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ABSTRACT. In this paper, we study the possible orders of transcendental solutions of the dif-
ferential equationf (n) + an−1 (z) f (n−1) + · · · + a1 (z) f ′ + a0 (z) f = 0, wherea0 (z) , . . . ,
an−1 (z) are nonconstant polynomials. We also investigate the possible orders and exponents
of convergence of distinct zeros of solutions of non-homogeneous differential equationf (n) +
an−1 (z) f (n−1) + · · ·+ a1 (z) f ′ + a0 (z) f = b (z) , wherea0 (z) , . . . , an−1 (z) andb (z) are
nonconstant polynomials. Several examples are given.
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1. I NTRODUCTION

Throughout this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic functions
(see [3]). Letσ (f) denote the order of an entire functionf, that is,

(1.1) σ (f) = lim
r→+∞

log T (r, f)

log r
= lim

r→+∞

log log M (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function off (see [3]), andM (r, f) =
max|z|=r |f (z)| .

We recall the following definition.
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2 BENHARRAT BELAÏDI AND KARIMA HAMANI

Definition 1.1. Let f be an entire function. Then the exponent of convergence of distinct zeros
of f (z) is defined by

(1.2) λ (f) = lim
r→+∞

log N
(
r, 1

f

)
log r

.

We define the logarithmic measure of a setE ⊂ [1, +∞[ by lm (E) =
∫ +∞

1

χE (t) dt

t
, where

χE is the characteristic function of setE.

In the study of the differential equations,

(1.3) f ′′ + a1 (z) f ′ + a0 (z) f = 0, f ′′ + a1 (z) f ′ + a0 (z) f = b (z) ,

wherea0 (z), a1 (z) andb (z) are nonconstant polynomials, Z.-X. Chen and C.-C. Yang proved
the following results:

Theorem 1.1 ([1]). Let a0 and a1 be nonconstant polynomials with degreesdeg aj = nj

(j = 0, 1) . Letf (z) be an entire solution of the differential equation

(1.4) f ′′ + a1 (z) f ′ + a0 (z) f = 0.

Then

(i) If n0 ≥ 2n1, then any entire solutionf 6≡ 0 of the equation(1.4) satisfiesσ (f) = n0+2
2

.
(ii) If n0 < n1 − 1, then any entire solutionf 6≡ 0 of (1.4) satisfiesσ (f) = n1 + 1.

(iii) If n1 − 1 ≤ n0 < 2n1, then any entire solution of(1.4) satisfies eitherσ (f) = n1 + 1
or σ (f) = n0 − n1 + 1.

(iv) In (iii), if n0 = n1 − 1, then the equation(1.4) possibly has polynomial solutions,
and any two polynomial solutions of(1.4) are linearly dependent, all the polynomial
solutions have the formfc (z) = cp (z), wherep is some polynomial,c is an arbitrary
constant.

Theorem 1.2 ([1]). Let a0, a1 and b be nonconstant polynomials with degreesdeg aj = nj

(j = 0, 1) . Letf 6≡ 0 be an entire solution of the differential equation

(1.5) f ′′ + a1 (z) f ′ + a0 (z) f = b (z) .

Then

(i) If n0 ≥ 2n1, thenλ (f) = σ (f) = n0+2
2

.
(ii) If n0 < n1 − 1, thenλ (f) = σ (f) = n1 + 1.

(iii) If n1 − 1 < n0 < 2n1, thenλ (f) = σ (f) = n1 + 1 or λ (f) = σ (f) = n0 − n1 + 1,
with at most one exceptional polynomial solutionf0 for three cases above.

(iv) If n0 = n1 − 1, then every transcendental entire solutionf satisfiesλ (f) = σ (f) =
n1 + 1 (or 0).

Remark 1.3. If the corresponding homogeneous equation of(1.5) has a polynomial solution
p (z) , then(1.5) may have a family of polynomial solutions{cp (z) + f0 (z)} (f0 is a polyno-
mial solution of(1.5) , c is a constant). If the corresponding homogeneous equation of(1.5) has
no polynomial solution, then(1.5) has at most one polynomial solution.

2. STATEMENT AND PROOF OF RESULTS

Forn ≥ 2, we consider the linear differential equation

(2.1) f (n) + an−1 (z) f (n−1) + · · ·+ a1 (z) f ′ + a0 (z) f = 0,
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wherea0 (z) , . . . , an−1 (z) are nonconstant polynomials with degreesdeg aj = dj (j = 0, . . . ,
n− 1). It is well-known that all solutions of equation(2.1) are entire functions of finite rational
order see [7], [6, pp. 106-108], [8, pp. 65-67]. It is also known [5, p. 127], that for any solution
f of (2.1), we have

(2.2) σ (f) ≤ 1 + max
0≤k≤n−1

dk

n− k
.

Recently G. Gundersen, M. Steinbart and S. Wang have investigated the possible orders of
solutions of equation(2.1) in [2]. In the present paper, we prove two theorems which are
analogous to Theorem 1.1 and Theorem 1.2 for higher order linear differential equations.

Theorem 2.1. Let a0 (z) , . . . , an−1 (z) be nonconstant polynomials with degreesdeg aj = dj

(j = 0, 1, . . . , n− 1) . Letf (z) be an entire solution of the differential equation

(2.3) f (n) + an−1 (z) f (n−1) + · · ·+ a1 (z) f ′ + a0 (z) f = 0.

Then

(i) If d0

n
≥ dj

n−j
holds for allj = 1, . . . , n−1, then any entire solutionf 6≡ 0 of the equation

(2.3) satisfiesσ (f) = d0+n
n

.
(ii) If dj < dn−1−(n− j − 1) holds for allj = 0, . . . , n−2, then any entire solutionf 6≡ 0

of (2.3) satisfiesσ (f) = 1 + dn−1.
(iii) If dj−1 ≤ dj−1 < dj +dn−1 holds for allj = 1, . . . , n−1 with dj−1−dj = max

0≤k<j

dk−dj

j−k

anddj−1 − dj >
dk−dj

j−k
for all 0 ≤ k < j − 1, then the possible orders of any solution

f 6≡ 0 of (2.3) are:

1 + dn−1, 1 + dn−2 − dn−1, . . . , 1 + dj−1 − dj, . . . , 1 + d0 − d1.

(iv) In (iii), if dj−1 = dj − 1 for all j = 1, . . . , n − 1, then the equation(2.3) possibly has
polynomial solutions, and anyn polynomial solutions of(2.3) are linearly dependent,
all the polynomial solutions have the formfc (z) = cp (z), wherep is some polynomial,
c is an arbitrary constant.

Theorem 2.2. Let a0 (z) , . . . , an−1 (z) and b (z) be nonconstant polynomials with degrees
deg aj = dj (j = 0, 1, . . . , n− 1) . Letf 6≡ 0 be an entire solution of the differential equation

(2.4) f (n) + an−1 (z) f (n−1) + · · ·+ a1 (z) f ′ + a0 (z) f = b (z) .

Then

(i) If d0

n
≥ dj

n−j
holds for allj = 1, . . . , n− 1, thenλ (f) = σ (f) = d0+n

n
.

(ii) If dj < dn−1−(n− j − 1) holds for allj = 0, . . . , n−2, thenλ (f) = σ (f) = 1+dn−1.
(iii) If dj−1 < dj−1 < dj +dn−1 holds for allj = 1, . . . , n−1 with dj−1−dj = max

0≤k<j

dk−dj

j−k

and dj−1 − dj >
dk−dj

j−k
for all 0 ≤ k < j − 1, thenλ (f) = σ (f) = 1 + dn−1 or

λ (f) = σ (f) = 1 + dn−2 − dn−1 or ... or λ (f) = σ (f) = 1 + dj−1 − dj or ... or
λ (f) = σ (f) = 1 + d0 − d1, with at most one exceptional polynomial solutionf0 for
three cases above.

(iv) If dj−1 = dj − 1 for somej = 1, . . . , n − 1, then any transcendental entire solutionf

of (2.4) satisfiesλ (f) = σ (f) = 1 + dn−1 or λ (f) = σ (f) = 1 + dn−2 − dn−1 or
... or λ (f) = σ (f) = 1 + dj − dj+1 or λ (f) = σ (f) = 1 + dj−2 − dj−1 or ... or
λ (f) = σ (f) = 1 + d0 − d1 (or 0).
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4 BENHARRAT BELAÏDI AND KARIMA HAMANI

Remark 2.3. If the corresponding homogeneous equation of(2.4) has a polynomial solution
p (z) , then(2.4) may have a family of polynomial solutions{cp (z) + f0 (z)} (f0 is a polyno-
mial solution of(2.4) , c is a constant). If the corresponding homogeneous equation of(2.4) has
no polynomial solution, then(2.4) has at most one polynomial solution.

3. PROOF OF THEOREM 2.1

Assume thatf (z) is a transcendental entire solution of(2.3). First of all from the Wiman-
Valiron theory (see [4] or [6]), it follows that there exists a setE1 that has finite logarithmic
measure, such that for allj = 1, . . . , n we have

(3.1)
f (j) (z)

f (z)
=

(
νf (r)

z

)j

(1 + o (1))

asr → +∞, r /∈ E1, where|z| = r and|f (z)| = M (r, f). Hereνf (r) denotes the central
index off . Furthermore

(3.2) νf (r) = (1 + o (1)) αrσ

asr → +∞, whereσ = σ (f) andα is a positive constant. Now we divide equation(2.3) by f ,
and then substitute(3.1) and(3.2) into (2.3). This yields an equation whose right side is zero
and whose left side consists of a sum of(n + 1) terms whose absolute values are asymptotic as
(r → +∞, r /∈ E1) to the following(n + 1) terms:

(3.3) αnrn(σ−1), βn−1r
dn−1+(n−1)(σ−1), . . . , βjr

dj+j(σ−1), . . . , β0r
d0

whereβj = αj |bj| andaj = bjz
dj (1 + o (1)) for eachj = 0, . . . , n− 1.

(i) If d0

n
≥ dj

n−j
for all j = 1, . . . , n− 1, then

(3.4) σ (f) ≤ 1 + max
0≤k≤n−1

dk

n− k
= 1 +

d0

n
.

Suppose thatσ (f) < 1 + d0

n
, then we have

(3.5) dj + j (σ − 1) <

(
n− j

n

)
d0 + j

d0

n
= d0

for all j = 1, . . . , n− 1. Then the term in(3.3) with exponentd0 is a dominant term as
(r → +∞, r /∈ E1). This is impossible. Henceσ (f) = 1 + d0

n
.

(ii) If dj < dn−1 − (n− j − 1) for all j = 0, . . . , n− 2, then we have

(3.6)
dj

n− j
<

dn−1 − (n− j − 1)

n− j
<

dn−1

n− j
< dn−1

for all j = 0, . . . , n− 2. Hence max
0≤j≤n−1

dj

n−j
= dn−1 andσ (f) ≤ 1+ dn−1. Suppose that

σ (f) < 1 + dn−1. We have for allj = 0, . . . , n− 2,

dj + j (σ − 1) < dn−1 − (n− j − 1) + j (σ − 1)(3.7)

< dn−1 − (n− j − 1) + j (σ − 1) + (n− j − 1) σ

≤ dn−1 + (n− 1) (σ − 1) .

Then the term in(3.3) with exponentdn−1 + (n− 1) (σ − 1) is a dominant term as
(r → +∞, r /∈ E1). This is impossible. Henceσ (f) = 1 + dn−1.
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(iii) If dj − 1 ≤ dj−1 < dj + dn−1 for all j = 1, . . . , n− 1 with dj−1 − dj = max
0≤k<j

dk−dj

j−k
and

dj−1 − dj >
dk−dj

j−k
for all 0 ≤ k < j − 1, then we have in this case

(3.8) max
0≤j≤n−1

dj

n− j
= dn−1.

Henceσ (f) ≤ 1 + dn−1. Set

(3.9) σj = 1 + dj−1 − dj (j = 1, . . . , n− 1)

and

(3.10) σn = 1 + dn−1.

First, we prove thatσ1 < σ2 < · · · < σn−1 < σn. From the conditions, we have

(3.11) dj−1 − dj >
dj−2 − dj

2
(j = 2, . . . , n− 1) ,

which yields

(3.12) − (j − 2) dj−1 − dj > dj−2 − jdj−1.

Adding (j − 1) dj−1 to both sides of(3.12) gives

(3.13) dj−1 − dj > dj−2 − dj−1 (j = 2, . . . , n− 1) .

Henceσj−1 < σj for all j = 2, . . . , n − 1. Furthermore, from the conditions, we have
dj−1 − dj < dn−1 for all j = 1, . . . , n − 1. Henceσj < σn for all j = 1, . . . , n − 1.
Finally, we obtain thatσ1 < σ2 < · · · < σn−1 < σn. Next supposeσj < σ < σj+1 for
some j = 1, . . . , n− 1.
(a) First we prove that ifσ > σj for somej = 1, . . . , n − 1, andk is any integer

satisfying0 ≤ k < j, thendk + k (σ − 1) < dj + j (σ − 1). Since

(3.14) dk + k (σ − 1) = dj + j (σ − 1) + dk − dj + (k − j) (σ − 1) ,

we obtain

(3.15) dk + k (σ − 1) < dj + j (σ − 1) + dk − dj + (k − j) (σj − 1) .

Now from the definition ofσj in (3.9), we obtain

(3.16) dk − dj + (k − j) (σj − 1) = (k − j)

[
dj−1 − dj −

dk − dj

j − k

]
.

Since0 ≤ k < j, it follows from the conditions that

(3.17) dj−1 − dj ≥
dk − dj

j − k
.

Then from(3.16) and(3.17), we obtain that

(3.18) dk − dj + (k − j) (σj − 1) ≤ 0.

Hencedk + k (σ − 1) < dj + j (σ − 1) for all 0 ≤ k < j.
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(b) Now, we prove that ifσ < σj+1 for somej = 0, . . . , n − 1 andk is any integer
satisfyingj < k ≤ n− 1, thendk + k (σ − 1) < dj + j (σ − 1). First, remark that
if k = j + 1, then

dj+1 + (j + 1) (σ − 1) = dj+1 + (σ − 1) + j (σ − 1)

< dj+1 + (σj+1 − 1) + j (σ − 1)

= dj+1 + (dj − dj+1) + j (σ − 1)

≤ dj + j (σ − 1) .

Hence

(3.19) dj+1 + (j + 1) (σ − 1) < dj + j (σ − 1) .

We have,

(3.20) σ < σj+1 < σj+2 < · · · < σn−1 < σn.

Then

dj+2 + (j + 2) (σ − 1) < dj+1 + (j + 1) (σ − 1) (σ < σj+2)(3.21)

· · ·
dn−1 + (n− 1) (σ − 1) < dn−2 + (n− 2) (σ − 1) (σ < σn−1) .

Therefore from(3.20) and by combining the inequalities in(3.19) and(3.21), we
obtain thatdk + k (σ − 1) < dj + j (σ − 1) for all j < k ≤ n− 1. Furthermore

n (σ − 1) = (n− 1) (σ − 1) + (σ − 1) < (n− 1) (σ − 1) + dn−1

sinceσ < σn and from (3.21) and (3.19), we deduce thatn (σ − 1) < dj +
j (σ − 1) . Then froma) andb), we obtain that ifσj < σ < σj+1 for some j =
1, . . . , n− 1, thenn (σ − 1) < dj + j (σ − 1) anddk + k (σ − 1) < dj + j (σ − 1)
for anyk 6= j. It follows that the term in(3.3) with exponentdj + j (σ − 1) is a
dominant term(asr → +∞, r /∈ E1). This is impossible. Fromb), it follows that
if σ < σ1, thendk + k (σ − 1) < d0 for all 0 < k ≤ n − 1 andn (σ − 1) < d0.
Hence the term in(3.3) with exponentd0 is a dominant term(asr → +∞, r /∈ E1).
This is impossible.
Finally, we deduce that the possible orders off are

1 + dn−1, 1 + dn−2 − dn−1, . . . , 1 + dj−1 − dj, . . . , 1 + d0 − d1.

(iv) If dj−1 = dj − 1 for all j = 1, . . . , n − 1, it is easy to see that(2.3) has possi-
bly polynomial solutions. Now we discuss polynomial solutions of equation(2.3),
if f1 (z) , . . . , fn (z) are linearly independent polynomial solutions, then by the well-
known identity

(3.22)

∣∣∣∣∣∣∣∣
f1 f2 fn

f ′1 f ′2 f ′n
· · ·

f
(n−1)
1 f

(n−1)
2 f

(n−1)
n

∣∣∣∣∣∣∣∣ = C exp

{
−

∫ z

0

an−1 (s) ds

}
,

whereC 6= 0 is some constant, we obtain a contradiction. Therefore anyn polynomial
solutions are linearly dependent, hence all polynomial solutions have the formfc (z) =
cp (z), wherep is a polynomial andc is an arbitrary constant.

Next, we give several examples that illustrate the sharpness of Theorem 2.1.
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Example 3.1.Consider the differential equation

(3.23) f ′′′ − (6z + 1) f ′′ + 3z (3z + 1) f ′ − 2
(
z3 + z2 − 1

)
f = 0.

Set

a2 (z) = − (6z + 1) , d2 = 1;

a1 (z) = 3z (3z + 1) , d1 = 2;

a0 (z) = −2
(
z3 + z2 − 1

)
, d0 = 3.

We haved0

3
≥ d1

2
and d0

3
≥ d2

1
. Hence, by Theorem 2.1(i) , all transcendental solutions of

equation(3.23) are of order1 + d0

3
= 2. We see for example thatf (z) = ez2

is a solution of
(3.23) with σ (f) = 2.

Example 3.2.Consider the differential equation

(3.24) f ′′′ + zf ′′ + 2
(
z2 − 8z − 1

)
f ′ − 3

(
9z6 + 3z5 + 2z4 + 2z3 + 2

)
f = 0.

Set

a2 (z) = z, d2 = 1;

a1 (z) = 2
(
z2 − 8z − 1

)
, d1 = 2;

a0 (z) = −3
(
9z6 + 3z5 + 2z4 + 2z3 + 2

)
, d0 = 6.

We haved0

3
> d1

2
and d0

3
> d2

1
. Hence, by Theorem 2.1(i) , all transcendental solutions of

equation(3.24) are of order1 + d0

3
= 3. Remark thatf (z) = ez3

is a solution of(3.24) with
σ (f) = 3.

Example 3.3.Consider the differential equation

(3.25) f
′′′′

− 2zf
′′′ − 4

(
z2 + 1

)
f ′′ + 6z3f ′ + 4

(
z4 − 1

)
f = 0.

Set

a3 (z) = −2z, d3 = 1;

a2 (z) = −4
(
z2 + 1

)
, d2 = 2;

a1 (z) = 6z3, d1 = 3;

a0 (z) = 4
(
z4 − 1

)
, d0 = 4.

We have dj

4−j
≤ d0

4
for all j = 1, 2, 3. Hence, by Theorem 2.1(i) , all transcendental solutions of

equation(3.25) are of order1 + d0

4
= 2. Remark thatf (z) = ez2

is a solution of(3.25) with
σ (f) = 2.

Example 3.4.Consider the differential equation

(3.26) f ′′′ +
(
z2 + z − 1

)
f ′′ +

(
z3 − z2 − z + 1

)
f ′ −

(
z3 + 1

)
f = 0.

Set

a2 (z) = z2 + z − 1, d2 = 2;

a1 (z) = z3 − z2 − z + 1, d1 = 3;

a0 (z) = −
(
z3 + 1

)
, d0 = 3.

We haved1 − 1 < d0 < d1 + d2 andd2 − 1 < d1 < 2d2, d1 − d2 > d0−d2

2
. Hence, by Theorem

2.1(iii) , all possible orders of solutions of equation(3.26) are1 + d2 = 3, 1 + d1 − d2 = 2,
1 + d0 − d1 = 1. For examplef (z) = ez is a solution of(3.26) with σ (f) = 1.
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8 BENHARRAT BELAÏDI AND KARIMA HAMANI

Example 3.5.The equation

f ′′′ + z3f ′′ − 2z2f ′ + 2zf = 0

has a polynomial solutionfc (z) = c (z2 + 2z) wherec is a constant.

Example 3.6.The equation

f
′′′′

− z
(
z3 + 3z2 + 2z + 1

)
f
′′′ − z

(
z2 + 3z + 1

)
f ′′ + 2

(
z2 + z + 1

)
f ′ + 6 (z + 1) f = 0

has a polynomial solutionfc (z) = c (z3 + 3z2) wherec is a constant.

4. PROOF OF THEOREM 2.2

We assume thatf (z) is a transcendental entire solution of(2.4) .We adopt the argument
as used in the proof of Theorem 2.1, and notice that whenz satisfies|f (z)| = M (r, f) and

|z| → +∞,
∣∣∣ b(z)
f(z)

∣∣∣ → 0, we can prove that

(1) if d0

n
≥ dj

n−j
for all j = 1, . . . , n− 1, thenσ (f) = d0+n

n
;

(2) if dj < dn−1 − (n− j − 1) for all j = 0, . . . , n− 2, thenσ (f) = 1 + dn−1;
(3) if dj − 1 < dj−1 < dj + dn−1 for all j = 1, . . . , n− 1 with dj−1 − dj = max

0≤k<j

dk−dj

j−k
and

dj−1−dj >
dk−dj

j−k
for all 0 ≤ k < j−1, thenσ (f) = 1+dn−1 orσ (f) = 1+dn−2−dn−1

or ... orσ (f) = 1 + dj−1 − dj or ... orσ (f) = 1 + d1 − d2 or σ (f) = 1 + d0 − d1.

We know that whend0

n
≥ dj

n−j
for all j = 1, . . . , n − 1 or dj < dn−1 − (n− j − 1) for

all j = 0, . . . , n − 2 or dj − 1 < dj−1 < dj + dn−1 for all j = 1, . . . , n − 1 with dj−1 −
dj = max

0≤k<j

dk−dj

j−k
anddj−1 − dj >

dk−dj

j−k
for all 0 ≤ k < j − 1, every solutionf 6≡ 0 of

the corresponding homogeneous equation of(2.4) is transcendental, so that the equation(2.4)
has at most one exceptional polynomial solution, in fact iff1, f2 (f2 6≡ f1) are polynomial
solutions of(2.4), thenf1−f2 6≡ 0 is a polynomial solution of the corresponding homogeneous
equation of(2.4), this is a contradiction. Whendj−1 = dj − 1 for somej = 1, . . . , n − 1,
if the corresponding homogeneous equation of(2.4) has no polynomial solution, then(2.4)
has clearly at most one exceptional polynomial solution, if the corresponding homogeneous
equation of(2.4) has a polynomial solutionp (z) , then(2.4) may have a family of polynomial
solutions{cp (z) + f0 (z)} (f0 is a polynomial solution of(2.4) , c is a constant). Now we prove
λ (f) = σ (f) for a transcendental solutionf of (2.4). Sinceb (z) is a polynomial which has
only finitely many zeros, it follows that ifz0 is a zero off (z) and|z0| is sufficiently large, then
the order of zero atz0 is less than or equal ton from (2.4) . Hence

(4.1) N

(
r,

1

f

)
≤ n N

(
r,

1

f

)
+ O (ln r) .

By (2.4) , we have

(4.2)
1

f
=

1

b

(
f (n)

f
+ an−1

f (n−1)

f
+ · · ·+ a1

f ′

f
+ a0

)
.

Hence

(4.3) m

(
r,

1

f

)
≤

k∑
j=1

m

(
r,

f (j)

f

)
+ O (ln r) .
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By σ (f) < +∞, we have

(4.4) m

(
r,

f (j)

f

)
= O (ln r) (j = 1, . . . , n) .

Then we get from(4.1), (4.3) and(4.4),

T (r, f) = T

(
r,

1

f

)
+ O (1)(4.5)

≤ n N

(
r,

1

f

)
+ d (log r)

whered (> 0) is a constant. By(4.5) , we haveσ (f) ≤ λ (f). On the other hand, we have

(4.6) N

(
r,

1

f

)
≤ N

(
r,

1

f

)
≤ N

(
r,

1

f

)
+ m

(
r,

1

f

)
sincem

(
r, 1

f

)
is a positive function. Hence

(4.7) N

(
r,

1

f

)
≤ T

(
r,

1

f

)
= T (r, f) + O (1) .

From(4.7), we obtainλ (f) ≤ σ (f). Therefore,λ (f) = σ (f) .
Next, we give several examples that illustrate the sharpness of Theorem 2.2.

Example 4.1.Consider the differential equation

(4.8) f ′′′ − (6z + 1) f ′′ + 3z (3z + 1) f ′ − 2
(
z3 + z2 − 1

)
f = z

(
−2z3 − 2z2 + 9z + 5

)
.

By Theorem 2.2(i) , every entire transcendental solution of equation(4.8) is of order1+ d0

3
= 2.

Remark thatf (z) = z + ez2
is a solution of(4.8) with σ (f) = λ (f) = 2.

Example 4.2.Consider the differential equation

(4.9) f
′′′′ − 2zf ′′′ − 4

(
z2 + 1

)
f ′′ + 6z3f ′ + 4

(
z4 − 1

)
f = 4

(
z6 + 3z4 − 3z2 − 2

)
.

From Theorem 2.2(i), it follows that every entire transcendental solution of equation(4.9) is of
order1 + d0

4
= 2. We havef (z) = z2 + ez2

is a solution of(4.9) with σ (f) = λ (f) = 2.

Example 4.3.Consider the differential equation

(4.10) f ′′′ +
(
z2 + z − 1

)
f ′′ +

(
z3 − z2 − z + 1

)
f ′ −

(
z3 + 1

)
f = z4 − z3 + z2 + 2z − 1.

If f is a solution of equation(4.10), then by Theorem 2.2(iii) , it follows thatσ (f) = λ (f) = 3
or σ (f) = λ (f) = 2 or σ (f) = λ (f) = 1. We have for examplef (z) = −z + ez is a solution
of (4.10) with σ (f) = λ (f) = 1.

Example 4.4.The equation

f ′′′ +
(
z3 + z2 + z + 1

)
f ′′ −

(
2z2 + 2z + 1

)
f ′ + 2 (z + 1) f = 2 (z + 1)

has a family of polynomial solutions{c (z2 + 2z) + 1} (c is a constant).

Example 4.5.The equation

f ′′′ +
(
z3 + z2 + z + 1

)
f ′′ −

(
2z2 + 2z + 1

)
f ′ + 2 (z + 1) f = 4z + 3

has a family of polynomial solutions{c (z2 + 2z) + z + 2} (c is a constant).
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