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ABSTRACT. The Weyl criterion is shown in the terms of Price functions and Haar type func-
tions. We define the so-called modified integrals of Price and Haar type functions and obtain the
analogues of the criterion of Weyl, the inequalities of LeVeque and Erdds-Turan and the formula
of Koksma in the terms of the modified integrals of Price and Haar type functions.
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1. INTRODUCTION

Let¢ = (x;);>0 be a sequence in the unit interval 1). We defineA(&; J; N) = {i : 0 <
i < N—1, x; € J}foran arbitrary integeN > 1 and an arbitrary subinterval C [0, 1). The
sequencg is called uniformly distributed (abbreviated u. d.) if for every subintesvaf [0, 1)
the equalitylim y_ w = n(J) holds, and wherg(.J) is the length of/.

Let &y = {zo,...,xny_1} be an arbitrary net of real numbers jinh 1). The extreme and
quadratical discrepancié3(¢y) andT'({y) of the net{y are defined respectively as

D(én) = sup [NT'A(&y; T N) — pu(J),

s
JE[0,1)

=

re0 = ([ N A(E: [0, 2): N) — oPir)
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2 V. GROZDANOV AND S. STOILOVA

The discrepancyDy (&) of the sequencé is defined asDy (&) = D(&y), for each integer
N > 1, and{y is the net, composed of the firdt elements of the sequengelt is well-known
that the sequencgis u. d. if and only iflimyx_.., Dy (&) = 0.

According to Kuipers and Niederreiter [8, Corollaries 1.1 and 1.2], the seq@esae d. if
and only if for each complex-valued and integrable in the sense of Riemann furictiefined
on R and periodical with period 1, the following equality

(1.1) lim lZf(xi):/ flx)dx
=0 0

N—oo N -
holds.

The theory of uniformly distributed sequences is divided into quantitative and qualitative
parts. Quantitative theory considers measures, showing the deviation of the distribution of a
concrete sequence from an ideal distribution. Qualitative theory main idea of uniformly dis-
tributed sequences is to find necessary and sufficient conditions for uniformity of the distribu-
tion of sequences.

Weyl [18] obtains such a condition (the so-called Weyl criterion) which is based on the use
of the trigonometric functional system = {ex(z) = exp(2wikx),k € Z,x € R}. The
criterion of Weyl is: The sequencgé = (z;);>0 is uniformly distributed if and only if the
equalitylimy .. & S~ " e (2;) = 0 holds for each integek # 0.

The Walsh functional system has been recently used as an appropriate means of studying the
uniformity of the distribution of sequences. Sloss and Blyth [13] use this system to obtain future
necessary and sufficient conditions for a sequence to be u. d.

The link, which is realized for studying sequences(inl), constructed in a generalized
number system and some orthonormal functional systemg,dn, constructed in the same
system, is quite natural. The purpose of our paper is to reveal the possibility some other classes
of orthonormal functional system, as the Price functional system and two systems of Haar type
functions to be used as a means of obtaining new necessary and sufficient conditions for uniform
distribution of sequences.

In Section 2 we obtain new necessary and sufficient conditions for uniform distribution of
sequences, which are analogues of the classical criterion of Weyl. These conditions are based
on the functions of Price and Haar type functions.

In Section B we introduce the so-called modified integrals of the Price functions and Haar
type functions. Integral analogues of the Weyl criterion are obtained in terms of these inte-
grals. Analogues of the classical inequalities of LeVe@ue [9] and Erdds-Turan (see Kuipers and
Niederreiter[[8]), and the formula of Koksma, (see Kuipérs [7]) are obtained.

In Sectiorj 4 we prove some preliminary statements, which are used to prove the main results.
The proofs of the main results are given in Secfipn 5. In Seffion 6 we give a conclusion, where
we announce some open problems, having to do with the problems, solved in our paper.

The results of this paper were announced in Grozdanov and Stdilova [3]land [4]. Here we
explain the full proofs of them. The results which are based on the Price functions generalize
the ones of Sloss and Blyth [13]. The results which are based on the Haar type functions are
new.

2. PRICE FUNCTIONAL SYSTEM, HAAR TYPE FUNCTIONAL SYSTEM AND
ANALOGUES OF THE CRITERION OF WEYL

Let B = {b1,bo,...,b;,... : b; > 2,7 > 1} be an arbitrary fixed sequence of integer
numbers. We defing; = exp (21)—’;‘) for each integej > 1. We define the set of the generalized
powers{B;}3, as: By = 1 and for each integej > 1, B; = Hizl bs.
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PRICE AND HAAR TYPE FUNCTIONS AND UNIFORM DISTRIBUTION OF SEQUENCES 3

Definition 2.1.
(i) For realz € [0,1) in the B—adic formz = >° ,B;', where fori > 1 2; €
{0,1,...,b; — 1} and each integef > 0, Price [10] defines the functiongg, (r) =
W
(i) For each integek > 0intheB—adic formk = Z;;O kj+1B;, whereforl <j <n+1,
kj €{0,1,...,b; — 1}, k.41 # 0 and reals € [0, 1), thek-th function of Pricey(z) is

defined asyx(x) = [T)_o (x5, ()"

The systermy (B) = {xx }32, is called the Price functional system. This system is a complete
orthonormal system it [0, 1).
Let b, = b in the sequencd for eachj > 1. Then, the systenix,} U {x;:}5, is the

Rademacher [11] systemzsﬁf)},;“;o of orderb. The system of Chrestensan [Qib,ib)},;“;o of
orderb is obtained from the system(3). If for eachj > 1 b; = 2, then the original system of
Walsh [17] is obtained.

In 1947 Vilenkin [15] introduced the systeg(3) and Price[[10] defined it independently
of him in 1957. Some names are used about the sygt@ in special literature: both Price
system (see Agaev, Vilenkin, Dzafarly, Rubinstéin [1]) and Vilenkin system (see Schipp, Wade,
Simon [12]). We use the name Price functional system in this paper.

We will consider two kinds of the so-called Haar type functions. Starting from the original
Haar [5] system, Vilenkin [16] proposes a new system of functions, which is called a Haar type
system, (see Schipp, Wide, Simon][12]). This definition is:

Definition 2.2. Forz € [0, 1) the k™ Haar type functiorh,(z), k > 0 to the base3 is defined
as follows: Ifk = 0, thenh((z) = 1, Vz € [0,1). If £ > 1 is an arbitrary integer and

(21) k:Bn +p(bn+1_1)+3_17
where for some integer > 0,0 <p < B, —lands € {1,...,b,+1 — 1}, then
1 bnt1+a bn4+1+a+1 _
/ VBwit prB:—il§3:<p]§;—H anda=0,1,...,b,41 — 1,
hi(z) =
0, otherwise.

We will consider another one:

Definition 2.3. Forz € [0, 1) the k™ Haar type functiorh)(z), k > 0 to the base3 is defined
as follows: Ifk = 0, thenh((x) = 1, Vz € [0,1). If £ > 1 is an arbitrary integer and

(2.2) k=k,B, + p,
where for some integer > 0,0 <p < B, —landk, € {1,...,b,.1 — 1}, then
VBuwinh, if Pt < g < Pt and a = 0,1, by — 1,
hi(z) =
0, otherwise.

It can be easily seen that the systefns} > , and{ A} };>, are complete orthonormal systems
in Ly[0,1). In the case when for eagh> 1 b, = 2 the original system of Haar is obtained from
the systemgh) }72, and{h}}22,.

Theorem 2.1(Analogues of the criterion of Weyl)The sequencer;);> of [0, 1) is u. d. if and
only if:
1 N—-1
J&EHOONZ;X’“ z;) =0, for eachk > 1,
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4 V. GROZDANOV AND S. STOILOVA

1
lim NZh;( ) =0, for eachk > 1
o
and
N-1
lim > hi(x;) =0, for eachk > 1
o

The proof of this theorem is based on the equality|(1.1) and the properties of Price and Haar
type functional systems.

3. PRICE AND HAAR TYPE INTEGRALS AND U. D. OF SEQUENCES

We consider the integrals of Price and Haar type functigris) = [ xx(t)dt, ¥} (z) =
Jy b (t)dt and W (x) = [ hy(t)dt for each integek > 1 andz € [0, 1).
For an arbltrary mtegelf > 1 we define the integer > 0 by the conditionB,, < k < B, ;1.
We define thenodified integrals of Price functicas
1

3.1 =
(3.1) Tnarle) = Jx(@) + Bhi1 wpyy — 1

forallz € [0,1) and eacly = 1,2,...,b,41 — 1, and for arbitrary integers j > 0, ¢, ; is the
Kronecker’'s symbol.
If & is an integer of the kind (2.1), we define

1 -3 1
3.2 U (@) = W(x) + — B, :
( ) k( ) k)( ) bn+1 wa+1 1
forallz € [0,1) andeacty = 1,2,...,b,11 — 1.
If £ is an integer of the kind (2.2), we define

1 -3 1
(3.3) WL (@) = Wi(2) + By —;
s burr Wk, — 1
forallz € [0,1) and eaclk,, = 1,2,...,b,11 — 1.
We will call the integralsb; k( )and¥; , , (r) modified integrals of Haar type functians

The next theorems hold:

5q.Bn,k7

Theorem 3.1(Analogues of the inequality of LeVequelet{y = {z¢,z1...,zx_1} be an
arbitrary net, composed oV > 1 points of[0,1). The discrepancyD({y) of the netéy
satisfies the inequalities:

o bn+1 1 q+1 Bn —1|N-1 2 3
n=0 g¢=1 k=qBn m=0

W=

2

n

oo 1)B,
n=0

o bn+l 1 kn+1 Bn 1|N-1

D(én) < Z Z Z Z W5 ko ()

n=0 k,=1 k=kyn B, m=0

s=1

1
2\ 3

Theorem 3.2(Integral analogues of the criterion of Weyl)et an absolute constari® exist,
such as for each > 1b; < B. Letk > 1 be an arbitrary integer and3, < k < B,4;. The
sequence = (z;);>0 0f [0, 1) is u. d. if and only if:
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(i)
N-1

1
lim —Zank z;) =0 for eachq=1,2,... by —1,

N—>oo

(i) If k> 1is of the kdeQ_T]l) then

1
dim ZO W, () =0 for eachs=1,2,... b, — 1,
(iii) If k> 1is of the kind[[Z) then
1 N-1
Jim > W, (@) =0 for eachk, =1,2,... by — 1.
=0

Theorem 3.3(An analogue of the inequality of Erdds-Turahpet an absolute constarit exist,
such that; < B for eachj > 1 and we signifyp = min{b, : j > 1}. Letéy = {xo,...,xn_1}

be an arbitrary net, composed &f > 1 points of[0, 1). For an arbitrary integerH > 0 we
define the integer8/ > 0 andq € {1,2,...,by1 — 1} @asqBy < H < (¢ + 1)By,. Then the
following inequality holds

M=1bp41—1(s+1)Bp—1

peos (Y Y Y

= s=1 k=sBp

1 N-1

ﬁ Z Jn,s,k<xm)
m=0

q— 1 (S+1 B]\[ 1

+12) Y

s=1 k=sBy

H | V-l 2
+12 Z N Z JM7q,k(.CEm)
m=0

k=qBn
Theorem 3.4(Analogues of the formula of Koksmaletéy = {zg,z;...,zy_1} be an arbi-
trary net, composed a¥ > 1 points of|0, 1). The quadratical discrepanc¥(¢y ) of the nety
satisfies the equalities

(NT(&x))? (N :(xm__)> +i "il(qulZBn :

n=0 g¢=1 k=q.Bp,

1 N-1
N Z JM,s,k<xm)
m=0

Wl

3B(1 4 2bsin £)2 1

(b—1)bsin® L By

N—1 2

Z Jn,q,k‘<xm) )

m=0

N-1 00 bnt1—1(s+1)Bp—1|N 2
<NT<5N>>2:( (wm——)) DIDINDS Z\Ifm ,

n=0 s=1 =sBp
and

(NT(en))? = (N_l (1 - —)) S Z Vs

n=0 k,=1 k=knBn

4. PRELIMINARY STATEMENTS

Let z € [0,1) have theB—adic representatiom = 3 °° zj By,

zj41 € {0,1,...,bj41 — 1}. For each integey > 0 we have that;,; = %=

where for; > 0,

().
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6 V. GROZDANOV AND S. STOILOVA

Hence, we obtain the representation

1 1
4.1 — — ().
(4.1) "= 5 2 g, e )

J

[e.9]

Lemma 4.1. Letk > 1 be an arbitrary integer and = 3,18, + k', wheres,.; € {1,...,
bps1 — 1} and0 < k' < B,. For z € [0, 1) thek™ Price integral satisfies the following equality

] %Jr;# arg x s, (z)
1 — Wt 1

Bt 1 — Pt X (2) 27 B Z b, {1818 XB, (b;-‘rlm) Xk(T).
n n+1 no._

Proof. Letb > 2 be afixed integer and = exp ( ) For an arbitrary integes, 1 < g <b—1

and realr € [0,1) let
Vi) = [ o war
0

We will prove the following equality

(4.2) Jy(z) =

11— wor 28 arg ¢y (x)

1, _, b b
7 T + %Zb arg¢ér)(x)¢é)(x).
r=1

We puts = [bz], where[bx] denotes the integer part &bf and we have that

(4.3) TV (x) =

(4.4) ()= [ 16 @)
0
s=1  a(h+1)/b z
-y / WMOdt + / (6 (1)) dt
heo V h/b s/b
11— wﬂ[bx] (b) [bx]
=y i TV @ (”’_T)‘
From (4.1) and[(4]4) we obtaip (4.3).
If
g gy = [ t)dt
1B (T) ; Xon418, (8,
then
(4.5) Tu() = xw (@) Jgm 3, (@),

We have the equalities
Kbt = [ o
0

_ / ’ [¢gbn+1><3nt)f"“ dt
0

1 Bnx

n b’ﬂ
g om = B,
so that )
bn 1 bn 1
From the last equality anfl (4.5) we obtain that
1 bnt1
(4.6) (@) = xw() T3 (Byx).
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From (4.3) we obtain

Bn4+1bnt1

1 1—-—w 27 arg X g, () 1 °
4.7) I3 (Bur) = T+ 5= bl are v, (0 412)Xs, 5, (7).
o bn+1 - wn-lji 2 r=1
From [4.6) and[(4]7) we obtaih (4.2). O

For every integen > 1 we consider the sé8(n) = {bl,bg,...,bn}.We define the “reverse”
setB( ) = {bn,bp—1,...,b1}, SO thatB, = by, By = bpbp_1,...,B, = b,---b;. For an

arbitrary integep, 0 < p < B, and for aB-adic rational}- let (p) s, (1) 3(): (%) ) and
n "/ B(n

<B%L>§( : be the corresponding representationg ahd - to the systems3(n) andé(n).

Lemma 4.2. (Relationships between the Price and the Haar type functions)
(i) Letk > 1 be an arbitrary integer of the kindl (3.1). Then for alkc [0, 1)

'L+1 1 bn+1 1 o
h a\T);
+l) = \/_ Z Z wn+1X(pb”+1+a)B(n+1) ((Bn+1)§(n+1)) el

b1

()= 2
n,s,k\L :—
Sk n+1\/

n b]+1 1 t+1 —1bp41—1 o
D30 S D S SN () I L

t=0 a=tB; a=0

(i) Letk > 1 be an arbitrary integer of the kindl (3.2). Then for allc [0, 1)

Bpi1—1bpy1—1
1 o
4.8 hY e akn~ J2);
) =3 L X ”X<>(<B> <n+1>>x "

1
4.9) V', (1)=——
,kn,k( ) n+1\/—

n bj+1 1(t+1 '_1bn+1 1 a
. Z Z Z Z wn+1Xpb"+1+a)B<n+1> ((BnH)E‘( +1)> Dl

t=0 a=tB; a=0

Proof. For an arbitrary integep, 0 < p < B, andx € [0, 1), following Kremer [6] we define

the function
it |(£),(5),0)
Bn ) B(n) " ) B(n)

LIRSS {(B%>B(n) ’ <%>B(n)) '

S

=

q(By; (p)g(n);x) =

[y

The equality

Bp—1
1 & _ !
q(Bn; (p)é(n);fb’) B, Z_[:) X®) 5 ) ((B_n) E(n)) Xa(7)
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holds. Let us use the significations: For an arbitrary integey < p < B,, (p)é(n) =

(P1p2 - - .ﬁn) for an arbitrary integety, 0 < a < B,,, (B > " = (0 apay—1...01)5 Bln):
n /) B(n

for realx € [0, 1), x=(0-21...2,41...). Then, we obtain the equalities

(4.10) = = QP On 1Pl

and

(4.11) Xa(Z) = Wi wg?™® L wimn,

P ptl — -
If z € {(B”)B(n)7< >B(n)) ,thenforallj =1,...,n,z; = p;. From (4.10) and (4.11) we

_ oY
X0) 5 n) <(B_">E(n)> Xa(z) = 1.

If « & {(ﬁ) o’ (%) ( )) , then, some), 1 < § < n exists, so that; # ps. Then, we
"/ B(n "/ B(n
have that

bs—1

Z w?a(xafﬁé) -0,

as=0

From (4.10) and (4.11), we obtain

Bl « T (w5 —D5)
— o aj(x;—pj)
Z—:o X®)5n) <<B_n) E(n)) Xal) = H Z w7 =0

jZl aj:0

Now let & > 1 be an integer of the kind (2.2). In order to proye [4.8) we note that for all
ze0,1)

n+1 1

h” =+/B Z wan( n+1; (pbn-l-l + CL) B(n+1)? l‘>

We will prove (4.9). Using the proved formula faf (x), we have that

(4.12) W/(z) = /0 h bt

1 Bn+1—1 bn+1 1 O[ T
= w o(t)dt
%@Q:ZHMWMW«%%MMM>

1(t4+1)Bj—1bpy1—1
s Y S e (5
b i BN\ Bt/ Bnta)

a=tB; a=0

1 1
J J+
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It is not difficult to prove that

bj1—1 (t+1)Bj—1 bpp1—1

(4.13) 2_) ]H; - >y

a=tB; a=0

- a D
X X(pbn+1+a)]§(n+1) BnJrl B(n+1) tBye m

From [4.12) and (4.13), we obtain (#.9). O

In the following lemma the relationships in the opposite direction are proved.

Lemma 4.3. Letk > 1 be an arbitrary integer and = sB,, + p, wheres € {1,...,b,1 — 1}
and0 < p < B,, — 1. Then, for allz € [0, 1) the equalities

Bn—1
1 n
(4.14) r(z) = Z C((n)h/s,B L();
VB, il J
Bn,—1
1 n
(4.15) Jnsn(T) = e (z);

J ~ n,8,8Bn+
VB, &= v wtd

1 () pr
Xk(ﬁf):\/B—n‘ ap7jh3n+j(bn+1—1)+s—1(m)

7=0
and
B,—1
n7s,k(x) B \/B_ Oépv.; n’s7Bn+3(bn+171)+571<x>7
n =0
hold, wherea ) are complex mumbers, so th@B”0 ! a ”9 = B, - 0sB,, k-

Proof. Let z € [0,1) be fixed. We defing = () By 0 < t < B, as( ) o <z <
Bn B(n

<t§—1> ( ).We denoter” = [Bi, tg—1> Itis obvious thar\"™ = [ Jn4 " AEZ“) .There is
"/ B(n

somea, 0 < a < b,,; — 1,sothatx € At;‘“ . We have the equalities

t
k() = Xp ((B—) ) wpy and h;’B Li(®) =/ Buwpy.
n/ B(n)

Hence, we obtain

(@) = =, ((BL)B()) W o).

Let ¢ be an arbitrary integer, so that< ¢ < B,, and# # {. Forz € Aé") we have that
n" . - (x)=0.Hence, we obtain the equality

s-Bp+t’
B,—1
X (( n>B(n)> h;,-BnJr;(x)'

J. Inequal. Pure and Appl. Mathb(2) Art. 26, 2004 http://jipam.vu.edu.au/
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Let for integers) < p < B, and0 < j < B, we signifyozsg? = Xp ((BL> ( )) . We use
) "/ B(n

the representations = (p,pn_1 - p1)sw and <BL) = (0 j1J2 .- jn)B(n), Where for
"/ B(n
1<7<n p,j€{0,1,...,b, — 1}. Then, we obtain the equality
Bnr—1 n br—1
(4.16) > a;"j =TI > wi.
=0 =1 jr=0
If p =0, then, forl <7 <n, p, =0andfrom|4.15) we obteuEB" ! a ) =B, lfp#0

then, some, 1 < § < n exists, so thaps # 0. From (4.16), we obtauifgo ! ;”j) =0.
We will prove (4.15). From|(4.14) for alt € [0,1) we have

B,—1

1 -3 1
Ji(x) x) + B,?
v VB, jzo [ 01,43 (7) bnt1 Wﬁﬂ_l]
Bn—1
1l N
bn+1 wpi — 1 =0
From the last equality anfl (3.3) we obtdin (4.15). O

Sobol [14] proved a similar result, giving the relationship between the original Haar and the
Walsh functions.

For an arbitrary nefy = {zo,...,zx_1}, composed ofV > 1 points of[0, 1) andx € [0, 1)
we signify R({n; z) = A(Ew; [0, 2); N) — Nz. Then, the next lemma holds:

Lemma 4.4.
(i) The Fourier-Price coefficiens @t(¢y; x) satisfy the equalities:

N-1 1
00 _ R
== 3 (- 3)
and for eachintegek > 1,k =k, B, + p, k, € {1,2,...,b,;1 — 1},0<p < B,

N-1
> Tk ().
m=0

(i) The Fourier-Haar type coefficiens &f(¢y; x) satisfy the equalities:

N—-1 1 N—-1 1
hl hll
a(()):_E (‘(Em_ﬁ)va(()):_E (xm_ﬁ);

m=0 m=0

Letk > 1 be an arbitrary integer of kin{@l). Then,

Z\Ilnsk

Letk > 1 be an arbitrary integer of kmc[@Z). Then,

(4.17) al") Z L.

J. Inequal. Pure and Appl. Mathb(2) Art. 26, 2004 http://jipam.vu.edu.au/
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Proof. Let for0 < m < N — 1, ¢,,(x) be the characteristic function of the interyal,,, 1).
Then,

fNa Z Cm -

We will prove only [4.1}). The proof of the remaining equalities of the lemma is similar. For
an arbitrary integek > 1 of the kind [2.2) we have:

. 1 N-1 .1 1
418) @)= /0 R(&v:2)hf(z)de = /0 ()R] (2)dz — N /0 ah!!(x)dz
m=0

The equalities

(4.19) Z / ()R (2

hold. From [(4.1l) and (4]8) we obtain

N—

,_.

N-1

[/ B! (z)da — /Oxm h’k’(x)dx} — =Y W)

1
(4.20) /a:hg($)d$
0
Bpi1—1bpy1—1
35 o (i
27Tbn+1\/_ - n (Pbr+1 @) B(n+1) Bn_~_1 (n+1)
ZE / arg \ s, () a () da

1 Bp—1 a b1 -1
o a-ky
- - ) w
27Tbn+1 RV B Z X(pbn+l)B(n+1) ( (Bn+1 ) (n—i—l)) [ ; n+1]
—/ arg x s, (¥)Xo(z)dz

bpt1—1 (t-‘rl)Bn—l o
o ()
27Tbn+1\/_n ; a;Bn v +1)B(n+1)< Bn+1 é(nJrl))

bny1—1 00 1
1
—kn)a
| 20 AT S 5 [ anen (@)ale)ds
a=0 r=0 "

(kn+1)Bn—1
- 2nvB, —knB Hptnen)snry <(B"+1) er))
1

=1
<Y | e @)

0

r=0
The following equality can be proved: Let> 0 andq € {1,2,...,b,,1 — 1} be fixed integers.
Then, for each integer > 0
(4.21) / (x)dx = ! ! )
. arg XBn XOé — bn+1 (,d 7, - 1 q-Bn,a-
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From (4.20) and (4.21) we obtain
! 1 s 1
4.22 xh!(z)dr = B,? )
( ) /0 k( ) bn—l—l wfb’;l -1
From (4.18),((4.19)] (4.22) and (3.3) we obtdin (4.17). O

5. PROOFS OF THE MAIN RESULTS

Proof of Theorern 3]1For an arbitrary ne§y = {zo,...,zn-1}, cOmposed ofV > 1 points
of [0, 1), following Kuipers and Niederreiter [8] we denafé¢y) = S°" 0 (., — &) and for
z€0,1), Q(én;z) = % (R(En; z) + S(€n)). The inequality

1
D(ey) < 12 / Q(Ex: 2)de
0

is proved. Hence, we obtain

12 !
(5.1) D3(¢y) < N (/ R*(&y; w)dr — 52(&\[)) .
We obtain
00 bng1—1( N— 2\ 3
OB Z Z
n=0 k‘nfl k= kJan m=
from Lemmg 4.1 (i) and Parseval’s equality.
The other inequalities of Theorgm B.1 follow from (5.1) and Lemma 4.4 (ii). O
Proof of Theorem 3]2.
Necessity of (i) We assume that the sequence is u. d. We will prove the equality
N—-1
(5.2) dim Y T g(@i) = 0.
im0

We use the representatién= ¢-B,,+p, wheren > 0,q € {1,2,...,b,,1—1}and0 < p < B,,.
From (3.1) and Lemma 4.1, we obtain

1 Xp(T) 1 1
5.3) J = — - . dg.
| e, @ |
n+l -r r
+ Bt : o 1 Xp(x) + 2B, ;Zl bpt1 818 X B, (bn—i-lx) Xk ().

Firstly, we assume that = ¢ - B,, hencep = 0 andé,.p, », = 1. From (5.3) for.J, , (), we
have

Lrid arg xp, (@ ) T

1 wn-il —r r
We will prove the equalities
N-1 N—-1 o
. 1 @ n+1 arg X B, () : 1 —r T
Jim Z wn i =0and lim Z Z bty a1g Xp, (0411 xa () = 0.
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From (1.1), it is sufficient to prove that

1 qb n+1
arg x By, (¢)
/ Wi i1 dr =0
0

and
/anﬂargxfzn (0 412) xn(2)da = 0.

We have the following equalities

Bp—1bnt1—1 anﬂ““
TL

1
a Lot arg x gy, (%) Bn+1 T2l arg x g, (%)
W1 dx Wh {7 dx
0 =0 ]bn+1+s

n+1
bpt1—1

E u)n—i-l
s=0

Sincek = ¢-B,, from (4.21), we have the equalities

1 [ o
/ [Z bty arg x s, (b)417) Xk:(l')] dx
0

r=1
o) 1
_ anjl/o arg xs, (bp12) xk(2)dz

n+1

oo 1
q
=S bt [ a0 Bar) [0 (Bua)] o
0
00 Bn , q
=Yon [ aneteo [el ) d
0

-, b, / arg {07 (1)) ()t = 0.

r=1 0

If k # ¢-B,, then, from[(5.B), we will obtain a useful formula fdy, , (<) and by analogy, we
can prove the equality (3.2).
Sulfficiency of (i) We assume that the sequegce (z;),>pisnotu. d. Thenlimy_.., Dn (&) =
D > 0.

Let M > 0 be a fixed integer. From Theor¢m 3.1 we have

oo bpy1—1(g+1)B

+12) 0 ) Z

n=M q=1  k=¢B,

1 N-1
Z I (Tm)
m=0

For arbitrary integers > 0,9 € {1,2,...,b,41 — 1} andgB,, < k < (¢ + 1) B, we can prove

1= 1 1
=N sz < [ B+ — .
NmX:% a(m) —( +281n%> Bt

(5.5)
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Letb = min{b, : n > 1}. Then, using the inequality (5.5), we have
2

X st < (B4 =) 3 5

T n Tm T

Nm:0 ok 2sin & =, B
<
_( 2sin % ) b”Jrl

1 1 \*1
- — (B —
-1 ( * 2sin%> oM
Now we choosél/, so that

12 1 \1 1
5.7 (B < D%
(®.7) b—l( +281n%> B <2

00 bnti—1(g+1)Bn—1

COEEDID DD

anl qun

Lete > 0 be arbitrary. Then, an integé¥, exists, so that foreacN > N,, D3 —e < D3/(£).
From (5.4),[(5.6),[(5]7) and the last inequality, we obtain

1 N-1
N Z I, e (Tm)
m=0

We choose an integer > 0, so thatl D? — £ > 1 D3 and we obtain

1 N-1
N Z Jn,qvk(xm)
m=0

M—1bpt+1—1 (¢+1)Br—1

—g<12z > Y

n=0 g¢=1 k=qBn

M— 1bn+1 1(Q+1 Bn 1 2

0< D3<122 > Y

n=0 ¢=1 k=qB,

Finally, (n, ¢, k) exists, such that

Jvlgnoo—Zank Tm)| > 0.

The demonstration of (ii) and (iii) of the theorem is a consequence of the formulae obtained in
Lemmd 4.2, Lemmga 4.3 and (i) of Theorgém|3.2. O

Proof of Theorem 3]3.

E

1(s+1)Bp—-1

68 DY) <1 z z 3

g1 (s+1)By—1

+12) >

s=1 k=sBpy

0
H (g¢+1)Bp—1
+ 12 Z +

bar41—1 (s+1)By—1

+12 > Z

S= q+1 SB[\[
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1
brp1—1 (s+1)Bn—1 2\ 3

+1222 Z

n=M+1 s=1 =sBn,

1 N—-1
N Z Jn,s,k(xm)
m=0

We have the following inequality

(¢+1)Bp—1 1 N-1 2 bM+1 1 (s+1)Bp—1 N—
(5.9) X = Z N Z Inzqh(Zm) Z Z N Z It 6 (Tm)
k=H+1 m=0 s=q+1 k=sB) m=0
00 bnt1—1(s+1)Bp—1 1 N—1 2
n=M+1 s=1 k=sBp m=0
oo bpy1—1(s+1)Bp—1 1 N—1 2
n=M s=1 k=sBp m=0

The following inequalities

| Nl 2 N1 2
and
(5.11) osi@)] < [Tu(@)] + o Wr e [0,1)
' e Rl = 0k 2bsin = B,’ ’
hold. It is not difficult to prove that for each B, < k < B, 11
1
(5.12) |Jk(z)] < B Vz € [0,1).
From (5.11) and (5.12), we obtain
1 1
A < (1 — 1).
(5.13) | Jn,si(2)] < ( + %Sm%) B Vo € [0,1)
From (5.9),[(5.10) and (5.13) the following inequalities
oo bpy1—1(s+1)Bp—1 2 < T2
1 1 B(1+ 2bsin %£)* 1
DESY Z(+ .,,)—2<( SI.HQBBF
= 5 5 2bsing ) Bi o 4(b—1)bsin® § Bu
hold. The statement of the theorem holds from the last inequalityfand (5.8). O

Theorenj 3.4 is a direct consequence of Leimp 4.4 and Parseval’s equality.

6. CONCLUSION

In conclusion, the authors will present possible variants to extend this study.

The obtained results show that Price functions and Haar type functions can be used as a
means of examining uniformly distributed sequences. The proved results raise the issue of their
generalization. The most natural generalization is to obtain results i-ttenensional cube
0,1)%, s > 2.

This is not difficult to do when Price functions and Haar type functions are used (see Kuipers
and Niederreiter [8, Corollaries 1.1 and 1.2]).

The obtaining of results, in which the modified integrals from the correspordidgnensional
functions are in use, is connected with great technical difficulties. In the one-dimensional case
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16 V. GROZDANOV AND S. STOILOVA

the proof of sufficiency of Theorefn 3.2 is based on the analog of the LeVeque inequality, ex-
posed in Theorein 3.1. A multidimensional variant of the inequality of Le Veque is not known in

this form to the authors. In this case, the proof of sufficiency of the multidimensional variant of
Theorenj 3.R is connected with proving the multidimensional variant of LeVeque’s inequality.

Another direction to generalize the obtained results is the possibility to use arbitrary orthonor-
mal bases in,[0, 1) as a means of examining uniformity distributed sequences. The obtained
results in such a study would have more general nature. The definition and the use of the mod-
ified integrals of the functions of an arbitrary system will be difficult in practice because these
integrals depend on the concrete values of the corresponding functions.

Regarding the applications of uniformly distributed sequences, the inequality of Koksma-
Hlawka gives an estimation of the error of dimensional quadrature formula in the terms of
discrepancy of the used net. In this sense, the problem of obtaining quantitative estimations of
discrepancy is interesting, as the functions presented in this paper can be used as a means of
solving the above problem.

The shown generalizations are a part of the problems to solve in connection to the study of
uniformity distributed sequences by orthonormal basds|, 1).

The methods to prove the theorems in this paper, by suitable adaptation may be used to solve
some of the exposed problems.
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