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ABSTRACT. The Weyl criterion is shown in the terms of Price functions and Haar type func-
tions. We define the so-called modified integrals of Price and Haar type functions and obtain the
analogues of the criterion of Weyl, the inequalities of LeVeque and Erdös-Turan and the formula
of Koksma in the terms of the modified integrals of Price and Haar type functions.
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1. I NTRODUCTION

Let ξ = (xi)i≥0 be a sequence in the unit interval[0, 1). We defineA(ξ; J ;N) = {i : 0 ≤
i ≤ N − 1, xi ∈ J} for an arbitrary integerN ≥ 1 and an arbitrary subintervalJ ⊆ [0, 1). The
sequenceξ is called uniformly distributed (abbreviated u. d.) if for every subintervalJ of [0, 1)

the equalitylimN→∞
A(ξ;J ;N)

N
= µ(J) holds, and whereµ(J) is the length ofJ.

Let ξN = {x0, . . . , xN−1} be an arbitrary net of real numbers in[0, 1). The extreme and
quadratical discrepanciesD(ξN) andT (ξN) of the netξN are defined respectively as

D(ξN) = sup
J⊆[0,1)

|N−1A(ξN ; J ;N)− µ(J)|,

T (ξN) =

(∫ 1

0

|N−1A(ξN ; [0, x);N)− x|2dx
) 1

2

.
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2 V. GROZDANOV AND S. STOILOVA

The discrepancyDN(ξ) of the sequenceξ is defined asDN(ξ) = D(ξN), for each integer
N ≥ 1, andξN is the net, composed of the firstN elements of the sequenceξ. It is well-known
that the sequenceξ is u. d. if and only iflimN→∞DN(ξ) = 0.

According to Kuipers and Niederreiter [8, Corollaries 1.1 and 1.2], the sequenceξ is u. d. if
and only if for each complex-valued and integrable in the sense of Riemann functionf, defined
onR and periodical with period 1, the following equality

(1.1) lim
N→∞

1

N

N−1∑
i=0

f(xi) =

∫ 1

0

f(x)dx

holds.
The theory of uniformly distributed sequences is divided into quantitative and qualitative

parts. Quantitative theory considers measures, showing the deviation of the distribution of a
concrete sequence from an ideal distribution. Qualitative theory main idea of uniformly dis-
tributed sequences is to find necessary and sufficient conditions for uniformity of the distribu-
tion of sequences.

Weyl [18] obtains such a condition (the so-called Weyl criterion) which is based on the use
of the trigonometric functional systemT = {ek(x) = exp(2πikx), k ∈ Z, x ∈ R}. The
criterion of Weyl is: The sequenceξ = (xi)i≥0 is uniformly distributed if and only if the
equalitylimN→∞

1
N

∑N−1
i=0 ek(xi) = 0 holds for each integerk 6= 0.

The Walsh functional system has been recently used as an appropriate means of studying the
uniformity of the distribution of sequences. Sloss and Blyth [13] use this system to obtain future
necessary and sufficient conditions for a sequence to be u. d.

The link, which is realized for studying sequences in[0, 1), constructed in a generalized
number system and some orthonormal functional systems on[0, 1), constructed in the same
system, is quite natural. The purpose of our paper is to reveal the possibility some other classes
of orthonormal functional system, as the Price functional system and two systems of Haar type
functions to be used as a means of obtaining new necessary and sufficient conditions for uniform
distribution of sequences.

In Section 2 we obtain new necessary and sufficient conditions for uniform distribution of
sequences, which are analogues of the classical criterion of Weyl. These conditions are based
on the functions of Price and Haar type functions.

In Section 3 we introduce the so-called modified integrals of the Price functions and Haar
type functions. Integral analogues of the Weyl criterion are obtained in terms of these inte-
grals. Analogues of the classical inequalities of LeVeque [9] and Erdös-Turan (see Kuipers and
Niederreiter [8]), and the formula of Koksma, (see Kuipers [7]) are obtained.

In Section 4 we prove some preliminary statements, which are used to prove the main results.
The proofs of the main results are given in Section 5. In Section 6 we give a conclusion, where
we announce some open problems, having to do with the problems, solved in our paper.

The results of this paper were announced in Grozdanov and Stoilova [3] and [4]. Here we
explain the full proofs of them. The results which are based on the Price functions generalize
the ones of Sloss and Blyth [13]. The results which are based on the Haar type functions are
new.

2. PRICE FUNCTIONAL SYSTEM , HAAR TYPE FUNCTIONAL SYSTEM AND

ANALOGUES OF THE CRITERION OF WEYL

Let B = {b1, b2, . . . , bj, . . . : bj ≥ 2, j ≥ 1} be an arbitrary fixed sequence of integer

numbers. We defineωj = exp
(

2πi
bj

)
for each integerj ≥ 1.We define the set of the generalized

powers{Bj}∞j=0 as:B0 = 1 and for each integerj ≥ 1, Bj =
∏j

s=1 bs.
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PRICE AND HAAR TYPE FUNCTIONS AND UNIFORM DISTRIBUTION OF SEQUENCES 3

Definition 2.1.
(i) For real x ∈ [0, 1) in the B−adic form x =

∑∞
i=1 xiB

−1
i , where for i ≥ 1 xi ∈

{0, 1, . . . , bi − 1} and each integerj ≥ 0, Price [10] defines the functionsχBj
(x) =

ω
xj+1

j+1 .
(ii) For each integerk ≥ 0 in theB−adic formk =

∑n
j=0 kj+1Bj, where for1 ≤ j ≤ n+1,

kj ∈ {0, 1, . . . , bj − 1}, kn+1 6= 0 and realx ∈ [0, 1), thek-th function of Priceχk(x) is
defined asχk(x) =

∏n
j=0(χBj

(x))kj+1 .

The systemχ(B) = {χk}∞k=0 is called the Price functional system. This system is a complete
orthonormal system inL2[0, 1).

Let bj = b in the sequenceB for eachj ≥ 1. Then, the system{χ0} ∪ {χbk}∞k=0 is the
Rademacher [11] system{φ(b)

k }∞k=0 of order b. The system of Chrestenson [2]{ψ(b)
k }∞k=0 of

orderb is obtained from the systemχ(B). If for eachj ≥ 1 bj = 2, then the original system of
Walsh [17] is obtained.

In 1947 Vilenkin [15] introduced the systemχ(B) and Price [10] defined it independently
of him in 1957. Some names are used about the systemχ(B) in special literature: both Price
system (see Agaev, Vilenkin, Dzafarly, Rubinstein [1]) and Vilenkin system (see Schipp, Wade,
Simon [12]). We use the name Price functional system in this paper.

We will consider two kinds of the so-called Haar type functions. Starting from the original
Haar [5] system, Vilenkin [16] proposes a new system of functions, which is called a Haar type
system, (see Schipp, Wide, Simon [12]). This definition is:

Definition 2.2. Forx ∈ [0, 1) thekth Haar type functionh′k(x), k ≥ 0 to the baseB is defined
as follows: Ifk = 0, thenh′0(x) = 1, ∀x ∈ [0, 1). If k ≥ 1 is an arbitrary integer and

(2.1) k = Bn + p(bn+1 − 1) + s− 1,

where for some integern ≥ 0, 0 ≤ p ≤ Bn − 1 ands ∈ {1, . . . , bn+1 − 1}, then

h′k(x) =


√
Bnω

sa
n+1, if pbn+1+a

Bn+1
≤ x < pbn+1+a+1

Bn+1
and a = 0, 1, . . . , bn+1 − 1,

0, otherwise.

We will consider another one:

Definition 2.3. Forx ∈ [0, 1) thekth Haar type functionh′′k(x), k ≥ 0 to the baseB is defined
as follows: Ifk = 0, thenh′′0(x) = 1, ∀x ∈ [0, 1). If k ≥ 1 is an arbitrary integer and

(2.2) k = knBn + p,

where for some integern ≥ 0, 0 ≤ p ≤ Bn − 1 andkn ∈ {1, . . . , bn+1 − 1}, then

h′′k(x) =


√
Bnω

kna
n+1, if pbn+1+a

Bn+1
≤ x < pbn+1+a+1

Bn+1
and a = 0, 1, . . . , bn+1 − 1,

0, otherwise.

It can be easily seen that the systems{h′k}∞k=0 and{h′′k}∞k=0 are complete orthonormal systems
in L2[0, 1). In the case when for eachj ≥ 1 bj = 2 the original system of Haar is obtained from
the systems{h′k}∞k=0 and{h′′k}∞k=0.

Theorem 2.1(Analogues of the criterion of Weyl). The sequence(xi)i≥0 of [0, 1) is u. d. if and
only if:

lim
N→∞

1

N

N−1∑
i=0

χk(xi) = 0, for each k ≥ 1,
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4 V. GROZDANOV AND S. STOILOVA

lim
N→∞

1

N

N−1∑
i=0

h′k(xi) = 0, for each k ≥ 1,

and

lim
N→∞

1

N

N−1∑
i=0

h′′k(xi) = 0, for each k ≥ 1.

The proof of this theorem is based on the equality (1.1) and the properties of Price and Haar
type functional systems.

3. PRICE AND HAAR TYPE I NTEGRALS AND U . D. OF SEQUENCES

We consider the integrals of Price and Haar type functionsJk(x) =
∫ x

0
χk(t)dt, Ψ′

k(x) =∫ x

0
h′k(t)dt andΨ′′

k(x) =
∫ x

0
h′′k(t)dt for each integerk ≥ 1 andx ∈ [0, 1).

For an arbitrary integerk ≥ 1 we define the integern ≥ 0 by the conditionBn ≤ k < Bn+1.
We define themodified integrals of Price functionas

(3.1) Jn,q,k(x) = Jk(x) +
1

Bn+1

· 1

ωq
n+1 − 1

δq.Bn,k,

for all x ∈ [0, 1) and eachq = 1, 2, . . . , bn+1 − 1, and for arbitrary integersi, j ≥ 0, δi,j is the
Kronecker’s symbol.

If k is an integer of the kind (2.1), we define

(3.2) Ψ′
n,s,k(x) = Ψ′

k(x) +
1

bn+1

B
− 3

2
n

1

ωs
n+1 − 1

,

for all x ∈ [0, 1) and eachs = 1, 2, . . . , bn+1 − 1.
If k is an integer of the kind (2.2), we define

(3.3) Ψ′′
n,kn,k(x) = Ψ′′

k(x) +
1

bn+1

B
− 3

2
n

1

ωkn
n+1 − 1

,

for all x ∈ [0, 1) and eachkn = 1, 2, . . . , bn+1 − 1.
We will call the integralsΨ′

n,s,k(x) andΨ′′
n,kn,k(x) modified integrals of Haar type functions.

The next theorems hold:

Theorem 3.1(Analogues of the inequality of LeVeque). Let ξN = {x0, x1 . . . , xN−1} be an
arbitrary net, composed ofN ≥ 1 points of [0, 1). The discrepancyD(ξN) of the netξN
satisfies the inequalities:

D(ξN) ≤

 12

N2

∞∑
n=0

bn+1−1∑
q=1

(q+1)Bn−1∑
k=qBn

∣∣∣∣∣
N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣
2
 1

3

,

D(ξN) ≤

 12

N2

∞∑
n=0

bn+1−1∑
s=1

(s+1)Bn−1∑
k=sBn

∣∣∣∣∣
N−1∑
m=0

Ψ′
n,s,k(xm)

∣∣∣∣∣
2
 1

3

,

D(ξN) ≤

 12

N2

∞∑
n=0

bn+1−1∑
kn=1

(kn+1)Bn−1∑
k=knBn

∣∣∣∣∣
N−1∑
m=0

Ψ′′
n,kn,k(xm)

∣∣∣∣∣
2
 1

3

.

Theorem 3.2(Integral analogues of the criterion of Weyl). Let an absolute constantB exist,
such as for eachj ≥ 1 bj ≤ B. Let k ≥ 1 be an arbitrary integer andBn ≤ k < Bn+1. The
sequenceξ = (xi)i≥0 of [0, 1) is u. d. if and only if:
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(i)

lim
N→∞

1

N

N−1∑
i=0

Jn,q,k(xi) = 0 for each q = 1, 2, . . . , bn+1 − 1,

(ii) If k ≥ 1 is of the kind (2.1) then

lim
N→∞

1

N

N−1∑
i=0

Ψ′
n,s,k(xi) = 0 for each s = 1, 2, . . . , bn+1 − 1,

(iii) If k ≥ 1 is of the kind (2.2) then

lim
N→∞

1

N

N−1∑
i=0

Ψ′′
n,kn,k(xi) = 0 for each kn = 1, 2, . . . , bn+1 − 1.

Theorem 3.3(An analogue of the inequality of Erdös-Turan). Let an absolute constantB exist,
such thatbj ≤ B for eachj ≥ 1 and we signifyb = min{bj : j ≥ 1}. LetξN = {x0, . . . , xN−1}
be an arbitrary net, composed ofN ≥ 1 points of[0, 1). For an arbitrary integerH > 0 we
define the integersM ≥ 0 andq ∈ {1, 2, . . . , bM+1 − 1} asqBM ≤ H < (q + 1)BM . Then the
following inequality holds

D(ξN) ≤

12
M−1∑
n=0

bn+1−1∑
s=1

(s+1)Bn−1∑
k=sBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,s,k(xm)

∣∣∣∣∣
2

+ 12

q−1∑
s=1

(s+1)BM−1∑
k=sBM

∣∣∣∣∣ 1

N

N−1∑
m=0

JM,s,k(xm)

∣∣∣∣∣
2

+12
H∑

k=qBM

∣∣∣∣∣ 1

N

N−1∑
m=0

JM,q,k(xm)

∣∣∣∣∣
2

+
3B(1 + 2b sin π

B
)2

(b− 1)b sin2 π
B

1

BM

 1
3

.

Theorem 3.4(Analogues of the formula of Koksma). Let ξN = {x0, x1 . . . , xN−1} be an arbi-
trary net, composed ofN ≥ 1 points of[0, 1). The quadratical discrepancyT (ξN) of the netξN
satisfies the equalities

(NT (ξN))2 =

(
N−1∑
m=0

(
xm − 1

2

))2

+
∞∑

n=0

bn+1−1∑
q=1

(q+1).Bn−1∑
k=q.Bn

∣∣∣∣∣
N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣
2

,

(NT (ξN))2 =

(
N−1∑
m=0

(
xm − 1

2

))2

+
∞∑

n=0

bn+1−1∑
s=1

(s+1)Bn−1∑
k=sBn

∣∣∣∣∣
N−1∑
m=0

Ψ′
n,s,k(xm)

∣∣∣∣∣
2

,

and

(NT (ξN))2 =

(
N−1∑
m=0

(
xm − 1

2

))2

+
∞∑

n=0

bn+1−1∑
kn=1

(kn+1)Bn−1∑
k=knBn

∣∣∣∣∣
N−1∑
m=0

Ψ′′
n,kn,k(xm)

∣∣∣∣∣
2

.

4. PRELIMINARY STATEMENTS

Let x ∈ [0, 1) have theB−adic representationx =
∑∞

j=0 xj+1B
−1
j+1, where forj ≥ 0,

xj+1 ∈ {0, 1, . . . , bj+1 − 1}. For each integerj ≥ 0 we have thatxj+1 =
bj+1

2π
argχBj

(x).
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6 V. GROZDANOV AND S. STOILOVA

Hence, we obtain the representation

(4.1) x =
1

2π

∞∑
j=0

1

Bj

argχBj
(x).

Lemma 4.1. Let k ≥ 1 be an arbitrary integer andk = βn+1Bn + k′, whereβn+1 ∈ {1, . . . ,
bn+1 − 1} and0 ≤ k′ < Bn. For x ∈ [0, 1) thekth Price integral satisfies the following equality

(4.2) Jk(x) =
1

Bn+1

1− ω
βn+1bn+1

2π
arg χBn (x)

n+1

1− ω
βn+1

n+1

χk′(x) +
1

2πBn

∞∑
r=1

b−r
n+1 argχBn

(
brn+1x

)
χk(x).

Proof. Let b ≥ 2 be a fixed integer andω = exp
(

2πi
b

)
. For an arbitrary integerβ, 1 ≤ β ≤ b−1

and realx ∈ [0, 1) let

J
(b)
β (x) =

∫ x

0

ψ
(b)
β (t)dt.

We will prove the following equality

(4.3) J
(b)
β (x) =

1

b

1− ω
βb
2π

arg φ
(b)
0 (x)

1− ωβ
+

1

2π

∞∑
r=1

b−r argψ
(b)
br (x)ψ

(b)
β (x).

We puts = [bx], where[bx] denotes the integer part ofbx and we have that

J
(b)
β (x) =

∫ x

0

[φ
(b)
0 (t)]βdt(4.4)

=
s−1∑
h=0

∫ (h+1)/b

h/b

ωhβdt+

∫ x

s/b

[φ
(b)
0 (t)]βdt

=
1

b

1− ωβ[bx]

1− ωβ
+ ψ

(b)
β (x)

(
x− [bx]

b

)
.

From (4.1) and (4.4) we obtain (4.3).
If

J
(bn+1)
βn+1·Bn

(x) =

∫ x

0

χβn+1Bn(t)dt,

then

(4.5) Jk(x) = χk′(x)J
(bn+1)
βn+1Bn

(x).

We have the equalities

J
(bn+1)
βn+1·Bn

(x) =

∫ x

0

χ
βn+1

Bn
(t)dt

=

∫ x

0

[
φ

(bn+1)
0 (Bnt)

]βn+1

dt

=
1

Bn

∫ Bnx

0

ψ
(bn+1)
βn+1

(t)dt =
1

Bn

J
(bn+1)
βn+1

(Bnx),

so that

J
(bn+1)
βn+1·Bn

(x) =
1

Bn

J
(bn+1)
βn+1

(Bnx).

From the last equality and (4.5) we obtain that

(4.6) Jk(x) =
1

Bn

χk′(x) · J (bn+1)
βn+1

(Bnx).
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From (4.3) we obtain

(4.7) J (bn+1)
βn+1

(Bnx) =
1

bn+1

1− ω
βn+1bn+1

2π
arg χBn (x)

1− ω
βn+1

n+1

+
1

2π

∞∑
r=1

b−r
n+1 argχBn(brn+1x)χβn+1Bn(x).

From (4.6) and (4.7) we obtain (4.2). �

For every integern ≥ 1 we consider the setB(n) = {b1, b2, . . . , bn}.We define the “reverse”
set B̃(n) = {bn, bn−1, . . . , b1}, so thatB̃1 = bn, B̃2 = bnbn−1, . . . , B̃n = bn · · · b1. For an

arbitrary integerp, 0 ≤ p < Bn and for aB-adic rational p
Bn

let (p)B(n), (p)B̃(n),
(

p
Bn

)
B(n)

and(
p

Bn

)
B̃(n)

be the corresponding representations ofp and p
Bn

to the systemsB(n) andB̃(n).

Lemma 4.2. (Relationships between the Price and the Haar type functions)

(i) Letk ≥ 1 be an arbitrary integer of the kind (2.1). Then for allx ∈ [0, 1)

h′k(x) =
1

bn+1

√
Bn

Bn+1−1∑
α=0

bn+1−1∑
a=0

ωa.s
n+1χ(pbn+1+a)

B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)
χα(x);

Ψ′
n,s,k(x) =

1

bn+1

√
Bn

×
n∑

j=0

bj+1−1∑
t=0

(t+1)Bj−1∑
α=tBj

bn+1−1∑
a=0

ωa.s
n+1χ(pbn+1+a)

B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)
Jj,t,α(x).

(ii) Letk ≥ 1 be an arbitrary integer of the kind (2.2). Then for allx ∈ [0, 1)

(4.8) h′′k(x) =
1

bn+1

√
Bn

Bn+1−1∑
α=0

bn+1−1∑
a=0

ωa.kn
n+1χ(pbn+1+a)

B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)
χα(x);

(4.9) Ψ′′
n,kn,k(x) =

1

bn+1

√
Bn

×
n∑

j=0

bj+1−1∑
t=0

(t+1)Bj−1∑
α=tBj

bn+1−1∑
a=0

ωa.kn
n+1χ(pbn+1+a)

B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)
Jj,t,α(x).

Proof. For an arbitrary integerp, 0 ≤ p < Bn andx ∈ [0, 1), following Kremer [6] we define
the function

q(Bn; (p)B̃(n);x) =


1, if x ∈

[(
p

Bn

)
B(n)

,
(

p+1
Bn

)
B(n)

)

0 if x 6∈
[(

p
Bn

)
B(n)

,
(

p+1
Bn

)
B(n)

)
.

The equality

q(Bn; (p)B̃(n);x) =
1

Bn

Bn−1∑
α=0

χ(p)
B̃(n)

((
α

Bn

)
B̃(n)

)
χα(x)
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8 V. GROZDANOV AND S. STOILOVA

holds. Let us use the significations: For an arbitrary integerp, 0 ≤ p < Bn, (p)B̃(n) =

(p̃1p̃2 . . . p̃n)B̃(n), for an arbitrary integerα, 0 ≤ α < Bn,
(

α
Bn

)
B̃(n)

= (0 · αnαn−1 . . . α1)B̃(n),

for realx ∈ [0, 1), x = (0 · x1 . . . xn+1 . . .)B. Then, we obtain the equalities

(4.10) χ(p)
B̃(n)

((
α

Bn

)
B̃(n)

)
= ωαnp̃n

n ω
αn−1p̃n−1

n−1 . . . ωα1p̃1

1

and

(4.11) χα(x) = ωα1x1
1 ωα2x2

2 . . . ωαnxn
n .

If x ∈
[(

p
Bn

)
B(n)

,
(

p+1
Bn

)
B(n)

)
, then for allj = 1, . . . , n, xj = p̃j. From (4.10) and (4.11) we

obtain

χ(p)
B̃(n)

((
α

Bn

)
B̃(n)

)
χα(x) = 1.

If x 6∈
[(

p
Bn

)
B(n)

,
(

p+1
Bn

)
B(n)

)
, then, someδ, 1 ≤ δ ≤ n exists, so thatxδ 6= p̃δ. Then, we

have that
bδ−1∑
αδ=0

ω
αδ(xδ−p̃δ)
δ = 0.

From (4.10) and (4.11), we obtain

Bn−1∑
α=0

χ(p)
B̃(n)

((
α

Bn

)
B̃(n)

)
χα(x) =

n∏
j=1

bj−1∑
αj=0

ω
αj(xj−p̃j)
j = 0.

Now let k ≥ 1 be an integer of the kind (2.2). In order to prove (4.8) we note that for all
x ∈ [0, 1)

h′′k(x) =
√
Bn

bn+1−1∑
a=0

ωa.kn
n+1q

(
Bn+1; (pbn+1 + a)B̃(n+1);x

)
.

We will prove (4.9). Using the proved formula forh′′k(x), we have that

Ψ′′
k(x) =

∫ x

0

h′′k(t)dt(4.12)

=
1

bn+1

√
Bn

Bn+1−1∑
α=0

bn+1−1∑
a=0

ωa.kn
n+1χ(pbn+1+a)

B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)∫ x

0

χα(t)dt

=
1

bn+1

√
Bn

n∑
j=0

bj+1−1∑
t=0

(t+1)Bj−1∑
α=tBj

bn+1−1∑
a=0

ωa.kn
n+1χ(pbn+1+a)

B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)

×
(
Jj,t,α(x)− 1

Bj+1

1

ωt
j+1 − 1

δtBj ,α

)
.
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It is not difficult to prove that

(4.13)
n∑

j=0

1

Bj+1

bj+1−1∑
t=0

1

ωt
j+1 − 1

(t+1)Bj−1∑
α=tBj

bn+1−1∑
a=0

ωa.kn
n+1

× χ(pbn+1+a)
B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)
δtBj ,α =

B−1
n

ωkn
n+1 − 1

.

From (4.12) and (4.13), we obtain (4.9). �

In the following lemma the relationships in the opposite direction are proved.

Lemma 4.3. Letk ≥ 1 be an arbitrary integer andk = sBn + p, wheres ∈ {1, . . . , bn+1 − 1}
and0 ≤ p ≤ Bn − 1. Then, for allx ∈ [0, 1) the equalities

(4.14) χk(x) =
1√
Bn

Bn−1∑
j=0

α
(n)

p,j̃
h′′

sBn+j̃
(x);

(4.15) Jn,s,k(x) =
1√
Bn

Bn−1∑
j=0

α
(n)

p,j̃
Ψ′′

n,s,sBn+j̃
(x);

χk(x) =
1√
Bn

Bn−1∑
j=0

α
(n)

p,j̃
h′

Bn+j̃(bn+1−1)+s−1
(x)

and

Jn,s,k(x) =
1√
Bn

Bn−1∑
j=0

α
(n)

p,j̃
Ψ′

n,s,Bn+j̃(bn+1−1)+s−1
(x),

hold, whereα(n)

p,j̃
are complex mumbers, so that

∑Bn−1
j=0 α

(n)

p,j̃
= Bn · δsBn,k.

Proof. Let x ∈ [0, 1) be fixed. We definẽt = (t)B̃(n), 0 ≤ t̃ < Bn as
(

t̃
Bn

)
B(n)

≤ x <(
t̃+1
Bn

)
B(n)

. We denote∆(n)

t̃
=
[

t̃
Bn
, t̃+1

Bn

)
. It is obvious that∆(n)

t̃
=
⋃bn+1−1

a=0 ∆
(n+1)

t̃bn+1+a
. There is

somea, 0 ≤ a ≤ bn+1 − 1, so thatx ∈ ∆
(n+1)

t̃bn+1+a
. We have the equalities

χk(x) = χp

((
t̃

Bn

)
B(n)

)
ωa.s

n+1 and h′′s·Bn+t̃(x) =
√
Bnω

a.s
n+1.

Hence, we obtain

χk(x) =
1√
Bn

χp

((
t̃

Bn

)
B(n)

)
h′′s·Bn+t̃(x).

Let t̃′ be an arbitrary integer, so that0 ≤ t̃′ < Bn, and t̃′ 6= t̃. For x ∈ ∆
(n)

t̃
we have that

h′′
s·Bn+t̃′

(x) = 0. Hence, we obtain the equality

χk(x) =
1√
Bn

Bn−1∑
j=0

χp

((
j̃

Bn

)
B(n)

)
h′′

s·Bn+j̃
(x).
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Let for integers0 ≤ p < Bn and0 ≤ j < Bn we signifyα(n)

p,j̃
= χp

((
j̃

Bn

)
B(n)

)
. We use

the representationsp = (pnpn−1 . . . p1)B(n) and
(

j̃
Bn

)
B(n)

= (0 · j1j2 . . . jn)B(n), where for

1 ≤ τ ≤ n pτ , jτ ∈ {0, 1, . . . , bτ − 1}. Then, we obtain the equality

(4.16)
Bn−1∑
j=0

α
(n)

p,j̃
=

n∏
τ=1

bτ−1∑
jτ=0

ωpτ jτ
τ .

If p = 0, then, for1 ≤ τ ≤ n, pτ = 0 and from (4.16) we obtain
∑Bn−1

j=0 α
(n)

p,j̃
= Bn. If p 6= 0

then, someδ, 1 ≤ δ ≤ n exists, so thatpδ 6= 0. From (4.16), we obtain
∑Bn−1

j=0 α
(n)

p,j̃
= 0.

We will prove (4.15). From (4.14) for allx ∈ [0, 1) we have

Jk(x) =
1√
Bn

Bn−1∑
j=0

α
(n)

p,j̃

[
Ψ′′

sBn+j̃
(x) +

1

bn+1

B
− 3

2
n

1

ωs
n+1 − 1

]

− 1

bn+1

B−2
n

1

ωs
n+1 − 1

Bn−1∑
j=0

α
(n)

p,j̃
.

From the last equality and (3.3) we obtain (4.15). �

Sobol [14] proved a similar result, giving the relationship between the original Haar and the
Walsh functions.

For an arbitrary netξN = {x0, . . . , xN−1}, composed ofN ≥ 1 points of[0, 1) andx ∈ [0, 1)
we signifyR(ξN ;x) = A(ξN ; [0, x);N)−Nx. Then, the next lemma holds:

Lemma 4.4.
(i) The Fourier-Price coefficiens ofR(ξN ;x) satisfy the equalities:

a
(χ)
0 = −

N−1∑
m=0

(
xm − 1

2

)
;

and for each integerk ≥ 1, k = knBn + p, kn ∈ {1, 2, . . . , bn+1 − 1}, 0 ≤ p < Bn

a
(χ)
k = −

N−1∑
m=0

Jn,kn,k(xm).

(ii) The Fourier-Haar type coefficiens ofR(ξN ;x) satisfy the equalities:

a
(h′)
0 = −

N−1∑
m=0

(
xm − 1

2

)
, a

(h′′)
0 = −

N−1∑
m=0

(
xm − 1

2

)
;

Letk ≥ 1 be an arbitrary integer of kind (2.1). Then,

a
(h′)
k = −

N−1∑
m=0

Ψ′
n,s,k(xm).

Letk ≥ 1 be an arbitrary integer of kind (2.2). Then,

(4.17) a
(h′′)
k = −

N−1∑
m=0

Ψ′′
n,kn,k(xm).
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Proof. Let for 0 ≤ m ≤ N − 1, cm(x) be the characteristic function of the interval(xm, 1).
Then,

R(ξN ;x) =
N−1∑
m=0

cm(x)−Nx.

We will prove only (4.17). The proof of the remaining equalities of the lemma is similar. For
an arbitrary integerk ≥ 1 of the kind (2.2) we have:

(4.18) a
(h′′)
k =

∫ 1

0

R(ξN ;x)h′′k(x)dx =
N−1∑
m=0

∫ 1

0

cm(x)h′′k(x)dx−N

∫ 1

0

xh′′k(x)dx.

The equalities

(4.19)
N−1∑
m=0

∫ 1

0

cm(x)h′′k(x)dx =
N−1∑
m=0

[∫ 1

0

h′′k(x)dx−
∫ xm

0

h′′k(x)dx

]
= −

N−1∑
m=0

Ψ′′
k(xm)

hold. From (4.1) and (4.8) we obtain∫ 1

0

xh′′k(x)dx(4.20)

=
1

2πbn+1

√
Bn

Bn+1−1∑
α=0

bn+1−1∑
a=0

ωa·kn
n+1χ(pbn+1+a)

B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)

×
∞∑

r=0

1

Br

∫ 1

0

argχBr(x)χα(x)dx

=
1

2πbn+1

√
Bn

Bn−1∑
α=0

χ(pbn+1)
B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)[
bn+1−1∑

a=0

ωa·kn
n+1

]

×
∞∑

r=0

1

Br

∫ 1

0

argχBr(x)χα(x)dx

+
1

2πbn+1

√
Bn

bn+1−1∑
t=1

(t+1)Bn−1∑
α=tBn

χ(pbn+1)
B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)

×

[
bn+1−1∑

a=0

ω
(t−kn)a
n+1

]
∞∑

r=0

1

Br

∫ 1

0

argχBr(x)χα(x)dx

=
1

2π
√
Bn

(kn+1)Bn−1∑
α=knBn

χ(pbn+1)
B̃(n+1)

((
α

Bn+1

)
B̃(n+1)

)

×
∞∑

r=0

1

Br

∫ 1

0

argχBr(x)χα(x)dx.

The following equality can be proved: Letn ≥ 0 andq ∈ {1, 2, . . . , bn+1−1} be fixed integers.
Then, for each integerα ≥ 0

(4.21)
1

2π

∫ 1

0

argχBn(x)χα(x)dx =
1

bn+1

· 1

ωq
n+1 − 1

δq·Bn,α.
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12 V. GROZDANOV AND S. STOILOVA

From (4.20) and (4.21) we obtain

(4.22)
∫ 1

0

xh′′k(x)dx =
1

bn+1

B
− 3

2
n

1

ωkn
n+1 − 1

.

From (4.18), (4.19), (4.22) and (3.3) we obtain (4.17). �

5. PROOFS OF THE M AIN RESULTS

Proof of Theorem 3.1.For an arbitrary netξN = {x0, . . . , xN−1}, composed ofN ≥ 1 points
of [0, 1), following Kuipers and Niederreiter [8] we denoteS(ξN) =

∑N−1
m=0

(
xm − 1

2

)
and for

x ∈ [0, 1), Q(ξN ;x) = 1
N

(R(ξN ;x) + S(ξN)). The inequality

D3(ξN) ≤ 12

∫ 1

0

Q2(ξN ;x)dx.

is proved. Hence, we obtain

(5.1) D3(ξN) ≤ 12

N2

(∫ 1

0

R2(ξN ;x)dx− S2(ξN)

)
.

We obtain

D(ξN) ≤

 12

N2

∞∑
n=0

bn+1−1∑
kn=1

(kn+1)Bn−1∑
k=knBn

∣∣∣∣∣
N−1∑
m=0

Jn,kn,k(xm)

∣∣∣∣∣
2
 1

3

from Lemma 4.4 (i) and Parseval’s equality.
The other inequalities of Theorem 3.1 follow from (5.1) and Lemma 4.4 (ii). �

Proof of Theorem 3.2.
Necessity of (i): We assume that the sequence is u. d. We will prove the equality

(5.2) lim
N→∞

N−1∑
i=0

Jn,q,k(xi) = 0.

We use the representationk = q·Bn+p,wheren ≥ 0, q ∈ {1, 2, . . . , bn+1−1} and0 ≤ p < Bn.
From (3.1) and Lemma 4.1, we obtain

(5.3) Jn,q,k(x) = − 1

Bn+1

· χp(x)

ωq
n+1 − 1

+
1

Bn+1

· 1

ωq
n+1 − 1

δq.Bn,k

+
1

Bn+1

·
ω

qbn+1
2π

arg χBn (x)

n+1

ωq
n+1 − 1

χp(x) +
1

2πBn

∞∑
r=1

b−r
n+1 argχBn

(
brn+1x

)
χk(x).

Firstly, we assume thatk = q · Bn, hence,p = 0 andδq·Bn,k = 1. From (5.3) forJn,q,k(x), we
have

Jn,q,k(x) =
1

Bn+1

·
ω

qbn+1
2π

arg χBn (x)

n+1

ωq
n+1 − 1

+
1

2πBn

∞∑
r=1

b−r
n+1 argχBn

(
brn+1x

)
χk(x).

We will prove the equalities

lim
N→∞

1

N

N−1∑
i=0

ω
qbn+1

2π
arg χBn (xi)

n+1 = 0 and lim
N→∞

1

N

N−1∑
i=0

∞∑
r=1

b−r
n+1 argχBn(brn+1xi)χk(xi) = 0.
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From (1.1), it is sufficient to prove that∫ 1

0

ω
qbn+1

2π
arg χBn (x)

n+1 dx = 0

and ∫ 1

0

∞∑
r=1

b−r
n+1 argχBn

(
brn+1x

)
χk(x)dx = 0.

We have the following equalities∫ 1

0

ω
qbn+1

2π
arg χBn (x)

n+1 dx =
Bn−1∑
j=0

bn+1−1∑
s=0

∫ jbn+1+s+1

Bn+1

jbn+1+s

Bn+1

ω
qbn+1

2π
arg χBn (x)

n+1 dx

=
1

bn+1

bn+1−1∑
s=0

ωsq
n+1 = 0.

Sincek = q·Bn from (4.21), we have the equalities∫ 1

0

[
∞∑

r=1

b−r
n+1 argχBn

(
brn+1x

)
χk(x)

]
dx

=
∞∑

r=1

b−r
n+1

∫ 1

0

argχBn

(
brn+1x

)
χk(x)dx

=
∞∑

r=1

b−r
n+1

∫ 1

0

arg φ
(bn+1)
0 (brn+1Bnx)

[
φ

(bn+1)
0 (Bnx)

]q
dx

=
∞∑

r=1

b−r
n+1

∫ Bn

0

arg φ(bn+1)
r (t)

[
φ

(bn+1)
0 (t)

]q
dt

= Bn

∞∑
r=1

b−r
n+1

∫ 1

0

argψ
(bn+1)
br
n+1

(t)ψ(bn+1)
q (t)dt = 0.

If k 6= q·Bn, then, from (5.3), we will obtain a useful formula forJn,q,k(x) and by analogy, we
can prove the equality (5.2).
Sufficiency of (i): We assume that the sequenceξ = (xi)i≥0 is not u. d. Then,limN→∞DN(ξ) =
D > 0.

LetM > 0 be a fixed integer. From Theorem 3.1 we have

(5.4) D3
N(ξ) ≤ 12

M−1∑
n=0

bn+1−1∑
q=1

(q+1)Bn−1∑
k=qBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣
2

+ 12
∞∑

n=M

bn+1−1∑
q=1

(q+1)Bn−1∑
k=qBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣
2

.

For arbitrary integersn ≥ 0, q ∈ {1, 2, . . . , bn+1 − 1} andqBn ≤ k < (q+ 1)Bn we can prove

(5.5)

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣ ≤
(
B +

1

2 sin π
B

)
1

Bn+1

.
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Let b = min{bn : n ≥ 1}. Then, using the inequality (5.5), we have

∞∑
n=M

bn+1−1∑
q=1

(q+1)Bn−1∑
k=q.Bn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣
2

<

(
B +

1

2 sin π
B

)2 ∞∑
n=M

1

Bn+1

(5.6)

≤
(
B +

1

2 sin π
B

)2 ∞∑
n=M

1

bn+1

=
1

b− 1

(
B +

1

2 sin π
B

)2
1

bM
.

Now we chooseM , so that

(5.7)
12

b− 1

(
B +

1

2 sin π
B

)2
1

bM
<

1

2
D3.

Let ε > 0 be arbitrary. Then, an integerN0 exists, so that for eachN ≥ N0, D
3 − ε < D3

N(ξ).
From (5.4), (5.6), (5.7) and the last inequality, we obtain

1

2
D3 − ε < 12

M−1∑
n=0

bn+1−1∑
q=1

(q+1)Bn−1∑
k=qBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣
2

.

We choose an integerν > 0, so that1
2
D3 − ε > 1

ν
D3 and we obtain

0 <
1

ν
D3 < 12

M−1∑
n=0

bn+1−1∑
q=1

(q+1)Bn−1∑
k=qBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣
2

.

Finally, (n, q, k) exists, such that∣∣∣∣∣ lim
N→∞

1

N

N−1∑
m=0

Jn,q,k(xm)

∣∣∣∣∣ > 0.

The demonstration of (ii) and (iii) of the theorem is a consequence of the formulae obtained in
Lemma 4.2, Lemma 4.3 and (i) of Theorem 3.2. �

Proof of Theorem 3.3.

D3(ξN) ≤ 12
M−1∑
n=0

bn+1−1∑
s=1

(s+1)Bn−1∑
k=sBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,s,k(xm)

∣∣∣∣∣
2

(5.8)

+ 12

q−1∑
s=1

(s+1)BM−1∑
k=sBM

∣∣∣∣∣ 1

N

N−1∑
m=0

JM,s,k(xm)

∣∣∣∣∣
2

+ 12


H∑

k=qBM

+

(q+1)BM−1∑
k=H+1


∣∣∣∣∣ 1

N

N−1∑
m=0

JM,q,k(xm)

∣∣∣∣∣
2

+ 12

bM+1−1∑
s=q+1

(s+1)BM−1∑
k=sBM

∣∣∣∣∣ 1

N

N−1∑
m=0

JM,s,k(xm)

∣∣∣∣∣
2
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+ 12
∞∑

n=M+1

bn+1−1∑
s=1

(s+1)Bn−1∑
k=sBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,s,k(xm)

∣∣∣∣∣
2
 1

3

.

We have the following inequality

Σ =

(q+1)BM−1∑
k=H+1

∣∣∣∣∣ 1

N

N−1∑
m=0

JM,q,k(xm)

∣∣∣∣∣
2

+

bM+1−1∑
s=q+1

(s+1)BM−1∑
k=sBM

∣∣∣∣∣ 1

N

N−1∑
m=0

JM,s,k(xm)

∣∣∣∣∣
2

(5.9)

+
∞∑

n=M+1

bn+1−1∑
s=1

(s+1)Bn−1∑
k=sBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,s,k(xm)

∣∣∣∣∣
2

≤
∞∑

n=M

bn+1−1∑
s=1

(s+1)Bn−1∑
k=sBn

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,s,k(xm)

∣∣∣∣∣
2

.

The following inequalities

(5.10)

∣∣∣∣∣ 1

N

N−1∑
m=0

Jn,s,k(xm)

∣∣∣∣∣
2

≤

(
N−1∑
m=0

1

N
|Jn,s,k(xm)|

)2

and

(5.11) |Jn,s,k(x)| ≤ |Jk(x)|+
1

2b sin π
B

· 1

Bn

, ∀x ∈ [0, 1)

hold. It is not difficult to prove that for eachk, Bn ≤ k < Bn+1

(5.12) |Jk(x)| <
1

Bn

, ∀x ∈ [0, 1).

From (5.11) and (5.12), we obtain

(5.13) |Jn,s,k(x)| ≤
(

1 +
1

2b sin π
B

)
1

Bn

, ∀x ∈ [0, 1).

From (5.9), (5.10) and (5.13) the following inequalities

Σ ≤
∞∑

n=M

bn+1−1∑
s=1

(s+1)Bn−1∑
h=sBn

(
1 +

1

2b sin π
B

)2
1

B2
n

<
B(1 + 2b sin π

B
)2

4(b− 1)b sin2 π
B

1

BM

hold. The statement of the theorem holds from the last inequality and (5.8). �

Theorem 3.4 is a direct consequence of Lemma 4.4 and Parseval’s equality.

6. CONCLUSION

In conclusion, the authors will present possible variants to extend this study.
The obtained results show that Price functions and Haar type functions can be used as a

means of examining uniformly distributed sequences. The proved results raise the issue of their
generalization. The most natural generalization is to obtain results in thes−dimensional cube
[0, 1)s, s ≥ 2.

This is not difficult to do when Price functions and Haar type functions are used (see Kuipers
and Niederreiter [8, Corollaries 1.1 and 1.2]).

The obtaining of results, in which the modified integrals from the correspondings−dimensional
functions are in use, is connected with great technical difficulties. In the one-dimensional case
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the proof of sufficiency of Theorem 3.2 is based on the analog of the LeVeque inequality, ex-
posed in Theorem 3.1. A multidimensional variant of the inequality of Le Veque is not known in
this form to the authors. In this case, the proof of sufficiency of the multidimensional variant of
Theorem 3.2 is connected with proving the multidimensional variant of LeVeque’s inequality.

Another direction to generalize the obtained results is the possibility to use arbitrary orthonor-
mal bases inL2[0, 1) as a means of examining uniformity distributed sequences. The obtained
results in such a study would have more general nature. The definition and the use of the mod-
ified integrals of the functions of an arbitrary system will be difficult in practice because these
integrals depend on the concrete values of the corresponding functions.

Regarding the applications of uniformly distributed sequences, the inequality of Koksma-
Hlawka gives an estimation of the error ofs−dimensional quadrature formula in the terms of
discrepancy of the used net. In this sense, the problem of obtaining quantitative estimations of
discrepancy is interesting, as the functions presented in this paper can be used as a means of
solving the above problem.

The shown generalizations are a part of the problems to solve in connection to the study of
uniformity distributed sequences by orthonormal bases inL2[0, 1).

The methods to prove the theorems in this paper, by suitable adaptation may be used to solve
some of the exposed problems.
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