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Abstract

In [8] the notion of “projected differential equation” has been introduced and
the stability of solutions has been studied by means of Stampacchia type vari-
ational inequalities. More recently, in [20], Minty variational inequalities have
been involved in the study of properties of the trajectories of such a projected
differential equation.

We consider classical generalizations of both problems, namely projected dif-
ferential inclusions and variational inequalities with point to set operators, and
we extend results stated in [20] to this setting. Moreover, we also apply the
results to describe the convergence of the trajectories of a generalized gradient
inclusion method.

2000 Mathematics Subject Classification: 34A60, 47J20, 49352
Key words: Minty variational inequalities, differential inclusions, monotone trajecto-
ries, slow solutions.
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The relations of Minty and Stampacchia Variational Inequalitieg yvith dif-
ferentiable optimization problems have been widely studied. Basically, it has
been proved that the Stampacchia Variational Inequality (for short, SVI) is a
necessary condition for optimality (see e.@4]), while the Minty Variational
Inequality (for short, MVI) is a sufficient one (see e.g, [ 1, 15]). General-

izations of SVI and MVI to point to set maps have been introduced (see e.qg.
[4, 9]) and the previous results have been proved also for non differentiable

Minty Variational Inequalities

optimization problems (see e.g]. and Monotone Trajectories of
On the other hand, Dynamical Systems (for short, DS) are a classical tool for ~ Piferential Inclusions

dealing with a wide range both of real and mathematical problems. Recently, the Giovanni P. Crespi and

existence and stability of equilibria of a (projected) DS have been characterized Matteo Rocca

by means of variational inequalities. In this context it has been proved that

existence of a solution of SVI is equivalent to existence of an equilibrium, while Title Page

MVI ensures the stability of equilibria (se#,[2(]).

The latter results proved to be useful in deriving a wide variety of applica- contents
tions and a deeper insight on the dynamic of the adjustment towards an equi- b dd
librium. Basically, variational inequalities are used to model static equilibria < >
of several economies, such as Cournot oligopoly, spatial oligopoly, general
economic equilibrium and so on §], while dynamical systems (or more re- Go Back
alistically differential inclusions) are used to describe the path to equilibrium, Close
starting from a given state of the world (see e.@(]]. Therefore, the appli- Quit

cation of variational inequalities to dynamical systems allows us to unify static
and dynamic aspects in the study of economic phenomépad). Since both Page 3 of 29
variational inequalities and dynamical systems have been generalized by means
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of point to set maps, in this paper we focus on the relations among variational
inequalities with set-valued operator and differential inclusions. As the study
in the single-valued case has dealt with projected DS, we recall in Settion
the notion of projected differential inclusion (as if]), together with the ba-

sic results on variational inequalities. Main results are proven in Se@fion
where existence of solutions of Minty type variational inequalities is related to
the monotonicity of trajectories of a projected differential inclusion. Finally, in
Sectiond, we apply the results to a generalized gradient inclusion.
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We first recall basic results on differential inclusions and variational inequali-
ties. In order to simplify the notation, we need to make the following standing
assumptions, which hold throughout the paper unless otherwise stated:

i) K denotes a convex and closed subseR'tf

i) F denotes an upper semi-continuous (u.s.c.) map fR¥mo 28", with

nonempty convex and CompaCt values. Minty Variational Inequalities
and Monotone Trajectories of

For the sake of completeness, we recall the definition of upper semi-continuity ~ Differential Inclusions

for a set-valued map: Giovanni P. Crespi and
Matteo Rocca

Definition 2.1. A mapF from R" to 2%" is said to be u.s.c. at, € R", if for
every open se¥ containingF'(z), there exists a neighbourhodd of =, such

that (M) C N. Fis said to be u.s.c. when it is so at evegye R". Title Page
Contents
<4< >
We start by recalling from]] the following result about projection: 4 >
Theorem 2.1.We can associate to evetyc R" a unique elementy(z) € K, Go Back
satisfying: Close
| — ()| = min [}z — y]]. out
It is characterized by the following inequality: Page 5 of 29

(mr(x) — 2,7 () —y) <0, Vy € K.
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Furthermore the map(+) is non expansive, i.e.:
17k (2) = 7 (W) < llz =yl

The maprk is said to be the projector (of best approximation) ohto
WhenK is a linear subspace, thef is linear (seel]). We setrk (0) = m(K)
(i.e. m(K) denotes the element &f with minimal norm). For our aims, we set

also:
mx(A) = | 7 (2).

z€A
The following notation should be common:

C ={velR": (v,a) <0,YaeC}
is the (negative) polar cone of the getC R", while:
T(C,z)={veR": Jv, - v, a, >0, a, = 0, 2+ v, € C}

is the Bouligand tangent cone to the etz € clC andN (C,z) = [T'(C, z)|~
stands for the normal cone €@atz € clC.

It is known that7'(C, ) and N (C, x) are closed sets anél(C, x) is convex.
Furthermore, when we consider a closed convexsset R”, thenT' (K, x) =
clcone (K — x) (cone A denotes the cone generated by theAgtso that the
tangent cone is also convex.

Proposition 2.2 ([1]). Let A be a compact convex subsetRSf, 7" be a closed
convex cone and/ = T~ be its polar cone. Then:

(2.1) mr(A) C A— N.
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The elements of minimal norm are equal in the two sets:
m(rr(A)) =m(A—N)

and satisfy:
sup (z,m(rr(4))) + Im(7z(A)|* < 0.
zZE—
We recall that, given a ma@' : K C R" — 28", a differential inclusion
is the problem of finding an absolutely continuous functi¢r), defined on an
interval[0, 7], such that:

{ vt € 10,77, x(t) € K,
for a.a.t € [0,7], 2'(t) € G(x(t)).

The solutions of the previous problem are called alafectoriesof the differ-
ential inclusion. Moreover, any(-) such that:

{Vte 0,77, z(t) € K,
for a.at € (0,7, 2'(t) =m(G(z(t)))

is called aslow solutionof the differential inclusion.
We are concerned with the following problem, which is a special case of
differential inclusion.

Problem 2.1. Find an absolutely continuous functiar-) from [0, 7] into R",
satisfying:

vt € [0,7], z(t) € K,

(DVI(F, K)) { for aat € [0,7T], 2'(t) € —F(x(t)) — N(K, (1))
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In [1], the previous problem is referred to as a “differential variational in-
equality” (for short, DV'I) and it is proven to be equivalent to a “projected
differential inclusion” (for shortPDI).

Theorem 2.3. The solutions of Problera.1 are the solutions of:

vt € [0,7], z(t) € K,

(PDI(F, K)) { for a.at e [0,T], 2'(f) € Truca (~ F(a(t)),
and conversely.

Remark 2.1. We recall that wher# is a single-valued operator, then the corre-
sponding “projected differential equation” and its applications have been stud-
ied for instance in §, 19, 2.

Theorem 2.4 ([L]). The slow solutions of/{V I (F, K)) and (PDI(F, K)) co-
incide.

Definition 2.2. A pointz* € K is an equilibrium pointfor OV I(F, K')), when:
0€ —F(z*)— N(K,z").
We recall the following existence result.

Theorem 2.5. a) If K is compact, then there exists an equilibrium point for
(DVI(F, K)).

b) If m(F(-)) is bounded, then, for any, € K there exists an absolutely
continuous function:(¢) defined on an intervdD, 7|, such that:

{ z(0) = xg, 2'(t) € —F(x(t)) — Ng(z(t)) fora.a.t € [0,T],
vVt e [0,T], z(t) € K.
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Finally we recall the notion of monotonicity of a trajectory @i \('/ (F', X)),
as stated in’l], which plays a crucial role for our main results.

Definition 2.3. LetV be a function fronk toR*. Atrajectoryz(t) of (DVI(F, K))
is monotone (with respect 1) when:
Vi >s, V(x(t)) —V(z(s)) <0.

If the previous inequality holds strictlyt > s, then we say that(t) is strictly
monotone w.r.t}.

We are mainly concerned with the case when the previous definition applies
w.r.t. the function: H P2
~ r—x
Ver (1) = T,
wherez* is an equilibrium point of DV I (F, K)).
We need also the following result which relates the monotonicity of trajec-
tories and Liapunov functions.

Theorem 2.6 ([]). Let K be a subset dR™ and letV : K — R* be a differen-
tiable function. Assume that for al) € K, there existd’ > 0 and a trajectory
x(-) defined o0, T") of the differential inclusion’’(t) € F(x(t)), z(0) = o,
satisfying:

Vs >t, V(x(s)) —V(x(t)) <O0.

ThenV is a Liapunov function fo, that isVz € K, 3¢ € F(x), such that
(V'(2),€) < 0.
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Although we are mainly concerned with Minty type variational inequalities,
in this section we also state the Stampacchia variational inequality and exploit
some relations between the two formulations. The Minty lemma, which con-
stitutes the main result for this section, legitimizes the Minty formulation we
present for the variational inequality. The notation is classical (see for instance

[4, 9, 1)

Definition 2.4. A pointz* € K is a solution of a Stampacchia Variational
Inequality (for short, SVI) wheB¢* € F(z*) such that:

<€*7y - $*> Z 07

Definition 2.5. A pointz* € K is a solution of a Strong Minty Variational
Inequality (for short,SMV I), when:

(SMVI(F, K)) (§y—27) 20,

Definition 2.6. A pointz* € K is a solution of a Weak Minty Variational In-
equality (for shortW MV I), whenvy € K, 3¢ € F(y) such that:

Definition 2.7. If in Definition 2.5 (resp. 2.6), strict inequality holds7y € K,
y # x*, then we say that* is a “strict” solution of (SAMV I(F, K)) (resp. of
(WMVI(F, K))).

Remark 2.2. WhenF is single valued, Definition&.5 and 2.6 reduce to the
classical notion of\/ V' I. (see e.g. %, 21]).

(SVI(F, K)) Vy € K.

Yy € K, V¢ € F(y).

(WMVI(F, K))
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The classical Minty Lemma (see for instance]) relates the Minty Varia-
tional Inequalities and Stampacchia Variational Inequalities, whéena single
valued operator. The following result gives an extension to the case in Wwhich
is a point-to-set map. We recall first the following definition (see e.a])[

Definition 2.8. F'is said to be:

i) monotone, if for alke, y € K, we have:

Vu € F(x)’ Vo € F(y) : <U - Wy - :L’> = 0; Minty Variational Inequalities
and Monotone Trajectories of

i) pseudo-monotone (resp. strictly pseudo-monotone), if foxall € K Differential Inclusions
(resp. for allz, y € K with y # x) the following implication holds:

Giovanni P. Crespi and
Matteo Rocca

Jue F(x): (u,y—z) >0=Yve Fly) : (v,y —z) > 0;

(Jue F(z): (u,y —z) >0=Yv € F(y) : (v,y —x) > 0) e e

Remark 2.3. The following relations among different classes of monotone maps Contents
are classical: <44 44
monotone=- pseudomonotone < 4

f Go Back

strictly pseudomonotone.

Close

Lemma2.7. i) Anyz* € K, which solvesi(/ MV I(F, K)), itis a solution "

of (SVI(F. K)) as well. Qui

. . . . Page 11 of 29
ii) If F'is a pseudo-monotone map, any solution©f ( (', K')) also solves

(SMVI(F, K)).
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i) If F'is a strictly pseudo-monotone map, any solutiondf ((F, X)) is a
strict solution of MV I(F, K)).

Proof. i) Let =z be an arbitrary point ik and considey = x* + t(z —
x*) € K,wheret € (0,1). Sincez* solves (V MV I(F, K)), we have that
Vi € (0,1), 3 =£(t) € F(x* + t(z — ¥)), such that:
(€(t),t(z —27)) 20,

that is:
(€(t),z —a") > 0.

SinceF is u.s.c., we get that for any integer> 0, there exists a number
4, > 0 such that, fot € (0, d,] the following holds:

F(z* +t(z — %)) C F(z*) + %B.

Hence, fort € (0,4,], £(t) = f(t) + ~(t), where f(t) € F(z*) and

v(t) € %B. Without loss of generality we can assume< 1 Vn and we
have:

0<{€(t),z—a") = (f(t),z—a") + (7(t),z — 7).
Furthermore, by the Cauchy-Schwartz inequality, we get:

* * ]' *
(1), 2 = 2% < Iy @Iz — 27| < — [z =27,
so that, choosing in particular= ¢,,, we obtain:

1
(FEn),z =) 2 =)z = 2'].
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Recalling that'(x*) is a compact set, when— +oc we can assume that
f(6,) — f € F(z*) and we get:

(2.2) (f,z—2*) >0.

By the former construction, we have that ¢ K, there existy = f(z) €
F(z*) such that2.2) holds.
SincefF’ is convex and compact-valued, then, from Lemma Z]nWe get
the result.

The proof of ii) and iii) is trivial. O]

Remark 2.4.

i) Since every solution of(\/ V' I(F, K')) is also a solution ofi(’ MV I (F, K)),
then, from the previous theorem we obtain thaf;'ifs pseudo-monotone,
the solution sets of iU MV I(F, K)), (SMV I(F, K)) and (SVI(F, K))
coincide.

ii) Itis easy to prove that if{\/V I(F, K')) admits a strict solution:*, then,
x* is the unique solution of{V /( F, K)).

i) Itis also seen that* € K is an equilibrium point for OV I(F, K)) if and
only if it is a solution of 6V I(F, K)).
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Our main results concern the relations between the solutions of Minty varia-

tional inequalities and the monotonicity of trajectories Ofi(/(F, K)), w.r.t.
the functionV/-.

Theorem 3.1.1f z* € K is a solution of (M V' I(F, K)), then every trajectory
x(t) of (DV'I(F, K)) is monotone w.r.t. functiol.

Proof. We observe that, under the hypotheses of the thearé&ms,an equilib-
rium point of (DV'I(F, K)) (recall Lemm&.7and Remark.4pointiii)). Since
x(t) is differentiable a.e., so ig(t) = V,-(x(t)) and we have (at least a.e.):

V() = (Vi (2(1), 2/ (1))
= ('(t), (1) — z)
= (=& () = n(x(t), x(t) — 27),
where{(z(t)) € F(xz(t)) andng(xz(t)) € N(K,xz(t))). Hencev'(t) < 0 for
a.a.t > 0 and hence, fot, > t;:

v(te) — v(ty) = / 2 V'(T)dr <0.

t1

O
Corollary 3.2. Let z* be an equilibrium point of QV I (F,

that I is pseudo-monotone. Then every trajectory/o¥F( (7',
w.r.t. functionV-.

K)) and assume
K)) is monotone
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Proof. It is immediate upon combining Lemn2a7 and Theoren3.1. O
The following theorem, somehow reverts the previous implication.

Theorem 3.3. Letz* be an equilibrium point of @V I(F, K)). If for any point
r € K there exists a trajectory of[{V'/(F, K)) starting atz and monotone
w.r.t. functionV,., thenz* solves (V MV I(F, K)).

Proof. Let z € ri K (the relative interior ofK’) be the initial condition for a
trajectoryz(t) of (DV I(F, K)) and assume that(t) is monotone w.r.tV,.. If
we denote by. the smallest affine subspace generated&lgnd setS = L — 7,
forz € KNU, whereU is a suitable neighbourhood of we havel' (K, x) = S
andN (K, z) = S* (the subspace orthogonal ). So, if z(¢) is a trajectory
of (DVI(F, K)) that starts at, then, fort "small enough" (say € [0,7]), it
remains inri K N U and satisfies (recall Theore3):

{ forallt € [0,7], =x(t) € K;
for a.a.t € [0, 7], 2'(t) € mg(—F(z(t)).

SinceS is a subspacers is a linear operator; henes;(—F'(z(t)) is compact
and convex't € [0, 7] and furthermorerg(—F'(+)) is u.s.c.

Applying Theoren2.6 we obtain the existence of a vectore m5(—F (7)),
such that(V.(z), u) < 0. Taking into account inclusior2(1), we havey =
—£(7) — n(x), where(z) € F(z) andn(z) € S*. Hence:

), T — %)
— ") + (n(z),2" — 7) <0,

/23\
~
&Q

—£
=< 5(!3)
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from which it follows, since(n(z), z* — z) = 0:
((r),7 —2") > 0.
Sincerz is arbitrary inri K, we have:
&(z),z—2") >0, Ve eri K.

Now, letz € cl K\ri K. Sincecl K = clri K, thenz = lim xy, for some
sequencdzy} € ri K and:

(E(zp),zp — ") >0,  Vk.

There exists a closed ball(z, §), with centre ini and radiug), such thatz; is
contained in the compact sz, 0) N K and sincef’' is u.s.c., with compact

images, the set:
U Fw)

yeB(%,0)NK
is compact (see Proposition 3, p. 42 ifj)[and we can assume thétr,) —
€ € Uyeg(“)m F(y). From the upper semi-continuity df, it follows also
¢ € F(i) and so: i

This completes the proof. m
Theorem3.1 can be strengthened with the following:

Proposition 3.4. Letz* be a strict solution of § M/ V I(F, K)), then:
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i) =* is the unique equilibrium point of {V/ /(F, K));

ii) every trajectory of DV I(F, K)), starting at a pointry € K and defined
on [0, +00) is strictly monotone w.r.tV,. and converges to*.

Proof. The uniqueness of the equilibrium point follows from Remarkpoint
i). The strict monotonicity of any trajectory(t) w.r.t. V.. follows along the

lines of the proof of Theorem3.1. Now the proof of the convergence is an

application of Liapunov function’s technique.

Letz(t) € K be a solution of DV I(F, K)), starting at some point, € K,
i.e. with 2(0) = z,. Assume, ab absurdo, that = lim; ., v(t) > 0 =
minye g V- (-), wherev(t) = V. (z(t)). We observe that the limit defining
exists, because of the monotonicity:df) and to assume it differs froy it is
equivalent to say that(t) 4 =*. Thus, since:(t) is monotone W.r.tV,., we
havevt > 0:

o — 27|
= 5 ,

k]2
L::{xGK:agwgé},

we have that. is a compact set and® ¢ L, while z(t) € L, Vt > 0. Sincez*
is a strict solution of § M/ V I(F, K)), we have:

a<o(t) <6

Let

<£7y_$*><07 VyEKay¢$*7 vée_F(y)
and, in particular:

<€>y - l’*> < 07 vy € L7 v€ € _F(y)
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Now, we observe that there exists a number- 0, such that:

max ({,y —z") < —m, Vyé€ L.

§e—F(y)

In fact, if such a number does not exist, we would obtain the existence of se-
quencey,, € L and¢, € F(y,), such that:

1
— N>
(Eny Y — ) > "

Sendingn to +oo, we can assume that, — y € L. Furthermore, sincé’ is
u.s.c. with compact images, the set:

U Fw)

yeL

is compact and we can also assufpe— ¢ € UyEL F(y). By the upper semi-
continuity of F', it follows alsoé € F(3) and we get the absurdo:

(€7 —2") =0.
We have:
V() = (2'(t), x(t) — ") = {a(t) + b(t), x(t) — 27),
with a(t) € —F(x(t)), b(t) € —N (K, z(t)) and hence:
V() = (a(t), z(t) — 27) + (=b(t), 2" — x(1)).
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Sincez(t) € L, fort > 0, we have(a(t), z(t) — z*) < —m, while (=b(t), z* —
x(t)) < 0. Therefore'(t) < —m, fort > 0. Now, we obtain, fofl’ > 0:

If 7= % we getv(T) < 0 = min,exV(-). But we also have:
v(T) > a>minV(-) = 0.

yeK

Hence a contradiction follows and we must have: 0, thatisz(t) — z*. [

Corollary 3.5. Let z* be an equilibrium point of DV I(F, K')) and assume
that £ is strictly pseudo-monotone. Then properties i) and ii) of the previous
proposition hold.

Proof. It is immediate on combining Lemnia7 and Propositior3.4. O

Example 3.1.Let K = R? and consider the system of autonomous differential

equations:
?(t) = —F(x(t)),
whereF : R? — R? is a single-valued map defined as:

—y+all -2 =)

F = )
(z,y) x+y|1—x2—y2|

Clearly (z*,y*) = (0, 0) is an equilibrium pointand one hd$'(x, y), (z,y)) >
0 V(z,y) € R? so that(0,0) is a solution of (A/V I(F, K)) and hence, ac-
cording to Theoren3.1, every solution:(¢) of the considered system of differ-
ential equations is monotone w.r.t,-. Anyway, not all the solutions of the

Minty Variational Inequalities
and Monotone Trajectories of
Differential Inclusions

Giovanni P. Crespi and
Matteo Rocca

Title Page
Contents
44 44
| | 2
Go Back
Close
Quit
Page 19 of 29

J. Ineq. Pure and Appl. Math. 5(2) Art. 48, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/

system converge t®, 0). In fact, passing to polar coordinates, the system can

be written as:
{ pt) = —pt)|1 — p*(1)],
0'(t) =—1

and solving the system, one can easily see that the solutions that start at a point
(p,0), with p > 1 do not converge t@0, 0), while the solutions that start at a
point (p, §) with p < 1 converge to0,0). This last fact could be checked by
observing that for every < 1, (0,0) is a strict solution of § MV I(F, K.))
where:

K, :={(z,y) € R? :2* + y* < ¢}.
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Let f : QO C R" — R be a differentiable function on the open $etEquations
of the form:

a'(t) = = f(2(t), x(0)=wo
are called “gradient equations” (see for instancg)}. In [1] an extension of the
classical gradient equation to the case in whijcis a lower semi-continuous

convex function is considered, replacing the above gradient equation, with the
differential inclusion:

Minty Variational Inequalities
, and Monotone Trajectories of
2'(t) € —=0f(x(t)), z(0) = x, Differential Inclusions
whered f denotes the subgradient Hf Giov'\jn?ti P grespi and
. . . . . atteo rRocca
Here, we consider a locally Lipschitz functign 2 C R™ — R, where2 is
an open set containing the closed convexiseaind the DVI:

vt € [0,7] () e K Title Page

) ) X )
(DVI(9ef, K)) {for aate(0,T], () e —dof(x(t)) — N(K, (1)), Contents
whered. f(x) denotes Clarke’s generalized gradientfadt = [6], with the aim 4« dd
of studying the behaviour of its trajectories. For the sake of completeness we < >
recall the following definitions.

o . ) ) Go Back
Definition 4.1. Let f be a locally Lipschitz function fronk to R. Clarke’s
generalized gradient of at z is the subset dR”, defined as: Close

dcf(x) = conv{lim f'(zy) : 7 — x, [ is differentiable atry } Quit

. Page 21 of 29
(here f’ denotes the gradient gf and conv A stands for the convex hull of the J

setA C R").
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Definition 4.2 ([16]). We say thab. f is semistrictly pseudo-monotone én
when for every, y € K, with f(x) # f(y), we have:

Ju e dof(x): (u,y—2z)>0=Vvedof(y): (v,y—z) > 0.

Clearly, if O¢ f is strictly pseudo-monotone, then itis also semistrictly pseudo-
monotone.

Definition 4.3. i) fis said to be pseudo-convex éhwhenvz,y € K, with
fly) > f(x), there exists a positive numb@@x, y), depending on: and N —
yand a numbeﬁ(:)s, y) S (O, 1], such that: and Monotone Trajectories of

Differential Inclusions
fz+ (1= XNy) < f(y) — dalz,y), YA€ (0,0(z,y)).

i) fissaidto be strictly pseudo-convex if the previous inequality holds when-

everf(y) = f(z), ©#y.

Giovanni P. Crespi and
Matteo Rocca

Title Page
Theorem 4.1 ([L6]). i) Assume thai. f is semistrictly pseudo-monotone on ?
an open convex set C R"™. Thenf is pseudo-convex oA. Contents
i) Assume thab f is strictly pseudo-monotone on an open convex4set 4« dd
Thenf is strictly pseudo-convex as. < >
Remark 4.1. Strictly pseudo-monotone and semistrictly pseudo-monotone maps Go Back
are called respectively “strictly quasi-monotone” and “semistrictly quasi-monotone”
in [ ] Close
Definition 4.4. We say that a functiofi : R — R is inf-compact on the closed QU
convex sef{, whenve € R, the level sets: Page 22 of 29

leve.fi={z € K: f(z) <c}
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are compact.

Remark 4.2. Clearly, if f is inf-compact onk the setargmin(f, K') of mini-
mizers off over K is compact. The converse does not hold.

Proposition 4.2. Let z(t) be a slow solution of YV I(Jc f, K')) defined on
[0, T]. ThenVsy, so € [0,T] with s, > s1, we have:

f(a(s2)) = fa(s1)) < — / Im(=0c f(x(s)) — N(K, z(s)))||*ds.
Hence the functiong(t) = f(z(t)) is non-increasing antim, ., . f(x(t)) ex-
ists.

Proof. Since a locally Lipschitz function is differentiable a.e., the function =
f(z(t)) is differentiable a.e., with'(t) = f'(x(t))x'(t) andx’(t) € m(—0c f(x(t))
—N(K,xz(t))) for a.a. t . Recalling (Theoren2.4) that the slow solutions of
(DVI(0cf, K)) coincide with the slow solutions aPDI(0¢ f, K) and that
f(z(t)) € Oc f(x(t)) [6], we have from Propositiof.2

zeail}gc<t))<z’ m(=0cf(x(t)) — N(K, z(t))))
+Im(=cf (@(®) = N(Kz@)|* <0
and for a.at, we get:

g(t) = ['@®)2'(t) < —[lm(=0cf(x(t)) — N(K,z(1)))|* <0,

Minty Variational Inequalities
and Monotone Trajectories of
Differential Inclusions

Giovanni P. Crespi and
Matteo Rocca

Title Page
Contents
44 44
| | 2
Go Back
Close
Quit
Page 23 of 29

J. Ineq. Pure and Appl. Math. 5(2) Art. 48, 2004

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:g.crespi@univda.it
mailto:
mailto:
mailto:mrocca@eco.uninsubria.it
http://jipam.vu.edu.au/

from which we deduce:
fla(s2) — flals1)) < — / m(—d0 f(2(s)) = N(K, 2(s))) %ds <0.

The second part of the theorem is now an immediate consequence. [

Proposition 4.3. Suppose that achieves its minimum ovet at some point.
Assume that-f is a semistrictly pseudo-monotone map and tfias inf-
compact. Then every slow solutiott) of (DV (0 f, K)) defined or0, +o0),
is such that:

i f(w(t)) = min f(z).
Furthermore, every cluster point eft) is a minimum point folf over K.
Proof. Let z(¢) be a slow solution starting at, = «(0) and ab absurdo, assume
thattligrn f(z(t)) = a > mingex f(x). The set:
Z={rveK:a<f(x)< f(x)}

is compact sincg is inf-compact anduwgmin(f, K) N Z = 0. If we setA =
{z(t),t € [0,4+00)}, then we getl A C Z (recall Propositior.2), and hence
argmin( f, K)ﬂclA 0. If z* € argmin(f, K), then it is an equilibrium point
of (DVI(0cf, K)) (see ), that is:

0€dof(z")+ N(K,z%),
and this is equivalent (see point iii) of Reméik)) to the fact thatr* solves
(SVI(0cf, K)), that is, to the existence of vectorc Jc f(x*) such that:

(v,x—2x*) >0, Vo € K.
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It follows also: (v,a — z*) > 0, Va € clA and sinceds f is semistrictly
pseudo-monotone, we have (observe thal) # f(z*) Va € cl A):

(wya—1z*) <0, Yw € —0cf(a), Ya € clA.

Observing thatl A is a compact set, as in the proof of Theorgm it follows
that there exists a positive numbersuch that:

(w,a — ") < —m, Yw € —0cf(a), Va € cl A.
Hence, lettingu(t) = M as in the proof of Theoreri.4, we obtain
v'(t) < —m for a.a.t and hence, fof” > 0:

v(T) —v(0) = /0 V'(1)dr < —mT.

ForT = v(0)/m, we obtainv(T") < 0, thatisv(7T) = 0 and hence:(T) = z*,
but this is absurdo, since the sédoes not intersectrgmin( f, K).
Now the last assertion of the theorem is obvious. ]

The previous result can be strengthened using the results of S8ction

Proposition 4.4. Let f be a function that achieves its minimum oveat some
point z* and assume that* is a strict solution of(SMV I(0cf, K)). Then

every solution defined df, +-oc) of (DV I(Jc f, K)) is strictly monotone w.r.t.

V.~ and converges to*.

Proof. Itis immediate recalling that it* is a minimum point forf over K, then
it is an equilibrium point of OV I (0¢ f, K')) and applying PropositioB.4. [
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Remark 4.3. If z* is a strict solution of(SMVI(0cf, K)), then it can be
proved thatf is strictly increasing along rays starting at. The proof is similar
to that of Proposition 4 in].

Corollary 4.5. Let f be a function that achieves its minimum ovérat some
point z*. If Ocf is strictly pseudo-monotone, thefi is the unique minimum
point for f over K and every solution of/[{V I (0¢ f, K)) defined on0, +oo)
converges ta:*.

Proof. Recall that, under the hypothesgss strictly pseudo-convex (Theorem
4.1) and hence it follows easily that' is the unique minimum point of over
K. The proof is now an immediate consequence of Coroltaby O
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