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Abstract

The theory of harmonic univalent mappings has become a very popular re-
search topic in recent years. The aim of this expository article is to present a
guided tour of the planar harmonic univalent and related mappings with em-
phasis on recent results and open problems and, in particular, to look at the
harmonic analogues of the theory of analytic univalent functions in the unit disc.
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Planar harmonic univalent mappings have long been used in the representation
of minimal surfaces. For example, E. Heirz]in 1952 used such mappings in

the study of the Gaussian curvature of nonparametric minimal surfaces over the
unit disc. For more recent results and references, one may Seé&plch map-

pings and related functions have applications in the seemingly diverse fields
of Engineering, Physics, Electronics, Medicine, Operations Research, Aero-
dynamics, and other branches of applied mathematical sciences. For example,
harmonic and meromorphic functions are critical components in the solutions of
numerous physical problems, such as the flow of water through an underground
aquifer, steady-state temperature distribution, electrostatic field intensity, the
diffusion of, say, salt through a channel.

Harmonic univalent mappings can be considered as close relatives of con-
formal mappings. But, in contrast to conformal mappings, harmonic univalent
mappings are not at all determined (up to normalizations) by their image do-
mains. Another major difference is that a harmonic univalent mapping can be
constructed on an interval of the boundary of the open unit disc. On the other
hand, because of the natural analogy to Fourier series, harmonic mappings have
a two-folded series structure consisting of an ‘analytic part’ which is a power
series in the complex variabte and a ‘co-analytic part’ which is a power series
in the complex conjugate of. In view of such fascinating properties, a study
of harmonic univalent mappings is promising and important.

Harmonic univalent mappings have attracted the serious attention of com-
plex analysts only recently after the appearance of a basic paper by Clunie and
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efforts to find an appropriate form of the Riemann Mapping Theorem for har-
monic mappings. Their theory is based on the model provided by the theory
of quasiconformal mappings. The works of these researchers and several oth-
ers (e.g. see], [5]], [57], [64], [64], [67]) gave rise to several fascinating
problems, conjectures, and many tantalizing but perplexing questions. Though
several researchers solved some of these problems and conjectures, yet many
perplexing questions are still unanswered and need to be investigated.

The purpose of this expository article is to provide a guided tour of planar
harmonic univalent mappings with emphasis on recent results and open prob- Planar Harmonic Univalent and
lems and, in particular, to look at the harmonic analogues of the theory of ana- Related Mappings
Iytic univalent functions in the unit disc. Since there are several survey articles Om P. Ahuja
and books (1], [25], [24], [27], [4€9]) on harmonic mappings and related areas,
we present only a selection of the results relevant to our precise objective. We
begin the next section with a quick review of the theory of analytic univalent
functions. Contents
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Let D; # C be any given simply connected domain in thelaneC. Let D,

be any given simply connected domain in theplane In 1851, G. Bernard
Riemann showed that there always exists an analytic funcfidghat maps
Dy onto D,. This original version of th&kiemann mapping theoregave rise
to the birth ofgeometric function theoryBut, this theorem was incomplete and

so it could not find many applications until the beginning of th& 2entury. Planar Harmonic Univalent and
It was Koebe {¢] who, in 1907, discovered that the functions which are both Related Mappings
analytic and univalent in a simply connected dom&in= D, # C have a nice Om P. Ahuja
property stated in Theorethl Hereunivalent functioror univalent mapping
is the complex analyst’s term for “one-to-onez;) # f(z2) unlessz; # z. Ry —
Theorem 2.1.1f z, € D, then there exists a unique functigin analytic and -
univalent in D which mapsD onto the open unit dis&\ := {z: |z| < 1} in
such a way thaf (z,) = 0 and f'(z) > 0. A 4

< >

This powerful version of the Riemann mapping theorem allows pure and ap-
plied mathematicians and engineers to reduce problems about simply connected Go Back
domains to the special case of the open unit disor half-plane. An analytic

. . . . . Close
univalent function is also called@nformal mappindpecause it preserves an-
gles between curves. Quit
The theory of univalent functions is so vast and complicated that certain Page 6 of 44

simplifying assumptions are necessary. In view of the modified version of the
Riemann Mapping Theoreth 1, we can replace the arbitrary simply connected S 2o0s
domainD with A. We further assume the normalization conditiofi§)) = 0, http://jipam.vu.edu.au
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f'(0) = 1. Itis easy to show that these normalization conditions are harmless.

We letS denote thdamily of analytic, univalent and normalized functions de-
fined inA. Thus a functionf in S has the power series representation

(2.1) f(z)=z+ ianz”, z € A.
n=2

The theory of univalent functions is largely related4o It is well-known
that S is a compact subset of the locally convex linear topological space of
all analytic normalized functions defined dnwith respect to the topology of
uniform convergence on compact subsetgoflThe Koebe function

(2.2) k(z)=2/(1—2)° =2+ an”

n=2

and its rotations are extremal for many problemsSirNote thatk(A) is the
entire complex plane minus the slit along the negative real axis fromto —
1/4. For the family.S, we have the following powerful and fascinating result
which was discovered in 1907 by Koeb&]:

Theorem 2.2. There exists a positive constansuch that

f@sf(A)D{w:|w|§c}.

But, this interesting result did not find many applications until Bieberbach
[19] in 1916 proved that = 1/4. More precisely, he proved that that the open
disc jw| < 1/4 is always covered by the map & of any functionf € S.
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Interestingly, the one-quarter disc is the largest disc that is contained\p
wheref is the Koebe function given by2(2). In the same paper, Bieberbach
also observed the following.

Conjecture 2.3 (Bieberbach [9)). If f € S is any function given by2(1),
then|a,| < n,n > 2. Furthermorela,,| = n for all n for the Koebe functio
defined by Z.2) and its rotations.

Failure to settle the Bieberbach conjecture until 1984 led to the introduction

and investigation of several subclassessofAn important subclass of, de- Planar Harmonic Univalent and

noted byS*, consists of the functions that map onto a domairstarshaped Rt e s

with respect to the origin Another important subclass ¢f is the family K Om P. Ahuja

which mapsA onto a convex domain. Note that the Koebe function and its ro-

tations do not belong t&’. Furthermore, a functiori, analytic inA, is said to Title Page

beclose-to-convein A, f € C, if f (A) is a close-to-convex domain; that is, if

the complement of (A) can be written as a union of non-crossing half-lines. Contents

It is well-known thatK' C S* ¢ C' C S. We remark that various subclasses < >

of these classes have been studied by many researchers including the author in

(31, 117, [31], [32). 4 g
Various attempts to prove or disprove the Bieberbach conjecture gave rise to Go Back

eight major conjectures which are related to each other by a chain of implica- p—

tions; see for example]. Many powerful new methods were developed and

a large number of related problems were generated in attempts to prove these Quit

conjectures, which were finally settled in mid 1984 by Louis de Brangds [ Page 8 of 44

For a historical development of the Bieberbach Conjecture and its implications

on univalent function theory, one may refer to the survey by the author [ ey R
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A complex-valued continuous functian = f(z) = u(z) + iv(z) defined on
a domainD is harmonicif v andv are real-valued harmonic functions @h
that isu, v satisfy, respectively, the Laplace equatiavs = v, + v, = 0 and
Av = vy, + vy, = 0. A one-to-one mapping = u(z), v = v(z) from a region
D inthezy—plane to a regio), in theuv—plane is eharmonic mappingf u

andv are harmonic. It is well-known that if = « + iv has continuous partial Planar Ea{m";iﬁuni‘-’alem and
derivatives, thenf is analytic if and only if the Cauchy-Riemann equations elaied Mappmgs
u, = v, andu, = —v, are satisfied. It follows that every analytic function Om P. Ahuja

is a complex-valued harmonic function. However, not every complex-valued
harmonic function is analytic, since no two solutions of the Laplace equation

can be taken as the componentandv of an analytic function inD, they must LR

be related by the Cauchy-Riemann equatiops- v, andu, = —v,. Contents
An analytic function of a harmonic function may not be harmonic. For exam- <« >

ple, z is harmonic but:? is not. But, a product of any pair of analytic functions < >

is analytic. On the other hand, the harmonic function of an analytic function
can be shown to be harmonic, but the composition of two harmonic functions Go Back
may not be harmonic. Moreover, the inverse of a harmonic function need not be

. . . . . ) Close
harmonic. The simplest example of a harmonic univalent function which need
not be conformal is the linear mapping= «az + (z with |a| # |3]. Another Quit
simple example isv = z + z?/2 which mapsA harmonically onto a region Page 9 of 44

inside a hypocycloid of three cusps.
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planeC onto itself are the affine mappings= az + 3z + v (|a| # |5]) .

Let f = u+iv be a harmonic function in a simply connected domaiwith
f(0) = 0. Let ' andG be analytic inD so thatF'(0) = G(0) = 0, Re F' =
Ref =wu,ReG =Imf =v. Writeh = (F+1iG) /2,9 = (F —iG) /2. It
IS now a routine exercise to show that= h + g, whereh andg are analytic
functions inD. We call h the analytic partand g the co-analytic partof f.
Moreover,

W g AL DI G O[O0+ 1010y i
Om P. Ahuja

are always (globally) analytic functions dn For examplef(z) =2 —1/z +
21n|z| is a harmonic univalent function from the exterior of the unit disonto _
C\ {0}, whereh(z) = z 4+ log z andg(z) = log z — 1/z. Title Page

A subject of considerable importance in harmonic mappings iddahebian Contents
J¢ of afunctionf = u + dv, defined byJ;(z) = u,(2)v,(z) — uy(2)v.(2). Or,
: Y Y <44 >
in terms of f, and f-, we have

< >

@ =1LEF =1L =WEP 1G]

wheref = h + g is the harmonic functiol\. WhenJ; is positive inD, the Close
harmonic functionf is calledorientation—preservin@r sense-preserving D.

Go Back

An analytic univalent function is a special case of an orientation-preserving 2

harmonic univalent function. For analytic functiorisit is well-known that Page 10 of 44

Jr (z) # 0if and only if f is locally univalent at. For harmonic functions we

have the following useful result due to Lewy. 3. Ineq, Pure and Appl. Math. 6(4) Art. 122, 2005
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Theorem 3.2 (b(]). A harmonic mapping is locally univalent in a neighbor-
hood of a point if and only if the Jacobia/,(z) # 0 at z.

The first key insight into harmonic univalent mappings came from Clunie

and S. Small 7], who observed thaf = h + g is locally univalent and
orientation-preserving if and only if; (z) = |V (2)]* = |¢'(2)]> > 0 (z € A).
This is equivalent to

(3.1) l9'(2)] < (2]

The functionw = ¢’/1’ is called thesecond dilatiorof f. Note thafw(z)| <
1. More generally, we have

(z€A).

Theorem 3.3 (P7]). A non-constant complex-valued functifis a harmonic
and orientation-preserving mapping dn if and only if f is a solution of the
elliptic partial differential equationf;(z) = w(z)f.(z).

A function f = h 4+ g harmonic in the open unit dis& can be expanded in
a series

o

f(re?) = Z_ apr™em®  (0<r<1),
whereh (z) = Y " an2", g(z) = > | a_,z". We may normalizef so that
h(0) = 0 = A’ (0) — 1. For the sake of simplicity, we may writg, = a_,.
We denote bySy the family of all harmonic, complex-valued, orientation-

preserving, normalized and univalent mappimggined onA. Thus a function
f in Sy admits the representatigh= h + g, where

(3.2) h(z) =z + Zanz" and g(z) = Z b, 2",
n=2 n=1

Planar Harmonic Univalent and
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are analytic functions in\. It follows from the orientation-preserving prop-
erty that|b,| < 1. Therefore,(f—b.f) /(1 — |l?) € Sy wheneverf ¢
Sy. Thus we may restrict our attention to the subcl&$sdefined byS?, =
{f €Su:4(0)=0b =0}.

We observe that c 59 c Sy. Both familiesSy andSY, are normal fami-
lies. That is every sequence of functionsSa (or S%) has a subsequence that
converges locally uniformly im\. Note thatSY, is a compact family (with re-
spect to the topology of locally uniform convergenc&)][ However, in contrast
to the familiesS andSY,, the family Sy is not compact because the sequence
of affine functionsf,, () = (n/(n+1))zZ + zisin Sy but asn — oo itis
apparent thaf,,(z) — f(z) = 2z (wherez = = + iy) uniformly in A and the
limit function f is not univalent (nor is it constant).

Analogous to well-known subclasses of the fantilyone can define various
subclasses of the families; andS?. A sense-preserving harmonic mapping
f € Sy (f € SY%)isin the classS}; (S3 respectively) if the rangg(A) is
starlike with respect to the origin. A functioghe S} (or f € S3) is called a
harmonic starlike mappingh A. Likewise a functionf defined inA belongs
to the classk'y (KY%) if f € Sy (or f € SY respectively) and iff (A) is a
convex domainA function f € Ky (or f € K%) is calledharmonic convein
A. Analytically, we have

(3.3) fesy e 0

50 (arg f(reie)) >0, (z€A)

(3.4) feKy<s % {arg (% arg f(rew)>} > 0,

(zere®, 0<f<2m, 0<r<1).
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Similar to the subclas§' of S, let C; andC?, denote the subsets, respectively,
of Sy andSYy,, such that for anyf € Cy or CY%, f(A) is aclose-to-convex
domain. Recall that a domain is close-to-convex if the complement bfcan
be written as a union of non-crossing half-lines.

Comparable to the positive order defined in the subclaSsesd K of S,
we can introduce the order (0 < «a < 1) in S}, and Ky by replacing ‘0’ on
the right sides of inequalities3(3 and @.4) by «. Denote the corresponding
subclasses of the functions which asgmonic starlike of ordetv andharmonic

convex of order, respectively, byS}; (o) and Ky (o) . Note thatSy, (0) = Planar Harmonic Univalent and
Sy andKy (0) = Kp. Also, note that whenever the co-analytic parts of each Related Mappings
f = h+g,thatisg, is zero, thert}; (o) = S* (o) and Ky () = K («), where Om P. Ahuja
S* (o) and K («) are the subclasses of the famiywhich consist of functions,
respectively, ostarlike of ordera andconvex of ordery. Title Page
The convolution of two complex-valued harmonic functions
Contents
fi(z) :Z+Zain2n+zgin57L (t=1,2) 14 dd
n=2 n=1 4 >
is given by Eo Bk
00 R Close
35) fi(2)xfa(z)=(fr*fo) () =2+ anas,2"+> by bs, 2" Quit
n=2 n=1

_ ) Page 13 of 44
The above convolution formula reduces to the famous Hadamard product if

the Co—analytic parts O]fl andf2 are zero. J. Ineq. Pure and Appl. Math. 6(4) Art. 122, 2005
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After the discovery of the proof of the 69-year old Bieberbach conjecture for the
family S by Louis de Branges’[] in 1984, it was natural to ask whether the
classical collection of results for the familyand its various subclasses could
be extended in any way to the famili€g andS?, of harmonic univalent func-
tions. In 1984, Clunie and Sheil-Smaliij] gave an affirmative answer. They
discovered that though estimates for these families are not the same, yet with Planar Harmonic Univalent and
suitable interpretations there are analogous estimates for harmonic mappings in Related Mappings

Sy andSY,. This gave rise to the theory of planar harmonic univalent functions. Om P. Ahuja
Since then, it has been growing faster than any one could even imagine. We first
state the following interesting result:

Title Page
Theorem 4.1 (P2]). A harmonic functiorh + g is univalent and convex in the Contents
direction of the real axis (CRA) if and only if the analytic functibn- g is
univalent and CRA. (Here a functighdefined inD is CRA if the intersection ) 44
of f(D) with each horizontal is connected). < >
Using Theoremt.1, Clunie and Sheil-Small’[’] discovered a result for the Go Back
family S%, analogous to the Koebe functidne S defined by 2.2). In fact,
they constructed thearmonic Koebe functioh, = h + g € S defined by Close
z— 1,2 + 1,3 1,2 + 1,3 Quit
(4.1) h(z) = ﬁ7 9(z) = ﬁ Page 14 of 44

It can be shown that, mapsA univalently ontoC minus the real slit-co < ey R
t < —1/6. Moreover,ky(z) = —1/6 for everyz on the unit circle except = 1. http://jipam.vu.edu.au
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Unlike for the family S, there is no overall positive lower bound fof(z)|
depending onz|, when f € Sy. This is because, for example+ ¢z € Sy

for all ¢ with |¢| < 1. However, by using an extremal length method, Clunie
and Sheil-Small discovered the following interesting result analogous to the
distortion property for functions in the family.

Theorem 4.2 (P7)). If f € SY, then

1 |7

— (z€A).
(1 + |Z|)2 ( ) Planar Harmonic Univalent and
Related Mappings

In particular, {w € C : |w| < 1/16} C f(A)Vf € SY.

Om P. Ahuja
The result in Theorem.2is non-sharp. However, the harmonic Koebe func-
tion k, suggests that the 1/16 radius can be improved to 1/6. Title Page
i . 0
Conjecture 4.3 (7). {w e C: |w| < 1/6} C f(A)Vf € Sy Contents
This conjecture is true for close-to-convex function&f([27], [64]). Clu-
nie and Sheil-Smalli”] posed the following harmonic analogues of the Bieber- « dd
bach conjecturesgeConjecture?.3) for the family SY: < >
Conjecture 4.4.1If f = h + g € S% is given by 8.2), then T Baek
l|lan| = |bn| <n (n=2,3,...) Close
2 1 1 -
(4.2) | < B2 DD Qui
Page 15 of 44
2n —1 —1
b, < @7 é(" ) (=23

J. Ineq. Pure and Appl. Math. 6(4) Art. 122, 2005
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For f = h+g € SY, applying Schwarz's lemma t& (1), we havey’ (z)| <
|h' ()| (= € A). In particular, it follows thafb,| < 1/2. Conjecture4.4 was
proved for functions in the clas$;?, and whenf(A)is convex in one direction
([22), [64]). The results also hold if all the coefficients pfn 3 are real (P2,
[64]). It was proved in §9] that this conjecture is also true fgre CY.

Later Sheil-Small§4] developed Conjecturé.4and proposed the following
generalization of the Bieberbach conjecture.

Conjecture 4.5. If

f(z)=2z+ f: anz" + f:a_nz” € Su,
n=2 n=1

then
2n% +1
3
In [27], it was discovered that, (f)| < 12,173 for all f € Sy. This result
was improved tdas(f)| < 57.05 for all f € Syin [64]. These bounds were
further improved in $7]. On the other hand, Conjectute5 was proved for
the clas<'y;, whereC;denotes the closure 6ty [27]. Wang [69] established
the conjecture forf € Cy. He also proposed to rewrite the generalization of
Bieberbach conjecture as follows:

(In| = 2,3,...).

la,| <

Conjecture 4.6. If

f(z)=2z+ ianz” + ibnz” € Su,
n=2 n=1

then

Planar Harmonic Univalent and
Related Mappings
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Lo flan] = fbull < (M4 [0r])n, (0 =2,3,...),

n+1)(2n+1 n—1)(2n -1
2. [an] < EDL ) 4y L ) =23, ),
6 6
n—1)2n—1 n+1)2n+1
3. (| < P2 DL ) g o D ) =23
6 6
Sincel|b;| < 1, the above conjecture may be rewritten as:
Conjecture 4.7. If P ten Mampioge
o0 o0 Om P. Ahuja
f(z)=z+ Zanz" + anz” € Sy,
n=2 n=1
Title Page
then
Contents
1. |lan] — |ba]] <2n, (n=2,3,...),
44 44
2n? 4+ 1 < >
2. |a,| < nt , (n=2,3,...),
3 Go Back
2n? 41
3 b < L m=23,..). Close
Quit

3 )
Results of these types have been previously obtained only for functions in

the special subclagsy; see [9). However, necessary coefficient conditions for
functions inC'y were also found in{Z]. The next result provides a sufficient | A 122, 2005
http://jipam.vu.edu.au

condition for the function to be 10y

Page 17 of 44
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Theorem 4.8 ((4]). If f = h + g with

D nlan| + > nlbal <1,
n=2 n=1

thenf € Cy. The result is sharp.

Next we construct an example of a functignin the familyk'?,. The func-
tion

) ()

is in K%and it mapsA onto the half plane; se€’f]. Moreover, parallel to a
well-known coefficient bound theorem in the case of univalent analytic map-

pings inA, we have

Theorem 4.9 (P7)). If f € K%, then forn = 1,2, ... we have

(n+1)
5

(n—1)

lan| = [bal[ < 1, an| < 5

|bn| <

The results are sharp for the functign= f, as given above.
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In view of the sharp coefficient bounds given for functionif) in Theorem
4.9, we may takefy, f» € K% and definef, * f, by (3.5. Clunie and Sheil-
Small [27] showed thatifp € K andf = h+ g € Ky, thenf x (¢ + ap) =
h* ¢+ agxg, |a] < 1,is a univalent mapping ah onto a close-to-convex
domain. They raised the following problem.

Open Problem 1. Which complex-valued harmonic functiopshave the prop-
erty thatp x f € Ky forall f € Ky?

A related open problem for the univalent analytic functions was proved by
Ruscheweyh and Sheil-Small in the following.

Lemma 4.10 (pb1]).

(a)ﬁba@Z)GK#qﬁ*@bGK.
b)yp e K= (¢ f)(z)eCif feC.

Note that the first part of the above lemma is the fam@oiya-Schoenberg
conjecture Analogous results for the harmonic mappings are the following:

Theorem4.11 (1.5]). If f € Ky and¢ € K, then(ag + ¢)*f € Cy (| < 1).
Theorem 4.12 ([L5]). If h andg are analytic inA, then

1.1f h,¢ € K with |¢'(z)| < [W'(2)] for eachz € A, then for eache| < 1
we have(¢ + ¢¢) * (h + g) € Cy.

2.1f ¢ € K,|g(0)] < [W(0)]andh + eg € C for eache (|¢| = 1), then
(¢ +3¢) * (h+g) € Cy, o] = 1.
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In this direction, one may also refer to articles in ([, [47], [44], [67]). In
the next theorem we give necessary and sufficient convolution conditions for
convex and starlike harmonic functions.

Theorem 4.13 ([L.5]). Letf = h+ g € Sy. Then
2+ ((c—1)/2)2

() feSy e h(z)x

(1—2)°
sz—((c—1)/2)z*
-9 (z) * 2 7é 07 |§| = 17 0< |Z| <L Planar Harmonic Univalent and
(1 - Z) Related Mappings
2 ~ 52
(i) fEKHﬁh(z)*ngg—l—g(z)*&zg#O, 5| =1, Om P. Ahuja
(1—2) (1-2)
0<]ef <1 Title Page
The above theorem yields the following sufficient coefficient bounds for star- Contents
like and convex harmonic functions.
<44 44
Theorem 4.14 ([L.5], [39], [39], [69]). If f = h + g with » and g of the form
(3.2), then < 4
o0 o0 Go Back
(i) D nlanl + ) nlb|<1=f € Spp. Close
n=2 n=1
o ) o ) Quit
ii < .
(ii ZQn \an\—l—;n bo| <1= f€Kp page 20 of 44
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On the other hand, the researchersifi[obtained the integral means of ex-
treme points of the closures of univalent harmonic mappings onto the right half
plane{w : Rew > —1/2} and onto the one-slit plar@\ (—oo, a], a < 0.

It is of interest to determine the largest djsg < r in which all the members
of one family possess properties of those in another. For example, all functions
in Ky are convex inz| < v/2 — 1 [67]. Itis known that{w : jw| < 1/2} C
f(A) forall f € K%[22]. Itis also a known factd4] that if f € Cpy, then
f is convex for|z| < 3 — /8. However, analogous to the radius problem for
the family S and its subclasses, nothing much is known $gr, S% and their
subclasses. For example

Open Problem 2. Find the radius of starlikeness for starlike mappingsSin.

Another challenging area is the Riemann Mapping Theorem related to the
harmonic univalent mappings. The best possible Riemann Mapping Theorem
was obtained by Hengartner and Schobefii.[ But, the uniqueness problem
of mappings in their theorem is still open.

The boundary behavior of a functighe Sy along a closed subarc of bound-
ary 0A of A was investigated in’]. These authors gave a prime-end theory for
univalent harmonic mappings. Also, se&]([25], [71]). Corresponding to the
neighborhood problem and duality techniques for the farfijljNezhmetdinov
[54] studied problems related to the famiy;.
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Since it is difficult to directly prove several results or obtain sharp estimates
for the familiesSy andSY,, one usually attempts to investigate them for various
subclasses of these families. DenoteShy;, S% 5, Sk, andK ry, respectively,

the subclasses ofy, SY, S and K consisting of functiong = 1 + g so that

h andg are of the form

Planar Harmonic Univalent and
Related Mappings

(5.1) h(z —Z—Zan , g(z):anz", an, >0, b, >0, by < 1.

Om P. Ahuja
Our next result shows that the coefficient bounds in Thegtdrmcannot be -
improved.
Contents
Theorem 5.1 (3], [69], [66]). If f = h + gis given by §.1), then
<44 >
(i) fESRH<:>Znan+an <1, < 4
n=1 Go Back
(ii) feKpy< Zn an+2n2b <1. Close
n=1 Quit
Jahangiri (B€], [39]) proved the following sufficient conditions, akin to The- Page 22 of 44

orem4.14 for functions in the classes;; («) and Ky («).
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Theorem 5.2.1f f = h + gwhereh andg are given by 8.2), then

“n—a “n+a N
@) ;1_a\an\+;l_a|bn\§l, 0<a<l=feS;a)
n(n—a) = n(n+a)
b —— |a, —— " pl<1, 0<a<l=feKy(a).
) 3 gl + T e a <1=/€ Knla)
Let Sy (o) andK gy (a)denote, respectively, the subclassespf«) and

Ky («), consisting of functiong = h + g whereh andg are given by §.1). Planar Harmonic Univalent and
In ([39], [39)) it was discovered that the above-mentioned inequalities in (a) Related Mappings

and (b) are the necessary as well as sufficient conditions, respectively, for the Om P. Ahuja
functions inS},; (o) andK gy (a). Using these characterizing conditions, he
also found various extremal properties, extreme points, distortion bounds, cov-

) ) Title P
ering theorems, convolution properties, and others for the fantiligs(a) and e rage
Kry (a). Contents
In several other papers, includindgL(], [13], [19], [2€], [42], [4€], [47], <« >
[56], [57]), the researchers obtained the necessary and/or sufficient coefficient
conditions for functions in various subclassesSgf and K. In ([8], [49]), < 4
the researchers used an argument variation for the coefficientsid ¢ that Go Back
contain several previously studied cases. Ygtdenote the class of functions o
f = h + g for which h and g are of the form 8.2) and there exist® so that, ose
mod 27, Quit
(5.2) a,+n—1¢=m, [,+n—-1¢=0, n>2, Page 23 of 44
whereq,, = arg(an) andg, = arg(bn)- We also letV- = VHmS}k{a VHP(a) = J. Ineq. Pure and Appl. Math. 6(4) Art. 122, 2005
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Ry (a),0 < a < 1, are the classes of functiorfs= h + g € Sy which satisfy,
respectively, the conditions

(0/00)(z) (0%/00°) f(2) i
Re(W) >« and RG(W) >a, z=re?eA.

Earlier the classe®y (o) andRy (o) were investigated, respectively, in
[11] and [LZ]. We remark that ify = 0 for f = h + g, thenPy (o) andRy («)
reduce, respectively, to the well-known classes

Planar Harmonic Univalent and
Related Mappings

P(a) ={h:Re(W(2)) >a} and R(a)={h:Re(h'(z)+2h"(z)) > a}
Om P. Ahuja
of analytic univalent functions. Whilgy andV/- were studied in{3], Vg P («)

and Vy R («) were investigated ind]. In both these papers, the authors de-

termined necessary and sufficient conditions, distortion bounds, and extreme

points. Contents
A function F' is said to be inS} («) for somec, 0 < ¢ < 1, if F' can be

Title Page

expressed by 4 dd

< 4
h
(5.3) F(z) = fle2) = (2) + 9(cz) Go Back
C C C
: _ Cl

for somef = h+ g, whereh andg are functions of the form3(2) and f satisfies ose

the inequality §) in Theorem5.2. Analogous taSy; () is the family K, («) Quit

consisting of functiong” that can be expressed &s4), where f satisfies the Page 24 of 44

condition @) in Theorem5.2. Also, letSy) (a) and K}, («) be the correspond-

ing classes wherlg = 0. It is natural to ask whether there exigts= ¢, (o, ) , ey R
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answer is affirmative. The researchersliri][extended several known results to
the contractions of the mappings.® in S} (o) and Ky, ().

There is a challenge in fixing the second coefficient in the power series rep-
resentation of an analytic univalent function in the classThis challenge is
even greater when it comes to a fani§; ({c,}, {d.}) of harmonic functions
with fixed second coefficient. For< p < 1, a functionf = h + g where

[e.e] o0

P o n n
5.4 h(z) =2z——z°— ]2, = by,
( ) (Z) : CQZ Z ‘a ‘Z g(z) Z’ ’Z Planar Harmonic Univalent and
n=3 n=1 Related Mappings
is said to be in the familyf”; ({c.}, {d.}) if there exist sequenceg:, } and Om P. Ahuja
{d,,} of positive real numbers such that
oo oo Title Page
(5.5) P calan + Y dolbal <1, di|b] < 1. Contents
n=3 n=1
. 44 »
Also, letF” , ({¢,},{d.}) = FY ({en}, {d.})NSY. The familiesF?; ({c.} . {d.})
andF”, ({c.},{d,}) incorporate many subfamilies, respectively,%fy and < >
S%; consisting of functions with a fixed second coefficient. For example, for Go Back
functionsf = h+g of the form 6.4), we havef?,,, ({n},{n}) ={f: f € Sy}
andF?,,, ({n2} ,{n2}) = {f: f € Kgu} . Itis known [17] that if ¢, > n and e
d, > nforalln,thenF%, ({c.},{d.}) consists of starlike sense-preserving har- Quit

monic mappings iM\. Additionally, each function if¥?,, ({c,} ,{d,}) maps
the disc|z| = r < 1/2 onto a convex domainl}]. In the same paper, they also
determined extreme points, convolution conditions, and convex combinations

. J. Ineq. Pure and Appl. Math. 6(4) Art. 122, 2005
for these types of functions. http://jipam.vu.edu.au
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Passing from the harmonic univalent functions to the harmonic multivalent func-
tions turns out to be quite non-trivial. We need the following argument principle

for harmonic functions obtained by Duren, Hengartner, and Laugesen.

Theorem 6.1 (P€]). Let f be a harmonic function in a Jordan domainhwith
boundaryI'. Supposef is continuous inD and f(z) # 0 onI. Supposef

has no singular zeros i, and letm be the sum of the orders of the zeros

in D. ThenAr arg(f(z)) = 2mm, whereAr arg(f(z)) denotes the change of
argument off(z) asz traversed’.

The above theorem motivated the author and Jahargito[introduce and
study certain subclasses of the famiy(m) ,m > 1, of all multivalent har-
monic and orientation-preserving functionsin A function f in H(m) can be
expressed ag = h + g, whereh andg are of the form

(6.1) h(z) = 2"+ Z Upgm1 2"

n=2

g(Z) = an+m—lzn+m_1, |bm| < 1.
n=1

Form > 1, let SH(m) denote the subclass @f (m) consisting of har-
monic starlike functions that map the unit digc onto a closed curve that
is starlike with respect to the origin. Observe thatvalent mappings need
not be orientation-preserving. For exampfgz) = z + z* is 4-valent on
D ={z:]|z| < 2} and we havéa(0)| = 0 and |a(1.5)| = 3.
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Theorem 6.2 ([]). If afunctionf = h+ g given by 6.1) satisfies the condition

NE

(6.2) (n+m—1) (|ansm—1| + [bprm-1]) < 2m

n=1

wherea,, = 1 andm > 1, then f is harmonic and sense preservingAnand
f e SH(m).

LetTH(m), m > 1, denote the class of functiorfs= h + g in SH(m) so

Planar Harmonic Univalent and

thath andg are of the form Related Mappings
oo Om P. Ahuja
(6.3) h(z) =2" = tnim2"™ 7 ppmer 20,
0 =2 Title Page
g(z) = Z bppm—12"T""1 bpym_1 > 0. Contents
"~ «“« S

It was proved in {] that a functionf = h + g given by €.3) is in the
classT H(m) if and only if condition ©.2) is satisfied. They also determined 4 d
the extreme points, distortion and covering theorems, convolution and convex Go Back
combination conditions for the functionsInd (m).

During the last five years, there have been several papers on multivalent har-
monic functions in the open unit disc. For example, ség [[], [57]). Quit
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To begin let us turn our attention to the special classes of harmonic functions
which are defined on the exterior of the unit diSc= {z : |z| > 1} for which

f(oo) = lim, . f(z) = oco. Such functions were recently studied by Hengart-
ner and Schober who obtained the main idea in the following:

Theorem 7.1 ([3€]). Let f be a complex-valued, harmonic, orientation-preserving,
univalent function defined of, satisfyingf(oo) = co. Thenf must admit the
representation

(7.1) f(2) = h(z) + g (2) + Alog 2],
whereA € C and

(7.2) h(z) = az + Z a,z”" and g(z)=pz+ Zb 27"
n=0

are analytic inA and0 < |3| < |a|. In addition,w = f;/f, is analytic and
satisfieqw(z)| < 1.

In view of the aforementioned result, the researchers ihfound the fol-
lowing sufficient coefficient condition for which functions of the forim1) are
univalent.

Theorem 7.2.1f f given by {.1) together with 7.2) satisfies the inequality

Zn |an| + [ba]) < |af = [8] = [4],
n=1
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By applying an affine transformatida.f — 5 — aao + Bao) / (Jaf* — |8[°),
we may normalizef so thate = 1, § = 0,anday = 0 in (7.2). In view of The-
orem7.1, w = f;/f. is analytic and satisfigss(z)| < 1. Therefore let>), be
the set of all harmonic, orientation-preserving, univalent mappjngsen by
(7.1, where

(7.3) h(z)=z+ Z a,z”" and g(z) = Z bz "

n=1

are analytic inA. Also, letX; = {f € ¥, : A = 0}, thatis, the subclass with-
out logarithmic singularity. Note that in contrast to analytic univalent functions,
there is no elementary isomorphism betwsgnandy: ;. Finally, let>}; denote

the non-vanishing class defined by

E‘}{:{f—c:er;I and cgéf(A)}.

Using Schwarz’s lemma and Theoreid, Hengartner and Schober proved the
following estimates:

Theorem 7.3 ([9]).
(@ feXy=14<2and |b| < 1.

() f €Sy = |bi] <land|by| <i(1—|0°) <Ll

(c) f € = has expansion?( 1) together with (.39 = Y72 k (|ax|” — [bs]?) <
1+2 Re bl.

All the results are sharp.
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The next result gives the distortion theorem:

Theorem 7.4 (B6]). If f —c € XY, then|f(2)] < 4(1+ |2[%) /|2 [for all
z € A, f(A)contains the sefw : |w| > 16}, and |¢| < 16.

The bound for in Theorem?.4is equivalent to the following
Corollary 7.5 ([36]). If f € g, thenf (A) D {w: |w| > 16}.

The next result concerns the compactness of the families.

Theorem 7.6 ([36]). The families:%,, >, andX are compact with respect Planar Harmonic Univalent and
to the topology of locally uniform convergence. Related Mappings
Related to the famous classical area theorem (54 fve have the follow- Om P Ahuja
ing result.
Theorem 7.7 (36]). If f € &/, has expansion7(1) along with (7.3), then Title Page
" Contents
n bn <1+ 2Reb.
;n |an|” — b ) <1+2Reb; « b
Equality occurs if and only iC\f(A) has area never zero. < d
Comparable to the subclassesf and SY, it may be possible to define Go Back
and study subclasses of the meromorphic harmonic functions. Denaig, by Close
the subfamily ofy;; consisting of functions that are starlike with respect to the _
origin in A. Also, letX},;; denote the subfamily of}; consisting of functions Quit
f of the form f = h + g for which h andg are restricted by Page 30 of 44
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The classe&;;, 37 and their subclasses were studied4a][ In particular, it
was found in { 5] that f € X%, ifand only if Y~ | (a,, + b,) < 1. Analogous
results were also found for the convex case. These results were generalized in

[1(] for the classEy R («, A) consisting of functiong = h + g which satisfy
the condition

9 _
Re{(l—)\)f(zz)+>\69§(z>}>a, 0<a<l, X>0,z€A.
%Z

. o o o ) . . Planar Harmonic Univalent and
These authors obtained sufficient conditions, coefficient characterizations, in- Related Mappings
clusion and convexity conditions, and extreme propertiesfeRR (o, \) and
its subclassesl[]. In this area, one may also refer to the papers 4, (5,

[6]).
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In this section we discuss certain other function classes related to harmonic

mappings. First let us look at a special subclass of the familakaguchi
introduced a subclass ¢f consisting of functions which are starlike with re-
spect to symmetrical points (e.g. se&,[p. 165]). Can such a strategy be
implemented for the harmonic mappings? i, this concept was extended to
include the harmonic functions. For< « < 1, let SH («) denote the class of
complex-valued, orientation-preserving, harmonic univalent functfoothe
form (3.2) which satisfy the condition

ZQf(Tew)
R 00 | >
‘ <f<rew> —J(re) ) =5
wherez = re?, 0 < r < 1and0 < @ < 2r. A function f € SH(«) is called

a Sakaguchi-type harmonic functiolm [6], the authors obtained the following
sufficient condition for functions in the family H («).

Theorem 8.1. If a function f = h + g given by 8.2) satisfies the inequality

2n—1—« 2n—1+4+ «
——— |agp—1| + ——— |bon-1] ¢ < 2,
1— 11—«
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wherea; = 1 and0 < a < 1, then f is orientation-preserving harmonic
univalent inA and f € SH(«).

TheorenB.1is fundamental in the proof of the following characterization of
functions inSH («).

Theorem 8.2 ([]). A harmonic functionf = h + g of the form 8.2) is in
SH(a), 0 < a < 1,ifand only if

(1-a)z+(a+§2*
(1-2)7(1+2)

where|¢| = 1,¢ # —1, and0 < |z| < 1.

(a+&z+(1—a)z?
(1-2)7%(1+2)

h(z) x g(z) * £ 0,

Goodman in £0] introduced the geometrically defined cladd€V of uni-
formly convex functions. Analogous tdCV is the classUST of uniformly
starlike functions that was studied ind). It is a natural question to ask whether
it is possible to extend the known results of the clas$@€¥ andUST and their
subclasses to include harmonic functions. Generalizing the tl&3sto in-
clude harmonic functions, le¥;(~) denote the subclass 6f; consisting of
functionsf = h 4+ g € Sy that satisfy the condition

o 2B }

Re< (1 + €™ —e >y, 0<y<1,
{( ) 276 B

wherez’ = 2 (2 =re?) | f'(z) = & (f(z) = f(re?) ,0 <r < 1, anda andd

are real. Also, leGr () denote the subclass 6fy () consisting of functions

f = h + g such that, andg are of the form%.1). The class7ry () was stud-

ied in [60] where they found coefficient conditions, extreme points, convolution
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conditions, and convex combinations of the functiongsip, (). An analo-
gous class of complex-valued harmonic convex univalent functions related to
the clasJCV was studied in47].

Finally, although the connections between the theory of faifiilgnd hy-
pergeometric functions have been investigated by several researchers, the cor-
responding connections between the fansily (or its subclasses) and hyperge-
ometric functions have not been explored. Recently, the author and Silverman
[16] have discovered some of the inequalities associating hypergeometric func-

tions with planar harmonic mappings. Planar Harmonic Univalent and
Related Mappings
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In this article, we have made an attempt to present a survey of the newly emerg-
ing theory of harmonic mappings in the plane. We have been compelled to omit

a number of related areas and interesting problems. However, we hope that this
article may serve as a useful guide for new and old researchers in the theory of
planar harmonic mappings and related areas. This article may also be useful to

pure and applied mathematicians working in several diverse areas.
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