposition 3, p. 42(ih [1]) and we can assumgthat— £e UyEB S)NK F(y).
From the upper semi-continuity &, it follows also¢ F(Z) and so:

This completes the proof. O
Theorenj 3.]L can be strengthened with the following:

Proposition 3.4. Letz* be a strict solution ofl § MV [ F, K))), then:

i) z* is the unique equilibrium point ofl{V I (F, K))
i) every trajectory of DV I(F, K)), startlng ata pomtz;o € K and defined o0, +o00) is
strictly monotone w.r.tV,.. and converges to*.
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Proof. The uniqueness of the equilibrium point follows from Renfjark .11 point i). The strict
monotonicity of any trajectory:(t) w.r.t. V,- follows along the lines of the proof of Theorem
[3.1. Now the proof of the convergence is an application of Liapunov function’s technique.
Let 2(t) € K be a solution of[DVI(F, K)), starting at some point, € K, i.e. with
z(0) = zo. Assume, ab absurdo, that= lim,_ o v(t) > 0 = minyex Vo (-), Whereuv(t) =
V,-(z(t)). We observe that the limit defining exists, because of the monotonicity:gdf) and
to assume it differs from, it is equivalent to say that(t) /4 =*. Thus, since:(¢) is monotone
w.r.t. V., we havevt > 0:

Let )
L::{xeK:agwgé},

we have thal is a compact set and ¢ L, whilez(t) € L, Vt > 0. Sincez* is a strict solution
of (SMVI(F, K)), we have:
(§y—27) <0, VYyeK,y#z", V€ —-F(y)
and, in particular:
(& y—a") <0, Vyel, VEe€—F(y).
Now, we observe that there exists a numier 0, such that:

max ({,y —z*) < —m, Vyé€ L.
£e—F(y)

In fact, if such a number does not exist, we would obtain the existence of sequgredsand

&n € F(y,), such that:
1

Sendingn to +oco, we can assume thagt, — 3 € L. Furthermore, sincé’ is u.s.c. with
compact images, the set:
U Fw

yeL
is compact and we can also assugpe— & ¢ Uyer
it follows alsoé € F(y) and we get the absurdo:

3

F(y). By the upper semi-continuity df,

We have:
V(t) = (x (t),w(t) — ") = (a(t) + b(t), 2(t) — ),
with a(t) € —F(xz(t)), b(t) € —N(K, z(t)) and hence:
(0) = (alt) 20) - 2% + (40, 2° — (0}
Sincex(t) € L, fort > 0,
Thereforev'(t) < —m, for

we have(a(t), z(t) — =*) < —m, while (=b(t),z* — z(t)) < 0.
t > 0. Now, we obtain, fotT > 0:

v(T) —v(0) = /0 V' (1)dT < —mT.

If 7= % we getv(T) < 0 = min,exV(-). But we also have:
T) > inV(-) = 0.
v( )_a>£%1[r(1\/() 0

Hence a contradiction follows and we must have- 0, that isz(t) — x*. O
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Corollary 3.5. Letz* be an equilibrium point of DV I(F, K)) and assume thaF’ is strictly
pseudo-monotone. Then properties i) and ii) of the previous proposition hold.

Proof. It is immediate on combining Lemnpa 2|10 and Propositioh 3.4. O

Example 3.1.Let K = R? and consider the system of autonomous differential equations:

'(t) = —F(x(t)),
whereF : R? — R?is a single-valued map defined as:
_ |yl -2 -y
F(xvy)_{ :L’+y|1—x2—y2| .
Clearly (z*,y*) = (0,0) is an equilibrium point and one has'(z,y), (z,y)) > 0V(z,y) €

R?, so that(0, 0) is a solution of MV I(F, K)) and hence, according to Theorgm|3.1, every

solutionz(t) of the considered system of differential equations is monotone W,r.t Anyway,
not all the solutions of the system convergd@o0). In fact, passing to polar coordinates, the
system can be written as:

{ pt) = —pt)|1 - p* (1),
0'(t) = —1

and solving the system, one can easily see that the solutions that start at §opéintvith
p > 1 do not converge t@0,0), while the solutions that start at a poift, #) with p < 1
converge tq0, 0). This last fact could be checked by observing that for evety1, (0,0) is a
strict solution of MV I(F, K.)) where:

K, :={(z,y) e R* :2* +y* < c}.

4. AN APPLICATION : GENERALIZED GRADIENT INCLUSIONS

Let f : Q C R" — R be a differentiable function on the open §etEquations of the form:

2(t) = —f'(x(t), x(0) =z

are called “gradient equations” (see for instance [13])[In [1] an extension of the classical gra-
dient equation to the case in whig¢hs a lower semi-continuous convex function is considered,
replacing the above gradient equation, with the differential inclusion:

/() € =0f(x(1)), (0) = =0,

whered f denotes the subgradient Hf
Here, we consider a locally Lipschitz functigh: 2 C R* — R, where( is an open set
containing the closed convex s&t and the DVI:

{ vt € 10,7, z(t) € K,

(DVI(0c f, K)) for a.at e [0,T), (1) € —of(x(t)) — N(K, (1)),

whered. f () denotes Clarke’s generalized gradientfadt = [6], with the aim of studying the
behaviour of its trajectories. For the sake of completeness we recall the following definitions.

Definition 4.1. Let f be alocally Lipschitz function fronk” to R. Clarke’s generalized gradient
of f atx is the subset dR"”, defined as:

Oof(x) = conv{lim f(zy) : 2y — x, fis differentiable atrk}

(heref’ denotes the gradient gfandconv A stands for the convex hull of the sétC R"™).
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Definition 4.2 ([16]). We say that f is semistrictly pseudo-monotone &, when for every
x,y € K, with f(z) # f(y), we have:

Juedof(z): (uuy—z) >0=>Yv € daf(y): (v,y—x)>0.
Clearly, if Oc f is strictly pseudo-monotone, then it is also semistrictly pseudo-monotone.

Definition 4.3. i) fissaidto be pseudo-convex éhwhenvz,y € K, with f(y) > f(x),
there exists a positive numbe(z, y), depending on: andy and a numbeb(z,y) €
(0, 1], such that:
fQz 4+ (1 =XNy) < fly) = dalz,y), YA€ (0,0(z,y)).
ii) fis said to be strictly pseudo-convex if the previous inequality holds wherféyer>

flz), z#y.

Theorem 4.1([16]). i) Assume thal f is semistrictly pseudo-monotone on an open con-
vex setd C R"™. Thenf is pseudo-convex oA.
i) Assume thal f is strictly pseudo-monotone on an open convexis@thenf is strictly
pseudo-convex oA.

Remark 4.2. Strictly pseudo-monotone and semistrictly pseudo-monotone maps are called re-
spectively “strictly quasi-monotone” and “semistrictly quasi-monotone’ in [16].

Definition 4.4. We say that a functiorf : R” — R is inf-compact on the closed convex g€t
whenvce € R, the level sets:

leve.f :={z € K: f(z) < c}
are compact.

Remark 4.3. Clearly, if f is inf-compact onk the setargmin(f, K') of minimizers of f over
K is compact. The converse does not hold.

Proposition 4.4. Let z(t) be a slow solution of{QV (0 f, K)) defined on[0,T]. Then,
Vs1, so € [0, T] with s, > s1, we have:

fa(s2)) = fla(s1)) < = /52 Im(=0cf(x(s)) — N(K, z(s)))[|*ds.

S1

Hence the functiog(t) = f(x(t)) is non-increasing antim, . , . f(x(t)) exists.

Proof. Since a locally Lipschitz function is differentiable a.e., the functign) = f(x(¢)) is
differentiable a.e., witly' (¢t) = f'(z(t))2'(t) andz’(t) € m(—0c f(x(t)) — N(K, x(t))) for a.a.
¢ . Recalling (Theorerp 2|5) that the slow solutions[B{Z(Jc f, K)) coincide with the slow
solutions of PDI(d¢ f, K) and thatf’(x(t)) € dc f(x(t)) [6], we have from Propositign 2.2:
sup (2, m(=0c f(2(t)) — N(K,z(1))) + [m(=0cf(x(t)) — N(K,z(t)))||* < 0
2€0¢ f(z(t))
and for a.at, we get:

g'(t) = f(z(t)2'(t) < =|lm(=dcf(x(t)) = N(K,z(t)))||* <0,
from which we deduce:

(o2~ JGato) < — [ (=067 () ~ N () s <0

s1

The second part of the theorem is now an immediate consequence. O
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Proposition 4.5. Suppose thaf achieves its minimum ové¢ at some point. Assume thag f
is a semistrictly pseudo-monotone map and thetinf-compact. Then every slow solutioft)
of (DVI(0c f, K)) defined orf0, +00), is such that:

Jim f(a(t)) = min f(z).

Furthermore, every cluster point eft) is a minimum point folf over K.

Proof. Letx(t) be a slow solution starting at = x(0) and ab absurdo, assume tplaP f(z(t))
= o > mingeg f(x). The set:
Z={rxe K:a< f(zx) < f(x)}

is compact, sincg’ is inf-compact anchrgmin(f, K) N Z = (). If we setA = {z(¢),t
0, +00)}, then we getl A C Z (recall Propositiof 4]4), and heneggmin(f, K) Ncl A =
If 2* € argmin(f, K), then it is an equilibrium point offpV' I (0. f, K)) (see[[6]), that is:

0€dcf(z")+ N(K,z%),

and this is equivalent (see point iii) of Remark 2.11) to the factthalves(SVI(dc f, K)),
that is, to the existence of vectore ¢ f(x*) such that:

(v,x —2*) >0, Vr € K.

It follows also: (v,a — x*) > 0, Va € cl A and since). f is semistrictly pseudo-monotone, we
have (observe that(a) # f(x*) Va € cl A):

(w,a—x*) <0, Yw € —0cf(a), Va € clA.

Observing thatl A is a compact set, as in the proof of Theofen) 3.4, it follows that there exists
a positive numbem such that:

€
0.

(wya— 2"y < —m, Yw € —0cf(a), Va € cl A.

Hence, letting(t) = M as in the proof of Theore@A, we obtaiiit) < —m for a.a.
t and hence, fof” > 0:

v(T) —v(0) = /0 V'(1)dr < —mT.

ForT = v(0)/m, we obtainu(T") < 0, that isv(T") = 0 and hencex(T") = z*, but this is
absurdo, since the sdtdoes not intersectrgmin( f, K).
Now the last assertion of the theorem is obvious. O

The previous result can be strengthened using the results of Sgction 3.

Proposition 4.6. Let f be a function that achieves its minimum ovérat some point:* and
assume that* is a strict solution of SMV I(dc f, K)). Then every solution defined iy +oo)
of (DVI(0c f, K)) is strictly monotone w.r.tV,- and converges to*.

Proof. It is immediate recalling that it* is a minimum point forf over K, then it is an equi-
librium point of (DVI(9c f, K)) and applying Propositign 3.4. O

Remark 4.7. If 2* is a strict solution of SMVI(dcf, K)), then it can be proved that is
strictly increasing along rays startingzat The proof is similar to that of Proposition 4 in [7].

Corollary 4.8. Let f be a function that achieves its minimum o¥&at some point*. If Oc f is
strictly pseudo-monotone, thet is the unique minimum point fgrover K and every solution
of (DVI(0c f, K)) defined o0, +o0) converges ta:*.
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Proof. Recall that, under the hypothesgss strictly pseudo-convex (Theor¢m.1) and hence it
follows easily that:* is the unique minimum point of over K. The proof is now an immediate
consequence of Corollafy 3.5. O
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