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ABSTRACT. The theory of harmonic univalent mappings has become a very popular research
topic in recent years. The aim of this expository article is to present a guided tour of the planar
harmonic univalent and related mappings with emphasis on recent results and open problems
and, in particular, to look at the harmonic analogues of the theory of analytic univalent functions
in the unit disc.
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1. INTRODUCTION

Planar harmonic univalent mappings have long been used in the representation of minimal
surfaces. For example, E. Heinz [34] in 1952 used such mappings in the study of the Gaussian
curvature of nonparametric minimal surfaces over the unit disc. For more recent results and
references, one may see [70]. Such mappings and related functions have applications in the
seemingly diverse fields of Engineering, Physics, Electronics, Medicine, Operations Research,
Aerodynamics, and other branches of applied mathematical sciences. For example, harmonic
and meromorphic functions are critical components in the solutions of numerous physical prob-
lems, such as the flow of water through an underground aquifer, steady-state temperature distri-
bution, electrostatic field intensity, the diffusion of, say, salt through a channel.

Harmonic univalent mappings can be considered as close relatives of conformal mappings.
But, in contrast to conformal mappings, harmonic univalent mappings are not at all determined
(up to normalizations) by their image domains. Another major difference is that a harmonic
univalent mapping can be constructed on an interval of the boundary of the open unit disc. On
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the other hand, because of the natural analogy to Fourier series, harmonic mappings have a two-
folded series structure consisting of an ‘analytic part’ which is a power series in the complex
variablez, and a ‘co-analytic part’ which is a power series in the complex conjugate bf

view of such fascinating properties, a study of harmonic univalent mappings is promising and
important.

Harmonic univalent mappings have attracted the serious attention of complex analysts only
recently after the appearance of a basic paper by Clunie and Sheil-Small [22] in 1984. Hengart-
ner and Schober[([35], [37]) in 1986 made efforts to find an appropriate form of the Riemann
Mapping Theorem for harmonic mappings. Their theory is based on the model provided by the
theory of quasiconformal mappings. The works of these researchers and several others (e.g.
see[[36], [51],152],[163],/164],[[6/7]) gave rise to several fascinating problems, conjectures, and
many tantalizing but perplexing questions. Though several researchers solved some of these
problems and conjectures, yet many perplexing questions are still unanswered and need to be
investigated.

The purpose of this expository article is to provide a guided tour of planar harmonic univalent
mappings with emphasis on recent results and open problems and, in particular, to look at the
harmonic analogues of the theory of analytic univalent functions in the unit disc. Since there
are several survey articles and books ([21], [23]) [24]) [27]) [49]) on harmonic mappings and
related areas, we present only a selection of the results relevant to our precise objective. We
begin the next section with a quick review of the theory of analytic univalent functions.

2. THEORY OF ANALYTIC UNIVALENT FUNCTIONS (1851 —1985)

Let D; # C be any given simply connected domain in thelaneC. Let D, be any given
simply connected domain in the-plane In 1851, G. Bernard Riemann showed that there
always exists an analytic functigithat maps), onto D,. This original version of th®iemann
mapping theorengave rise to the birth ofeometric function theoryBut, this theorem was
incomplete and so it could not find many applications until the beginning of tHec&tury.

It was Koebe [[48] who, in 1907, discovered that the functions which are both analytic and
univalent in a simply connected domaih= D; # C have a nice property stated in Theorem
[2.1. Hereunivalent functioror univalent mappings the complex analyst’s term for “one-to-

one” f(z1) # f(z2) unlessz; # z,.

Theorem 2.1.If z; € D, then there exists a unique functigi analytic and univalent in
D which mapsD onto the open unit dis&\ := {z: |z| < 1} in such a way thatf(z) =
0and f'(z) > 0.

This powerful version of the Riemann mapping theorem allows pure and applied mathemati-
cians and engineers to reduce problems about simply connected domains to the special case of
the open unit dise\ or half-plane. An analytic univalent function is also calledanformal
mappingbecause it preserves angles between curves.

The theory of univalent functions is so vast and complicated that certain simplifying assump-
tions are necessary. In view of the modified version of the Riemann Mapping Theoijem 2.1, we
can replace the arbitrary simply connected domaiwith A. We further assume the normal-
ization conditions:f(0) = 0, f'(0) = 1. It is easy to show that these normalization conditions
are harmless. We It denote théamily of analytic, univalent and normalized functions defined
in A. Thus a functionf in S has the power series representation

(2.1) f(z)=z+ ianz”, z e A.
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The theory of univalent functions is largely relatedstolt is well-known thatS is a compact
subset of the locally convex linear topological space of all analytic normalized functions defined
on A with respect to the topology of uniform convergence on compact subsatsidie Koebe
function

(2.2) k(z) =2/(1—2)" =2+ an”

and its rotations are extremal for many problemsSirNote thatk(A) is the entire complex
plane minus the slit along the negative real axis from to — 1/4. For the familyS, we have
the following powerful and fascinating result which was discovered in 1907 by Koebe [48]:

Theorem 2.2. There exists a positive constansuch that
N f(A)D{w:|w| <c}.
fes

But, this interesting result did not find many applications until Bieberbach [19] in 1916
proved thatc = 1/4. More precisely, he proved that that the open disg < 1/4 is always
covered by the map ak of any functionf € S. Interestingly, the one-quarter disc is the largest
disc that is contained ia(A), wherek is the Koebe function given by (2.2). In the same paper,
Bieberbach also observed the following.

Conjecture 2.3 (Bieberbach[19]). If f € S is any function given by (2.1), then,| < n,
n > 2. Furthermoreja,| = n for all n for the Koebe functiork defined by[(2]2) and its
rotations.

Failure to settle the Bieberbach conjecture until 1984 led to the introduction and investigation
of several subclasses 6f An important subclass &, denoted by5*, consists of the functions
that mapA onto a domairstarshaped with respect to the origiAnother important subclass of
S is the family K which mapsA onto a convex domain. Note that the Koebe function and its
rotations do not belong t&. Furthermore, a functiorf, analytic in4, is said to beclose-to-
convexin A, f € C, if f(A) is a close-to-convex domain; that is, if the complement of\)
can be written as a union of non-crossing half-lines. It is well-known that S* ¢ C' C
S. We remark that various subclasses of these classes have been studied by many researchers
including the author in ([3]/127],131]/[32]).

Various attempts to prove or disprove the Bieberbach conjecture gave rise to eight major
conjectures which are related to each other by a chain of implications; see for example, [3].
Many powerful new methods were developed and a large number of related problems were
generated in attempts to prove these conjectures, which were finally settled in mid 1984 by
Louis de Branges [20]. For a historical development of the Bieberbach Conjecture and its
implications on univalent function theory, one may refer to the survey by the author [3].

3. HARMONIC UNIVALENT MAPPINGS: BACKGROUND AND DEFINITIONS

A complex-valued continuous functian = f(z) = u(z) + iv(z) defined on a domaif is
harmonicif v andv are real-valued harmonic functions @n that isu, v satisfy, respectively,
the Laplace equationSu = ., +v,, = 0 andAv = v,,+v,, = 0. A one-to-one mapping =
u(z), v = v(z) from a regionD; in thezy—plane to a regioD, in theuv—plane is eharmonic
mappingif © andv are harmonic. It is well-known that if = u + iv has continuous patrtial
derivatives, thery is analytic if and only if the Cauchy-Riemann equatiens= v, andu, =
—uv, are satisfied. It follows that every analytic function is a complex-valued harmonic function.
However, not every complex-valued harmonic function is analytic, since no two solutions of the
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Laplace equation can be taken as the componeatslv of an analytic function irD, they must
be related by the Cauchy-Riemann equations- v, andu, = —v,.

An analytic function of a harmonic function may not be harmonic. For exampig har-
monic butz? is not. But, a product of any pair of analytic functions is analytic. On the other
hand, the harmonic function of an analytic function can be shown to be harmonic, but the com-
position of two harmonic functions may not be harmonic. Moreover, the inverse of a harmonic
function need not be harmonic. The simplest example of a harmonic univalent function which
need not be conformal is the linear mapping= az + 3z with |«| # |3|. Another simple
example isw = z + z?/2 which mapsA harmonically onto a region inside a hypocycloid of
three cusps.

Theorem 3.1([22]). Most general harmonic mappings of the whole complex planato itself
are the affine mappings = az + 5z + v (|a| # |3]) -

Let f = u + iv be a harmonic function in a simply connected dom@iwith f(0) = 0. Let
F andG be analytic inD so thatF'(0) = G(0) = 0, ReF = Ref = u, ReG =Im f = v.
Write h = (F +1iG) /2, g = (F — iG) /2. Itis now a routine exercise to show that= h + g,
whereh andg are analytic functions irD. We callh the analytic partand g the co-analytic
part of f. Moreover,

W= f = of |0z 228}"/81;7 7= f— 8f/8x—;2(9f/8y
are always (globally) analytic functions dn. For examplef(z) = z — 1/z + 2In|z| is a
harmonic univalent function from the exterior of the unit disonto C\ {0} , whereh(z) =
z +logzandg(z) =logz —1/z.

A subject of considerable importance in harmonic mappings idahebianJ/; of a function
[ =u+iv, defined byJ(z) = u,(2)vy(2) — uy(2)v:(2). Or, in terms off, and f;, we have

Jr(2) =1 ) = £GP = K =19 )P,
wheref = h + g is the harmonic functiod\. WhenJ; is positive inD, the harmonic function
f is calledorientation—preserving@r sense-preserving D. An analytic univalent function is a
special case of an orientation-preserving harmonic univalent function. For analytic funttions
it is well-known that/; (z) # 0 if and only if f is locally univalent at. For harmonic functions
we have the following useful result due to Lewy.

Theorem 3.2([50]). A harmonic mapping is locally univalent in a neighborhood of a pejnt
if and only if the Jacobiaw/;(z) # 0 at z.

The first key insight into harmonic univalent mappings came from Clunie and S. $mall [22],
who observed thaf = h + g is locally univalent and orientation-preserving if and only if
Jr(2) = [W(2))* = |¢'(2)” > 0 (2 € A). This is equivalent to
(3.1) ' ()| < [W(2)] (2 €A).

The functionw = ¢'/h’ is called thesecond dilationof f. Note that|w(z)| < 1. More
generally, we have

Theorem 3.3([22]). A non-constant complex-valued functipis a harmonic and orientation-
preserving mapping of if and only if f is a solution of the elliptic partial differential equation

f2(2) = w(2) f.(2).

A function f = h 4+ g harmonic in the open unit disk can be expanded in a series
f(re®) = ZOO a,r™en? 0<r<1,
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whereh (z) = > " a,2", g(z) = >0 a_,2z". We may normalizef so thath (0) = 0 =

R’ (0) — 1. For the sake of simplicity, we may writg, = a_,,. We denote by5y the family

of all harmonic, complex-valued, orientation-preserving, normalized and univalent mappings
defined onA. Thus a functionf in Sy admits the representatigh= h + g, where

(3.2) h(z) =z+ Zanz" and g(z) = anz".
n=2 n=1

are analytic functions in\. It follows from the orientation-preserving property théat < 1.
Therefore,(f—b1f) /(1 — |b1|*) € Sy wheneverf € Sy. Thus we may restrict our attention
to the subclass?, defined bySY, = {f € Sy : ¢'(0) = by = 0},

We observe that C SY C Sy. Both familiesSy andSY, are normal families. That is every
sequence of functions ifi;; (or S%) has a subsequence that converges locally uniformly.in
Note thatSY, is a compact family (with respect to the topology of locally uniform convergence)
[22]. However, in contrast to the famili€sandSY,, the family .Sy is not compact because the
sequence of affine function (z) = (n/ (n+ 1)) Z + z isin Sy but asn — oo it is apparent
that f,,(z) — f(z) = 2z (wherez = x + iy) uniformly in A and the limit functionf is not
univalent (nor is it constant).

Analogous to well-known subclasses of the fanfilyone can define various subclasses of
the familiesSy andSY%. A sense-preserving harmonic mappifige Sy (f € S%) is in the
classSy (53 respectively) if the rangg(A) is starlike with respect to the origin. A function
f € Sy (or f € S¥)is called aharmonic starlike mapping A. Likewise a functionf defined
in A belongs to the clask’y; (KY) if f € Sy (or f € SY respectively) and if (A) is aconvex
domain A function f € Ky (or f € KY%) is calledharmonic convein A. Analytically, we
have

(3.3) fesys % (arg f(re”)) >0, (2 €A)
3.4 Ky o 2 0 i 0
(3.4) fe Hﬁﬁ{arg(%argf(re ))}> ,

(zerei9,0§9§27r,0§r§1).

Similar to the subclas§' of S, let C; andCY, denote the subsets, respectivelySef andSY,,
such that for anyf € Cy or C%, f(A) is aclose-to-convedomain. Recall that a domain is
close-to-convex if the complement 6f can be written as a union of non-crossing half-lines.

Comparable to the positive order defined in the subclaSsesid K of S, we can introduce
the ordera (0 < a < 1) in S}, and Ky by replacing ‘0’ on the right sides of inequaliti¢s (3.3)
and [3.4) byn. Denote the corresponding subclasses of the functions whidieaneonic star-
like of order a and harmonic convex of ordes, respectively, byS7, («) and Ky («) . Note
that.S3; (0) = S;; andKy (0) = Ky. Also, note that whenever the co-analytic parts of each
f = h+ g, thatisg, is zero, thenS}; (o) = S* (o) and Ky (o) = K («), whereS* («) and
K («) are the subclasses of the famiiywhich consist of functions, respectively, sthrlike of
order o andconvex of ordery.

The convolution of two complex-valued harmonic functions

[ee]

f1(2> :Z+Zaln2n+§:61nfn (ZI 1,2)
n=1

n=2
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is given by

(3.5) fi(@)* fa(z) = (fix f2) (2) =2+ Z ay, a2, 2" + Z b1,0a, 2"
n=2 n=1

The above convolution formula reduces to the famous Hadamard product if the co-analytic
parts of f; and f, are zero.

4. BIRTH OF THE THEORY OF HARMONIC UNIVALENT FUNCTIONS

After the discovery of the proof of the 69-year old Bieberbach conjecture for the faéhiify
Louis de Branges [20] in 1984, it was natural to ask whether the classical collection of results
for the family S and its various subclasses could be extended in any way to the fafjliasd
SY, of harmonic univalent functions. In 1984, Clunie and Sheil-Small [22] gave an affirmative
answer. They discovered that though estimates for these families are not the same, yet with
suitable interpretations there are analogous estimates for harmonic mappisigsimd.SY,.
This gave rise to the theory of planar harmonic univalent functions. Since then, it has been
growing faster than any one could even imagine. We first state the following interesting result:

Theorem 4.1([22]). A harmonic functiorh + g is univalent and convex in the direction of the
real axis (CRA) if and only if the analytic functiégn- ¢ is univalent and CRA. (Here a function
f defined inD is CRA if the intersection of (D) with each horizontal is connected).

Using Theorem 4|1, Clunie and Sheil-Smalll[22] discovered a result for the faifilpnal-
ogous to the Koebe functioh € S defined by [(2.2). In fact, they constructed t@monic
Koebe functiorky = h + g € SY defined by

_1,2,1.3 1,2, 1.3
Z 2z+62 22—|—6z

(4.1) h(z) = A=zp 9(z) = I

It can be shown that, mapsA univalently ontoC minus the real slit-co < t < —1/6.
Moreover, ky(z) = —1/6 for everyz on the unit circle except = 1. Unlike for the family

S, there is no overall positive lower bound fpf(z)| depending onz|, whenf € Sy. This

is because, for example,+ ¢z € Sy for all £ with |¢| < 1. However, by using an extremal
length method, Clunie and Sheil-Small discovered the following interesting result analogous to
the distortion property for functions in the famify

Theorem 4.2([22]). If f € SY, then

L
FOI2 fy e GE)
In particular, {w € C : |w| < 1/16} C f(AVf € SY.

The result in Theorein 4.2 is non-sharp. However, the harmonic Koebe furigtiarggests
that the 1/16 radius can be improved to 1/6.

Conjecture 4.3([22]). {w € C: |w| < 1/6} C f(A)VSf € SY.

This conjecture is true for close-to-convex functions(if)([22], [64]). Clunie and Sheil-
Small [22] posed the following harmonic analogues of the Bieberbach conjesee€dnjec-

ture[2.3) for the familysy,:
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Conjecture 4.4.1f f = h + g € S% is given by[(3.R), then
llan| = |bnl] <n (n=2,3,...)
2n+1)(n+1)

(4.2) |an| <

)

(@)

(2n—1)(n—1)

Ib,| < . (n=2,3,..).

O [—

Equality occurs forf = k.

For f = h+g € SY, applying Schwarz's lemma tp (3.1), we haye(z)| < |#' (2)] (2 € A).
In particular, it follows thatb,| < 1/2. Conjecturé 44 was proved for functions in the cléigs
and whenf(A)is convex in one directiof22], [64]). The results also hold if all the coefficients
of fin S} are real ([22],[[64]). It was proved in[69] that this conjecture is also trug ferC",.
Later Sheil-Small[[64] developed Conjectlire|]4.4 and proposed the following generalization
of the Bieberbach conjecture.

Conjecture 4.5. If
2)=z+ Zanz" + Za,nz" € Sy,
n=2 n=1

2n? 4+ 1
3
In [22], it was discovered thdt, (f)| < 12,173 for all f € Sy. This result was improved
to |as(f)| < 57.05 for all f € Syin [64]. These bounds were further improved (in/[62]. On
the other hand, Conjectu.5 was proved for the afgsswhereC';denotes the closure of
Cy [22]. Wang [69] established the conjecture fore Cy. He also proposed to rewrite the
generalization of Bieberbach conjecture as follows:

then

(In| = 2,3,...).

la,| <

Conjecture 4.6. If

z) = z+2anz"+2bn2” € Su,
n=2 n=1
then
@) llanl = [ba]| < X+ |b1])n,  (R=2,3,...),

(
(n+1)(2n+ 1) by (n—1)(2n—1)
6

(2) |an‘ <

(@)

(n+1)(2n+1)

@) [ < = )@” DR (n=2.3..).

Since|b,| < 1, the above conjecture may be rewritten as:

Conjecture 4.7. If

z) = z+2anz”+2bnz” € Sy,
n=2 n=1
then
Q) |lan] = |ball < 2n, (n=2,3,...),

o2n% +1
3 )

(2) |an| < (n=2,3,...),
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22 +1
3 7
Results of these types have been previously obtained only for functions in the special subclass

Cy; seel69]. However, necessary coefficient conditions for functiong;invere also found in
[22]. The next result provides a sufficient condition for the function to b&in

Theorem 4.8([44]). If f = h + g with

(3) lon| <

(n=2,3,...).

in|an| +in|bn| <1,
n=2 n=1

thenf € Cy. The result is sharp.
Next we construct an example of a functi¢inin the familyK?,. The function

foz)=h(z) +9()
- <Zl_—§zz>2 B (<1§—Zz>2)

— Re (1:2) +ilm ((1 _ZZ)Q)

is in K%and it mapsA onto the half plane; seé¢ [22]. Moreover, parallel to a well-known
coefficient bound theorem in the case of univalent analytic mappings vme have

Theorem 4.9([22)). If f € K%, then forn = 1,2, ... we have

1
Hanl - |bn|| <1, ‘an‘ < (Tl+ )7 |bn| <
2

(n—1)
5
The results are sharp for the functign= f, as given above.

In view of the sharp coefficient bounds given for functiongiit} in Theore, we may
take f1, f € KY% and definef; x f, by ). Clunie and Sheil-Small [22] showed thapit K
andf =h+g € Ky, thenf x (¢ + ap) = h* ¢+ ag* ¢, |a| < 1, is a univalent mapping of
A onto a close-to-convex domain. They raised the following problem.

Open Problem 1. Which complex-valued harmonic functionshave the property thatx f €
Ky forall f € Ky?

A related open problem for the univalent analytic functions was proved by Ruscheweyh and
Sheil-Small in the following.
Lemma 4.10([61]).
@ ¢, ve K=oxyeK.
b)pe K= (¢oxf)(z)eCif feC.

Note that the first part of the above lemma is the fanféalga-Schoenberg conjectur@nal-
ogous results for the harmonic mappings are the following:

Theorem 4.11([15]). If f € Ky and¢ € K, then(ag + ¢) * f € Oy (Jo| < 1).
Theorem 4.12([15]). If ~ and g are analytic inA, then
(1) If h,¢ € Kwith |¢'(z)] < |h/(2)| for eachz € A, then for eaches| < 1 we have
(¢p+e¢) = (h+7) € Cp.
() If ¢ € K,|g'(0)] < |W(0)] andh + eg € C for eache (|e| = 1), then (¢ + 5¢) =
(h+g) € Ch,|o| = 1.
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In this direction, one may also refer to articles in_([41],![42]./[44],/[62]). In the next theo-
rem we give necessary and sufficient convolution conditions for convex and starlike harmonic
functions.

Theorem 4.13([15]). Letf = h+ g € Sy. Then
2+ (c—1)/2)7

(i) fe Sy e h(z)x

(1-2)?
e e A N R
N 24622 —— cz+ 72 B
(i) feKH@h(z)*erg(z)*m;éO, ls]=1,0< |z] < 1.

The above theorem yields the following sufficient coefficient bounds for starlike and convex
harmonic functions.

Theorem 4.14([15], [38], [39], [65]). If f = h + g with h and ¢ of the form[(3.R), then

(i) D nlan|+ > nlb|<1=f € Sy
n=2 n=1
(ii D 0P an| + ) n|b| < 1= f € Kp.
n=2 n=1

In [29], the researcher constructed some examples in which the property of convexity is
preserved for convolution of certain convex harmonic mappings. On the other hand, the re-
searchers in[33] obtained the integral means of extreme points of the closures of univalent
harmonic mappings onto the right half plafe : Rew > —1/2} and onto the one-slit plane
C\ (—o00,a],a < 0.

It is of interest to determine the largest dijs¢ < r in which all the members of one family
possess properties of those in another. For example, all functiokig; iare convex inz| <
V2 — 1[62]. Itis known that{w : |w| < 1/2} C f(A) forall f € K9[22]. Itis also a known
fact [64] that if f € Cy, then f is convex for|z| < 3 — /8. However, analogous to the
radius problem for the famil§ and its subclasses, nothing much is known$gr 59 and their
subclasses. For example

Open Problem 2. Find the radius of starlikeness for starlike mappings§in

Another challenging area is the Riemann Mapping Theorem related to the harmonic univalent
mappings. The best possible Riemann Mapping Theorem was obtained by Hengartner and
Schober in[[35]. But, the uniqueness problem of mappings in their theorem is still open.

The boundary behavior of a functighe Sy along a closed subarc of boundaisx of A was
investigated in([2]. These authors gave a prime-end theory for univalent harmonic mappings.
Also, see ([1],[[25],[71]). Corresponding to the neighborhood problem and duality techniques
for the family S, Nezhmetdinovi[54] studied problems related to the farifly

5. SUBCLASSES OFHARMONIC UNIVALENT AND RELATED MAPPINGS

Since it is difficult to directly prove several results or obtain sharp estimates for the families
Sy andSY, one usually attempts to investigate them for various subclasses of these families.
Denote bySrm, S%y, Sty and Ky, respectively, the subclasses 8f;, S%, S3 and Ky
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consisting of functiong = h + g so thath andg are of the form
(5.1) h(z) =2z — Zanz”, g(z) = anz”, a, >0, b, >0, by <1.
n=2 n=1

Our next result shows that the coefficient bounds in Thegrem 4.14 cannot be improved.
Theorem 5.1([38], [65], [66]). If f = h + g is given by|(5.]1), then

(i) f€Sp &Y nap+ > nby <1,
n=2 n=1

(ii f€Kpy e nlat+d n’b, <1
n=2 n=1

Jahangiri ([38],([39]) proved the following sufficient conditions, akin to Thedrem|4.14, for
functions in the classeS;; (o) and Ky ().

Theorem 5.2.1f f = h + gwhereh and g are given by[(3]2), then

“n—a n+a
a . b<1, 0<a<l1 S*(a).
(@ ;1_a!a|+;1_a| < a <1=f € Sj(a)
Z n(n—a) = n(n+ a)
b —— lan ——b|<1, 0<a<l1 Ki(a).
(b) Z = ra|+n§:; — [bal< <a<l=feKy(

Let S}, (o) and Ky (a)denote, respectively, the subclassesSphf(a) and Ky («), con-
sisting of functionsf = h + g whereh andg are given by[(5]1). In([38]/[39]) it was discov-
ered that the above-mentioned inequalities in (a) and (b) are the necessary as well as sufficient
conditions, respectively, for the functions ff},;, (o) and Kry (o). Using these characteriz-
ing conditions, he also found various extremal properties, extreme points, distortion bounds,
covering theorems, convolution properties, and others for the famsifigS«) and K ry ().

In several other papers, including ([11], [13], [18], [28], [42],[46],[47],/[56],/[57]), the re-
searchers obtained the necessary and/or sufficient coefficient conditions for functions in various
subclasses o6}, and K. In ([8], [43]), the researchers used an argument variation for the
coefficients ofh andg that contain several previously studied cases.\;etlenote the class of
functionsf = h + g for which h andg are of the form[(3]2) and there existso thatmod 2,

(52) an+(n_1)¢z7ra ﬁn+(n_1)¢507 7122,
whereq,, = arg(a, ) andg, = arg(b,). We also letVy« = Vg NS}, VuP(a) = Vg N Py (),
andVyR(a) = Vg N Ry (a), 0 < a < 1, wherePy (o) and Ry (), 0 < «a < 1, are the
classes of functiong = h + g € Sy which satisfy, respectively, the conditions
(0/00)f(z) (02/06%)f(2) 0
— | > —_—— ] > =re A.
Re( (8/00) >a and Re (02/007) 2 >a, z=re’ €
Earlier the classefy (o) and Ry («) were investigated, respectively, in [11] and/[13]. We
remark that ifg = 0 for f = h + g, then Py (o) andRy () reduce, respectively, to the
well-known classes
P(a)={h:Re(h'(2)) >a} and R(a)={h:Re(h'(z)+ zh"(2)) > a}

of analytic univalent functions. Whil€y; andVy- were studied in[43]Vy P («) andVy R («)
were investigated iri [8]. In both these papers, the authors determined necessary and sufficient
conditions, distortion bounds, and extreme points.
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A function F is said to be inS3; () for somec, 0 < ¢ < 1, if F' can be expressed by

5.3 P = L) _ ) | g(e2)
Cc C C

for somef = h + g, whereh andg are functions of the fornj (32) anflsatisfies the inequality

(@) in Theorenj 5]2. Analogous t8}; (a) is the family Ky, () consisting of functions”

that can be expressed @s {5.2), whérsatisfies the conditior |[b) in Theorgm 5.2. Also, let

St (a) and K, («) be the corresponding classes whéye= 0. It is natural to ask whether

there exists:) = ¢y (a,8), 0 < o < 8 < 1, such thatS; (o) C K§; (B) for [¢| < co. Asit

turns out, the answer is affirmative. The researcheris in [14] extended several known results to

the contractions of the mappings (5.3)dif. (@) and K7, («).

There is a challenge in fixing the second coefficient in the power series representation of an
analytic univalent function in the class This challenge is even greater when it comes to a
family %, ({c.}, {d.}) of harmonic functions with fixed second coefficient. Box p < 1, a
function f = h + g where

p ) oo . (o] .
54 h(z) =2 — —2z°— a,|2", z) = b,|z
(5.4) (2) o n§:3| | 9(2) n§:1| |

is said to be in the family§?, ({c,}, {d,}) if there exist sequencds;,} and{d,} of positive
real numbers such that

(55) p+zcn’an’+zdn|bn| S 17 dl’b1| < L.
n=3 n=1

Also, let ), ({¢.}.{d.}) = FY ({cn},{d.}) N S}. The familiesF}, ({¢,},{d.}) and

F?o ({¢n},{d,}) incorporate many subfamilies, respectively,%fy and S}, consisting of
functions with a fixed second coefficient. For example, for functipns h + g of the form

(5.4), we haver,, ({n},{n}) = {f : f € S} andF%, ({n*},{n*}) = {f : f € Knn}.

It is known [12] that ifc,, > n andd,, > n for all n, thenF%, ({c,} ,{d,}) consists of starlike
sense-preserving harmonic mappingsAin Additionally, each function i, ({¢,.}, {d.})

maps the dis¢z| = r < 1/2 onto a convex domain_[12]. In the same paper, they also de-
termined extreme points, convolution conditions, and convex combinations for these types of
functions.

6. MULTIVALENT HARMONIC FUNCTIONS

Passing from the harmonic univalent functions to the harmonic multivalent functions turns
out to be quite non-trivial. We need the following argument principle for harmonic functions
obtained by Duren, Hengartner, and Laugesen.

Theorem 6.1([26]). Let f be a harmonic function in a Jordan domain with boundaryT".
Supposef is continuous inD and f(z) # 0 onT. Supposef has no singular zeros b,
and letm be the sum of the orders of the zerosiin ThenAr arg(f(z)) = 2wm, where
Ar arg(f(z)) denotes the change of argumentf¢f) as - traversed’.

The above theorem motivated the author and Jahangiri [5] to introduce and study certain
subclasses of the familif (m) ,m > 1, of all multivalent harmonic and orientation-preserving
functions inA. A function f in H(m) can be expressed ds= h + g, whereh andg are of the
form

(61) h(Z) =z" + Zanerleneril: g(’Z) = Z bn+mflzn+m717 |bm‘ <L
n=1

n=2
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Form > 1, let.SH(m) denote the subclass &f(m) consisting of harmonic starlike functions
that map the unit disé onto a closed curve that is starlike with respect to the origin. Observe
that m—valent mappings need not be orientation-preserving. For exaniple,= z + 2% is
4-valentonD = {z : |z| < 2} and we havéa(0)| = 0 and |a(1.5)| = 3.

Theorem 6.2([5]). If a functionf = h + g given by|[(6.]L) satisfies the condition

(6.2) Z (n+m—1) (|antm-1| + [bnym-1]) < 2m

n=1

wherea,, = 1 andm > 1, then f is harmonic and sense preservingdnand f € SH(m).

Let T"H(m), m > 1, denote the class of functiorfs= h + g in SH(m) so thath andg are
of the form

o0

(6.3) h(z) = 2™ — Z Ungm12""T""Y pime1 >0,

n=2
00
o n+m—1
Z) - E anrmle ) bn+m71 2 0.

It was proved in[[5] that a functiofi = 1+ g given by [6.8) is in the clasE H (m) if and only
if condition (6.2) is satisfied. They also determined the extreme points, distortion and covering
theorems, convolution and convex combination conditions for the functiohg/ifm).

During the last five years, there have been several papers on multivalent harmonic functions
in the open unit disc. For example, see ([4], [7],/[53]).

7. MEROMORPHIC HARMONIC FUNCTIONS

To begin let us turn our attention to the special classes of harmonic functions which are
defined on the exterior of the unitdidgc= {z : |z| > 1} for which f(co) = lim,_.. f(z) = oc.
Such functions were recently studied by Hengartner and Schober who obtained the main idea
in the following:

Theorem 7.1([36]). Let f be a complex-valued, harmonic, orientation-preserving, univalent
function defined on\, satisfyingf(co) = co. Thenf must admit the representation

(7.1) f(2) = h(z) + ¢ (z) + Alog 2|,
whereA € C and
(7.2) h(z) = az + Zanz’" and g(z) =0z + Z bz ™"

are analytic inA and0 < |3| < |/ . Inaddition,w = f-/f. is analytic and satisfiglsu(z)| < 1.

In view of the aforementioned result, the researchers ih [45] found the following sufficient
coefficient condition for which functions of the forin (¥V.1) are univalent.

Theorem 7.2.1f f given by([(7.]L) together with (7.2) satisfies the inequality
Zn |an| + [bn]) < laf — 18] — |A],
n=1

then f is orientation-preserving and univalent ik.
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By applying an affine transformatiofa f — 3f — aay + Bag) /(la)* = |6|°) , we may nor-
malize f so thata = 1, 8 = 0,anda, = 0 in (7.9). In view of Theorem 7|1lw = f./f.
is analytic and satisfiesu(z)| < 1. Therefore let’; be the set of all harmonic, orientation-
preserving, univalent mappingsgiven by (7.1), where

(7.3) h(z) =2z+ Z a,z”" and g(z) = Z bz "
n=1 n=1

are analytic inA. Also, letXy = {f € ¥, : A= 0}, that is, the subclass without logarith-
mic singularity. Note that in contrast to analytic univalent functions, there is no elementary
isomorphism betweefi;; andX 5. Finally, let%, denote the non-vanishing class defined by

EOH:{f—C:fEE}{ and c¢f(ﬁ)}

Using Schwarz’s lemma and Theorém|7.1, Hengartner and Schober proved the following esti-
mates:

Theorem 7.3([36]).
(@ fe¥y, =|A <2and || < 1.

(0) f €Sy = |bi] <landby| <3(1-|buf°) <L
(c) f € X, has expansion (7,1) together with (%=8)5"07 , & (Jaxl® — [bi|?) < 1+2Reb,.
All the results are sharp.
The next result gives the distortion theorem:

Theorem 7.4([36)). If f —c € 5%, then|f (z)] < 4 (1 +|2[*)/|z[forall z € A, f(A)contains
the set{w : |w| > 16}, and |¢| < 16.

The bound for in Theorenj 7.4 is equivalent to the following
Corollary 7.5 ([36]). If f € Xy, thenf (A) > {w: [w| > 16}.

The next result concerns the compactness of the families.

Theorem 7.6([36]). The families:%,, ¥;, andXy are compact with respect to the topology
of locally uniform convergence.

Related to the famous classical area theorem [see [32]), we have the following result.
Theorem 7.7([36]). If f € ¥/, has expansion (7.1) along with (7.3), then

oo

S0 (janl® = [0a?)* < 1+ 2Reb,.

n=1
Equality occurs if and only iCC\f(A) has area never zero.

Comparable to the subclassessgf andSY,, it may be possible to define and study subclasses
of the meromorphic harmonic functions. Denote 3§ the subfamily of¥; consisting of
functions that are starlike with respect to the origiminAlso, let>%,,, denote the subfamily of
¥}, consisting of functiong of the form f = h + g for which h andg are restricted by

(7.4) h(z) =z + Z a,z”" and g(z) = — anz’”, a, >0, b, >0.
n=1 n=1
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The classe&’;;, 33, and their subclasses were studied in [45]. In particular, it was found in
[45] that f € X%, if and only if Y~ | (a, +b,) < 1. Analogous results were also found for
the convex case. These results were generalized in [10] for theX}aBS«a, A) consisting of
functionsf = h + g which satisfy the condition

XA _

Re{(l—/\) /() +/\‘99§(2)} >a, 0<a<l, X>0, z€A.
z %Z

These authors obtained sufficient conditions, coefficient characterizations, inclusion and con-

vexity conditions, and extreme properties o5 R (o, A) and its subclasses [10]. In this area,

one may also refer to the papers inl ([9]./[59],/[68]).

8. OTHER FUNCTION CLASSESRELATED TO HARMONIC MAPPINGS

In this section we discuss certain other function classes related to harmonic mappings. First
let us look at a special subclass of the fantily\Sakaguchi introduced a subclassSafonsisting
of functions which are starlike with respect to symmetrical points (e.g. sée [32, p. 165]). Can
such a strategy be implemented for the harmonic mappings? In [6], this concept was extended
to include the harmonic functions. For< a < 1, let SH («) denote the class of complex-
valued, orientation-preserving, harmonic univalent functiprs the form [3.2) which satisfy

the condition ) )
Q%f(re’ )
fe (f(re“’) - f(—re”)> =

wherez = ¢, 0 < r < 1and0 < § < 27. A function f € SH(«) is called aSakaguchi-type
harmonic functionln [6], the authors obtained the following sufficient condition for functions
in the family SH («).

Theorem 8.1.If a function f = h + g given by|[(3.R) satisfies the inequality

= (2(n—1 on—1-—« on—1+a«
Z{ (1 — ) (‘a2n72’ + ’b2n72’)‘|‘ ﬁ ’a2n71| + ﬁ ’bgnly} < 2,

n=1
wherea; = 1 and0 < a < 1, then f is orientation-preserving harmonic univalent i and
f e SH(a).
Theoreni 8.]L is fundamental in the proof of the following characterization of functions in
SH(a).
Theorem 8.2([6]). A harmonic functiory = h + g of the form|(3.2) is ifH (a), 0 < o < 1,

if and only if
(l—a)z+ (@482 —— (a+9F+(1-a)?
R T e T T
where[{| = 1,¢ # —1, and0 < |z| < 1.

Goodman in[[30] introduced the geometrically defined cla€¥ of uniformly convex func-
tions. Analogous taJCV is the classJST of uniformly starlike functions that was studied in
[58]. It is a natural question to ask whether it is possible to extend the known results of the
classedUCV andUST and their subclasses to include harmonic functions. Generalizing the
classUST to include harmonic functions, |&t;(~) denote the subclass 6f; consisting of
functionsf = h + g € Sy that satisfy the condition

Re{(1+em)%—em}z% 0<y<1,

#0,
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wherez' = & (z =re), f'(z) = & (f(2) = f(re?),0 < r < 1, anda andd are real. Also,
let Gry () denote the subclass 6f; () consisting of functiong’ = h + g such thath and
g are of the form[(5]1). The clagSyy(v) was studied in[[60] where they found coefficient
conditions, extreme points, convolution conditions, and convex combinations of the functions
in Gry (). An analogous class of complex-valued harmonic convex univalent functions related
to the classJCV was studied in[47].

Finally, although the connections between the theory of faisiignd hypergeometric func-
tions have been investigated by several researchers, the corresponding connections between the
family Sy (or its subclasses) and hypergeometric functions have not been explored. Recently,
the author and Silverman [16] have discovered some of the inequalities associating hypergeo-
metric functions with planar harmonic mappings.

9. CONCLUSION

In this article, we have made an attempt to present a survey of the newly emerging theory of
harmonic mappings in the plane. We have been compelled to omit a number of related areas and
interesting problems. However, we hope that this article may serve as a useful guide for new
and old researchers in the theory of planar harmonic mappings and related areas. This article
may also be useful to pure and applied mathematicians working in several diverse areas.
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