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ABSTRACT. In this paper, we study the possible orders of transcendental solutions of the dif-
ferential equatiory ™ + a,,_; (2) f® D + ... + a1 (2) f' + a0 (2) f = 0, whereag (2), ...,

an—1 (z) are nonconstant polynomials. We also investigate the possible orders and exponents
of convergence of distinct zeros of solutions of non-homogeneous differential eqiftion

A1 (2) fO7D 4o ay (2) f +ao (2) f = b(2), whereag (2), ..., a,_1 (2) andb (z) are
nonconstant polynomials. Several examples are given.

Key words and phrasedDifferential equations, Order of growth, Exponent of convergence of distinct zeros, Wiman-Valiron
theory.

2000Mathematics Subject Classificat o084M10, 34M05, 30D35.

1. INTRODUCTION

Throughout this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic functions
(seel3]). Letr (f) denote the order of an entire functignthat is,

r—-+00 log r T—+00 log r

(1.1) o(f) = Tm 08T (f) _ o loglog M (r, )

where T (r, f) is the Nevanlinna characteristic function ¢f (see [3]), andM (r, f) =

maxj.|— | f (2)|.

We recall the following definition.
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2 BENHARRAT BELAIDI AND KARIMA HAMANI

Definition 1.1. Let f be an entire function. Then the exponent of convergence of distinct zeros
of f(z) is defined by

_ ~_logN <7", %)
. = lim —~.
(1.2) A = tim —

We define the logarithmic measure of a getC [1, +oo[ by Im (F) = , Where

X £ is the characteristic function of sét

1

+oo XE (t) dt
f t

In the study of the differential equations,

(1.3) ffrta(2) ff+ao(z) f=0, f"+a(2) f +ao(2) f=0b(2),

whereq (2), a; (2) andb (z) are nonconstant polynomials, Z.-X. Chen and C.-C. Yang proved
the following results:

Theorem 1.1([1]). Let ay and a; be nonconstant polynomials with degre&ga; = n;
(j =0,1). Let f (») be an entire solution of the differential equation

(1.4) f"+ai(2) f'+ao(2) f=0.
Then
(i) If ng > 2n4, then any entire solutiofi # 0 of the equatioril.4) satisfiess (f) = 2.

(79) If ng < ny — 1, then any entire solutiorf # 0 of satisfiesr (f) = ny + 1.

(i11) If ny — 1 < ng < 2ny4, then any entire solution satisfies eithetr (f) = n; + 1
oro(f)=mng—mni+ 1.

(4v) In (iii), if ng = ny — 1, then the equatiorfl.4) possibly has polynomial solutions,
and any two polynomial solutions are linearly dependent, all the polynomial
solutions have the fornfi. (2) = ¢p (z), wherep is some polynomiak; is an arbitrary
constant.

Theorem 1.2([1]). Let ay, a; and b be nonconstant polynomials with degregg a; = n;
(7 =0,1). Letf # 0 be an entire solution of the differential equation

(1.5) f e an(z) 4 ao(2) f =b(2).
Then
(1) If ng > 2ny, then) (f) = o (f) = ”OT”
(13) Ifng <my —1,thenA (f) =o (f) =ny + 1.
(i73) Ifny —1 < ng < 2ny,then\(f) =o(f) =ni+1orX(f) =c(f) =no—n1+1,
with at most one exceptional polynomial solutiyrfor three cases above.

(iv) If ng = n; — 1, then every transcendental entire solutiprsatisfies) (f) = o (f) =
n+1 (Or 0)

Remark 1.3. If the corresponding homogeneous equatiorjlof)) has a polynomial solution
p(z), then(1.5) may have a family of polynomial solutiodgp (z) + fo (2)} (fo is a polyno-
mial solution of((L.5) , c is a constant). If the corresponding homogeneous equatifin®fhas
no polynomial solution, the(l.5)) has at most one polynomial solution.
2. STATEMENT AND PROOF OF RESULTS
Forn > 2, we consider the linear differential equation

(2.1) F™ ban (2) f V4 (2) f Fag(z) f =0,
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whereq (2) , ..., a,—1 (2) are nonconstant polynomials with degréega; = d; (j =0, ...,
n—1). Itis well-known that all solutions of equatidf.1]) are entire functions of finite rational
order see [7],16, pp. 106-108],/[8, pp. 65-67]. Itis also known [5, p. 127], that for any solution

f of (2.1)), we have

dy,
. < .
(2.2) o(f) <1+ max ——

Recently G. Gundersen, M. Steinbart and S. Wang have investigated the possible orders of
solutions of equatiorf2.1)) in [2]. In the present paper, we prove two theorems which are
analogous to Theorem 1.1 and Theofem 1.2 for higher order linear differential equations.

Theorem 2.1.Letag (2), ..., a,—1 () be nonconstant polynomials with degrekg a; = d,;
(=0,1,...,n—1). Let f (2) be an entire solution of the differential equation

(2.3) fM 4an 1 (2) fO V4 tan (2) f 4 ag(z) f = 0.

Then

(z) If dO >~ i holds forallj =1,...,n—1, then any entire solutioli # 0 of the equation
1; satisfiess (f) = dtn,

(t3) fd; <dp1—(n—7— 1) holds forallj =0,...,n—2, then any entire solutiofi # 0
of (2.3) satisfiesr (f) =1 +d,_;.

. dy—d;
(230) If dj —-1<d;4 < dv+dn_1 holds forallj =1, .. —1lwithd;_y —d; = o%??] ;_k
andd;_, — d, > 4 J forall 0 < k < j — 1, then the possible orders of any solution

f;-éOof.are
1+dn_1,1+dn_2—dn_1,...,1+dj_1—dj,...,1+d0—d1.

(4v) In (it7), if d;j_1 = d; — 1forall j =1,...,n — 1, then the equatiol2.3) possibly has
polynomial solutions, and any polynomial solutions of2.3)) are linearly dependent,
all the polynomial solutions have the forfn(z) = cp (2), wherep is some polynomial,
c Is an arbitrary constant.

Theorem 2.2. Letag (2),...,a,-1(2) and b(z) be nonconstant polynomials with degrees
dega; =d; (j=0,1,...,n—1). Let f # 0 be an entire solution of the differential equation

(2.4) F™ 4y () fO Vb qta (2) f +ao(z) f=b(2).
Then
(i) If do > 4 -holdsforallj =1,...,n—1,then (f) = o (f) = .

(i) If d; <dn_1—(n—]—1) holdsforallj:O,...,n 2,then ) (f) = o (f) = 1+d,_1.

. dy,—d;
(i13) fd; —1 < dj—1 < d;+d,—, holdsforallj =1,...,n—1withd;_, —d; _o%?i{] jfk

andd;  —d; > %= forall 0 < k < j — 1, then)\(f) —o(f) =1+d,_, or
X(f) = U(f) =1+dyo—d,10r.. Or)\(f) —O'(f) = 1+dj,1—dj or ... or

M) =0 (f) =1+dy — dy, with at most one exceptional polynomial solutifyfor
three cases above.

(iv) If dj—y = d; — 1 forsomej = 1,...,n — 1, then any transcendental entire solutign
of (2.4) satisfies\ (f) = o (f) = 1+ dp10r A(f) = 0 (f) = 1+ dp 5 — dpy OF
. Or)\(f) = O'(f) = 1—|—dj —dj+1 Or)\(f) = O'(f) = 1—|—dj_2 _dj—l or... or

A f)=o0(f)=1+dy—d; (0r0).
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Remark 2.3. If the corresponding homogeneous equatiorfof)) has a polynomial solution
p(z), then(2.4) may have a family of polynomial solutiodgp (z) + fo (2)} (fo is @ polyno-
mial solution of(2.4) , c is a constant). If the corresponding homogeneous equatifh4)fhas
no polynomial solution, thef.4)) has at most one polynomial solution.

3. PROOF OF THEOREM 2.1

Assume thatf (z) is a transcendental entire solution(@f3). First of all from the Wiman-
Valiron theory (seel]4] or [6]), it follows that there exists a #tthat has finite logarithmic
measure, such that for gli=1,...,n we have

fO@E) ()Y
@) o= () oy
asr — +oo,r ¢ E;, where|z| = r and|f (z)| = M (r, f). Herev; (r) denotes the central
index of f. Furthermore
(3.2) vi(r)=(1+o0(1))ar®

asr — +oo, whereo = o (f) anda is a positive constant. Now we divide equati@@s)) by f,

and then substitutg3.1]) and (3.2) into (2.3). This yields an equation whose right side is zero
and whose left side consists of a sum(of+ 1) terms whose absolute values are asymptotic as
(r — +o0,r ¢ E) to the following(n + 1) terms:

(33) Oénrn(o'fl) an 7ndn_1+(nfl)(a 1) /6 Td +j(o—1) B Tdo
wheres; = o’ |b;| anda; = b;z% (1 + o (1)) foreachj =0,...,n — 1.
(1) If > nTijorallj =1,...,n—1,then

di do
: < — 1422
(3.4) U(f>_1+og%2§71n—k 1+n

Suppose that (f) < 1+ (fl—o then we have

forallj =1,...,n — 1. Then the term in3.3) with exponent/, is a dominant term as
(r — +oo,7 ¢ Ey). This is impossible. Hence(f) =1+ %.
(t3) fd; <dpy —(n—j—1)forall j =0,...,n— 2, then we have

d; < dpy—(n—j—1) < dn—1

(3.6) — — n_j<dn—1
forallj =0,...,n—2. Hence0<1§1<ag< 1% =d,_1ando (f) <1+d, ;. Suppose that
o(f)<1l+d,—1. Wehaveforall =0,...,n—2,

(3.7) di+jlo—1)<dp1—(n—7—1)+j(c—1)

<d,1—-(n—j—-1+4+jlc-1)+n—-j—1)o
<d,1+(n—-1)(c—1).

Then the term in(3.3) with exponentd,,_; + (n — 1) (o — 1) is a dominant term as
(r — 4o0,r ¢ Ey). This is impossible. Hence(f) = 1+ d,,_1.
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dy—d;

(’LZZ) If dj —-1< dj—l < dj +dn—1 for a”j =1,....n—1 with dj—l — dj = max and

0<k<j =K
forall0 < k < j — 1, then we have in this case

dp—d;

dj,1 — dj > =k

d.
(3.8) max ! —=d,_.

0<j<n—1m — j

Henceo (f) <1+ d,_;. Set
(3.9 o =1+dj_1 —d, (j=1,...,n—1)
and
(3.10) on=14+d,_1.
First, we prove that; < 0y < --- < 0,_1 < 0,. From the conditions, we have

dj_y — d;

(311) dj—l — dj > 5

(j=2,...,n—1),
which yields

(3.12) —(j—2)dj1 — d; > dj_y — jd;_1.
Adding (j — 1) d;_, to both sides off3.12) gives

(3.13) diy—d;>diy—diy,  (j=2,....n—1).

Henceo;_; < og;forall j = 2,...,n — 1. Furthermore, from the conditions, we have
di-y —d;j <d,_foralj=1,...,n—1. Hences; < o, forallj =1,....,n — 1.
Finally, we obtain that; < 03 < --- < 0,_1 < 0,,. Next suppose; < o < g4 for

somej=1,...,n—1.
(a) First we prove that it > o; for some;j = 1,...,n — 1, andk is any integer
satisfying0 < k < j, thend; + k(0 — 1) < d; + j (0 — 1). Since
(3.14) di+k(c—1)=dj+jc—1)+dy—dj+(k—j)(c—1),
we obtain
(3.15) dp+k(o—1)<dj+jlc—1)+d,—dj+(k—j)(o; —1).

Now from the definition ob; in (3.9), we obtain

di — d;
J—k

(3.16) dy —dj + (k—j) (0j = 1) = (k —j) |dj—1 — dj —

Sincel < k < j, it follows from the conditions that

dy — d,
(3.17) dji—y —d; > i kj'
Then from(3.16) and({3.17)), we obtain that

(318) dk—dj‘l‘(/{?—j) (Uj—l) SO

Henced, + k(o —1) <d;+j(c—1)forall0 <k < j.
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(b) Now, we prove that itr < o;,, for some; = 0,...,n — 1 andk is any integer
satisfyingj < k <n —1,thend;, + k(0 — 1) < d; + j (¢ — 1). First, remark that
if k =7+ 1,then

dipn+(G+1)(0-1)=djpa+(0—-1)+j(o—1)
<dji1+(0j41—1)+j(0—1)
=djr1+ (dj —djn) +j (0 —1)

<dj+j(o—1).
Hence
(3.19) dign+ G+ (c—-1)<dj+j(c—1).
We have,
(3.20) 0<0j41 <0Ojp2 << 0Op_y <O
Then

(3.21) disa+ (1 +2)(0—1) <dj1+ (1 +1) (0 —1) (0 < 0j42)

dp1+(n—1)(c—1)<dpo+(n—2)(c—1)(c <op_1).

Therefore from(3.20)) and by combining the inequalities {8.19)) and (3.21]), we
obtain thatd, + k(0 — 1) < d; + j (o — 1) forall j < k <n — 1. Furthermore

nec—1)=mn-1(c—-1)+(c—-1)<(n—1)(c —1)+dn

sincec < o, and from (3.21) and (3.19), we deduce that (c — 1) < d; +
j (¢ —1). Then froma) andb), we obtain that ifo; < ¢ < o;;, for some j =
l,...,n—1,thenn(c — 1) <d;+j(c —1)anddy, +k(c — 1) <dj+j(c —1)
for anyk # j. It follows that the term in(3.3) with exponent; + j (o — 1) is a
dominant term(asr — +oo,r ¢ Ej). This is impossible. From), it follows that
if o <oy, thend, + k(o —1) <dpforall0 <k <n-—1landn(c—1) < dp.
Hence the term if3.3)) with exponentl, is a dominant ternfasr — +oo,r ¢ Ey).
This is impossible.

Finally, we deduce that the possible orderg a@fre

1+dn_1,1+dn_2—dn_1,...,1+dj_1—dj,...,1+d0—d1.

(i) If djy = d; —1forallj = 1,...,n — 1, itis easy to see thaf2.3) has possi-
bly polynomial solutions. Now we discuss polynomial solutions of equafibs),

if f1(2),...,f.(2) are linearly independent polynomial solutions, then by the well-
known identity
fl f2 fn
A f2 n | :
(3.22) =Cexpy— [ an_1(s)dsy,
0

n—1 n—1 n—1
7 >f§ Doy

whereC' # 0 is some constant, we obtain a contradiction. Thereforengpglynomial
solutions are linearly dependent, hence all polynomial solutions have theffgern=
cp (z), wherep is a polynomial and is an arbitrary constant.

Next, we give several examples that illustrate the sharpness of Thgorem 2.1.
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Example 3.1. Consider the differential equation

(3.23) f"=(6z4+1) f"+32(32+1) f —2(*+22—1) f=0.
Set

as (z) = —(62+1), dy =1,

a; (2) =32(3z+1), dy =2;

agp(z) = =2 (* +2* - 1), dy = 3.

We haved > 4 and% > % Hence, by Theorem ), all transcendental solutions of
equation(3.23)) are of orderl + % = 2. We see for example that(z) = e is a solution of

3
B.23) with o (f) = 2.

Example 3.2. Consider the differential equation

(3.24) [ zf"+2(27 =82 —1) f/ =3(92°+32" + 2" + 227+ 2) f=0.
Set

as (z) = z, dy = 1;

ar (z) =2 (2" = 82— 1), dy = 2;

ag (2) = =3 (92° +32° + 22" +22° 4+ 2) | dy = 6.

1

equation(3.24) are of orderl + %0 — 3. Remark thatf (z) = ¢*’ is a solution of(3.24) with
o(f)=3

Example 3.3. Consider the differential equation

We have? > 4 and% > % Hence, by Theoreth (), all transcendental solutions of

(3.25) e — (2 68 4 (2 1) f=0.
Set

as (z) = =2z, ds =1,

az (2) = —4 (2> +1), dy = 2:

a (z) = 623, dy = 3;

ag(2) =4 (2" - 1), do = 4.

We havefT"j < % forall j = 1,2, 3. Hence, by Theore@(ﬂ) , all transcendental solutions of

equation(3.25) are of orderl + % = 2. Remark thatf (z) = ¢’ is a solution of(3.25) with
o(f)=2.
Example 3.4. Consider the differential equation
(3.26) "+ (4= "+ (=2 —z+1) f = (*+1) f=0.
Set
ap (2) = 22 + 2 — 1, dy = 2;
ay(2) =2 —22 — 2+ 1, dy = 3;
ap(z) = — (2 +1), dp = 3.

We haved; — 1 < dy < dy + dy andd, — 1 < dy < 2d, dy — dy > ©5%. Hence, by Theorem
2.1(iii) , all possible orders of solutions of equatif126) arel + dy = 3, 1 + dy — dy = 2,
1+ dy — dy = 1. For examplef (z) = e* is a solution off(3.26)) with o (f) = 1.
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Example 3.5. The equation
f///+Z3f// _ 222f/+22f =0
has a polynomial solutioff. (z) = ¢ (2% + 22) wherec is a constant.

Example 3.6. The equation

"

fo—2 (432420 + 1) f =2 (2 4324+1) f"+2(P2+2+ 1) f+6(z+1)f=0

has a polynomial solutioffi. (z) = ¢ (2* + 32%) wherec is a constant.

4. PROOF OF THEOREM [2.2

We assume thaf (z) is a transcendental entire solution .We adopt the argument
as used in the proof of Theorgm .1, and notice that wheatisfies|f (z)| = M (r, f) and

2] = +o00, | 75| — 0, we can prove that
(1) if % > S forall j = 1,...,n — 1, theno (f) = %,
(2 ifd; <dy-1—(n—j—1)forallj=0,....,n—2,theno (f) =1+ d,_1;
@) ifdj—1<d; 1 <dj+d, forallj=1,....n—1withd; ; — d; = max %=% and
0<k<j 7
djy—d; > 2= forall0 < k < j—1,thenc (f) = 14dy_1 0o (f) = 1+dy_2—dy_y

or..oro(f)=14+dj_y—djor..oro(f)=1+d;, —dyoro(f)=1+dy—dy.

We know that wherfe > 2 forall j = 1,...,n —10rd; < d,.y — (n—j—1) for

alj =0,....n—-2o0rd; -1 <dj_; <dj+d,_foralj=1,...n—1withd;_; —

dr—d; di—d; . :
dj = 0121?23 ;_kﬂ andd;_y — d; > j._kf forall 0 < k < j — 1, every solutionf # 0 of

the corresponding homogeneous equatiof2of) is transcendental, so that the equatipri)

has at most one exceptional polynomial solution, in fact;if fo (f, # f1) are polynomial
solutions of{2.4)), thenf; — f # 0 is a polynomial solution of the corresponding homogeneous
equation of(2.4), this is a contradiction. Whed,_, = d; — 1 for somej = 1,...,n — 1,

if the corresponding homogeneous equatior(2f]) has no polynomial solution, thef®.4)

has clearly at most one exceptional polynomial solution, if the corresponding homogeneous
equation of(2.4) has a polynomial solutiop (z) , then(2.4) may have a family of polynomial
solutions{cp (z) + fo (2)} (fo is @ polynomial solution , ¢ is a constant). Now we prove

A (f) = o (f) for a transcendental solutiofof (2.4). Sinceb (z) is a polynomial which has
only finitely many zeros, it follows that if, is a zero off (z) and|z| is sufficiently large, then
the order of zero at; is less than or equal t@ from . Hence

(4.1) N (T,%) Snﬁ(r, %) + O (Inr).
By , we have
@ (e g ).
Hence
1 k [i&
(4.3) m (7“, ?> < Zm <T, 7) +O(lnr).
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By o (f) < +o00, we have

@) _
(4.4) m(r,7>:O(lnr)(jzl,...,n).
Then we get fron{4.1)), and({£.4),
(4.5) T(r,f)=T (r, %) +0(1)

<nN (7’, %) + d (logr)

whered (> 0) is a constant. By[4.5) , we haves (f) < A (f). On the other hand, we have
1

(4.6) N (7’, %) <N (r, %) <N (r, ?) +m (r, %)

sincem (r l) is a positive function. Hence

T f

4.7) N (r, %) <7 (r, %) — T f)+0(1).

From (4.7), we obtain \ (f) < o (f). Therefore\ (f) = o (f).
Next, we give several examples that illustrate the sharpness of Thgorem 2.2.

Example 4.1. Consider the differential equation
(4.8) f"—(6z+1)f"+32(B3z+1) f —2(+2°—1) f =2(-22" - 22>+ 92+ 5)..

By Theorenj 2.i) , every entire transcendental solution of equaff) is of order1 + % =
Remark thaif (2) = z + ¢ is a solution of&.8) with o (f) = X (f) = 2.

Example 4.2. Consider the differential equation
(4.9)  f 7 =2zf"—4(P+1) [P 4+62°F +4(2" 1) f=4(2+31 =32 - 2).

From Theorer 2]@), it follows that every entire transcendental solution of equaiof) is of
orderl + £ = 2. We havef (z) = 22 + e** is a solution of{Z.9) with o (f) = X (f) = 2.

1"

Example 4.3. Consider the differential equation
(4.10) f"+ (ZP+2-1) f"+ (=2 -2+ 1) f = (P+1) f=2" -2+ 22+ 22— L.

If fis a solution of equatioft.10)), then by Theoreth 2|2ii) , it follows thato (f) = X (f) = 3
oro (f) =A(f) = 2 oro (f) = A(f) = 1. We have for examplg (z) = —z + ¢* is a solution

of ({.10) with o (f) = A (f) =

Example 4.4. The equation
" (P + 242+ 1) [ = (224 22+ 1) 4 2(24+1) f=2(241)
has a family of polynomial solution§: (2? + 2z) + 1} (c is a constant).
Example 4.5. The equation
" (P + 24 2+1) f = (22 + 22+ 1) f'+2(2+1) f =42 +3

has a family of polynomial solution§: (22 + 22) + z + 2} (cis a constant).
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