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Abstract

In this paper, we study the possible orders of transcendental solutions of the
differential equation ™ +a, 1 (2) f™ U+ +ay (2) f' +ag (2) f =0, where

ap(2),..., an_1 (2) are nonconstant polynomials. We also investigate the pos-
sible orders and exponents of convergence of distinct zeros of solutions of
non-homogeneous differential equation f™ +a,_1 (z) Y +-- 441 (2) f' +
ag(2) f =b(z),where g (z),..., an—1(z) and b (z) are nonconstant polynomi-

als. Several examples are given.

2000 Mathematics Subject Classification: 34M10, 34MO05, 30D35.
Key words: Differential equations, Order of growth, Exponent of convergence of dis-
tinct zeros, Wiman-Valiron theory.
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Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution
theory of meromorphic functions (se€]). Let o (f) denote the order of an
entire functionf, that is,

— log T — loglog M
r—+00 log r r—+00 log r
where T (r, f) is the Nevanlinna characteristic function ¢f(see E]), and Someo Sgﬁ:ﬁi:gggirﬁp'ex
M (ra f) = mMaX|;|=r ’f (2)‘ . Differential Equations with
We recall the following definition. Polynomial Coeflicients
Definition 1.1. Let f be an entire function. Then the exponent of convergence Bepharrat Belaidl and
of distinct zeros of (z) is defined by
_ log N (r, %) Title Page
(1.2 M) = Tllgi-noo logr Contents
We define the logarithmic measure of a BetC [1, +oo[ by P >
im (E) = / 2 e (1) dt < >
) o _1 t Go Back
wherey g is the characteristic function of sét. o
ose
In the study of the differential equations, o
uit
1 / _ " / J—
(L3) [ () +ao(:) f =0, ['+ar ()] +ao(z) f =b(2), age 5 0f 22

whereq, (z2), a; (z) andb (z) are nonconstant polynomials, Z.-X. Chen and C.-
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C. Yang proved the following results:

Theorem 1.1 ([]). Let ay and a; be nonconstant polynomials with degrees
dega; =n; (j =0,1). Let f (z) be an entire solution of the differential equa-
tion

(1.4)
Then

[T+ a1(z) f'+ao(z) f=0.

(1) If ny > 2n4, then any entire solutiofi # 0 of the equatior(1.4) satisfies
o (f) =2,

(17) If ng < my — 1, then any entire solutiogf # 0 of (1.4) satisfiess (f) =
ny + 1.

(i73) If ny — 1 < ng < 2n4, then any entire solution dfl.4) satisfies either
o(f)=ni1+10oro(f)=no—ns+ 1.

(1) In (4i7), if ng = ny — 1, then the equatiofil.4) possibly has polynomial
solutions, and any two polynomial solutions(af4) are linearly depen-
dent, all the polynomial solutions have the fofi(z) = cp (z), wherep
is some polynomialt; is an arbitrary constant.

Theorem 1.2 ([]). Letag, a; andb be nonconstant polynomials with degrees
dega; = n; (j=0,1). Let f # 0 be an entire solution of the differential
equation

(1.5)
Then

ff4a1(2) f'+ao(z) f=0(2).
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(i) If ng > 2ny, then) (f) = o (f) = ™2,

2
(i) If ng < ny — 1, then\ (f) = o (f) =ny + 1.

(i33) If ny — 1 < ng < 2ny, then\ (f) = o (f) =m +10r A(f) = o (f) =
no — nq + 1, with at most one exceptional polynomial solutifrfor three
cases above.

(iv) If ng = n;—1, then every transcendental entire solutipsatisfies\ (f) =
o(f)=mn1+1(or0).

Remark 1. If the corresponding homogeneous equatior{1of) has a poly-
nomial solution p (z), then(1.5) may have a family of polynomial solutions
{ep (2) + fo (2)} (fo is a polynomial solution of1.5) , ¢ is a constant). If the
corresponding homogeneous equatiofilof) has no polynomial solution, then
(1.5) has at most one polynomial solution.
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Forn > 2, we consider the linear differential equation

(2.1) F™ ban () f V4 da (2) f +ag(2) f =0,
whereag (2) , ..., a,—1 (2) are nonconstant polynomials with degreleg a; =
d; (=0,...,n—1).Itis well-known that all solutions of equatidi.1) are

entire functions of finite rational order sed,[[6, pp. 106-108], §, pp. 65-67].
It is also known f, p. 127], that for any solutiorfi of (2.1), we have

dy,
<
o(f) =1+ max ——

(2.2)

P
Recently G. Gundersen, M. Steinbart and S. Wang have investigated the pos-
sible orders of solutions of equatidn.1) in [2]. In the present paper, we prove
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order linear differential equations. Contents

Theorem 2.1.Let ag (2),...,a,-1 (z) be nonconstant polynomials with de- <« >

greesdega; = d; (j =0,1,...,n—1). Let f (z) be an entire solution of the

differential equation 4 >

(2.3) F™ fan 1 (2) fO V4 qay (2) f 4 a0 (2) f = 0. Go Back
Close

Then _
Quit

. d d; . . .
(i) If 2 > v holds for allj = 1,...,n — 1, then any entire solutiofi # 0 Page 6 of 22

of the equation(2.3) satisfiesr (f) = %t

n
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(1) Ifd; < d,—1 — (n—j—1) holds forallj = 0,...,n — 2, then any entire
solutionf # 0 of (2.3) satisfiesr (f) =1+ d,,—1.

(ZZZ) If d]—l < dj,1 < dj"'dnfl holds for a”] =1,... ,n—lWIth djfl—dj =
dp—d;

dp—d; . .
021322 g andd;_, —d; > jfkf forall 0 < k£ < 57— 1, then the possible

orders of any solutiorf # 0 of (2.3) are:

l+dp1, 1 +dyo—dp1,....1+dj—1 —dj,..., 1 +dy— dy.
(iv) In (2d), if djy = d; —1forall j = 1,...,n — 1, then the equation
(2.3) possibly has polynomial solutions, and amyolynomial solutions
of (2.3) are linearly dependent, all the polynomial solutions have the form
fe (2) = cp(2), wherep is some polynomial; is an arbitrary constant.

Theorem 2.2. Letay(z),...,a,-1 (2) andb(z) be nonconstant polynomials
with degreeslega; = d; (j =0,1,...,n —1). Let f # 0 be an entire solution
of the differential equation

24) [ taa () O+ an(2) [ ao(2) f=0(2).
Then

(i) If 2 > 4 holdsforallj = 1,...,n — 1, thenX (f) = o (f) = %tz

(i4) f dj < d,_1 — (n—j — 1) holds forallj = 0,...,n — 2, then A (f) =
O'(f) = 1+dn—1-
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(iid)

Ifd; —1<dj—y <dj+d, 1ho|dsforal|j_1 ,n—1withd;_; —

d; = Orggxd;?:,fj andd;_, — d; > “= for all 0< k< j — 1, then
<J

Af)=0(f)=14dyr0orX(f) =0(f) =1+dyy—dy_y0r..o0r

AMf)=o(f)=1+dj_1—d;jor..orX(f) =0 (f) =14dy—dy, with

at most one exceptional polynomial solutifyfor three cases above.

If d;_y, = d; — 1 for somej = 1,...,n — 1, then any transcendental
entire solutlonf of (2.4) satlsflesA (f) =o0(f)=1+d,_10r X(f) =
o(f) =1+dys—dyyor..orX(f) =o(f) =1+d; —djor
)\(f):U(f):1+dj—2—dj—10r orA(f) =0 (f)=1+4do—d (or

0).

Remark 2. If the corresponding homogeneous equatior{2of) has a poly-

nomial solutionp (z), then (2.4) may have a family of polynomial solutions

{ep (2) + fo (2)} (fo is a polynomial solution of2.4) , ¢ is a constant). If the

corresponding homogeneous equatioizof ) has no polynomial solution, then

(2.4) has at most one polynomial solution.
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2.1

Assume thaff (z) is a transcendental entire solution(af3). First of all from
the Wiman-Valiron theory (seelJ or [©]), it follows that there exists a séf;
that has finite logarithmic measure, such that forjaH 1, ..., n we have

fOR) _ (v
(3.2) Y =——=) (14+0(1))
f(z) z
asr — +oo, 1 ¢ Ey, where|z| = rand|f (z)| = M (r, f). Herev; (r) denotes Som%';gﬁ:'t};f’%gir‘;%’;‘p'ex
the central index of . Furthermore Differential Equations with
Polynomial Coefficients
(3-2) Vy (7n> = (1 +o (1)) ar? Benharrat Belaidi and

Karima Hamani
asr — +oo, Wwheres = o (f) anda is a positive constant. Now we divide
equation(2.3) by f, and then substitut€s.1) and(3.2) into (2.3). This yields

Title Page
an equation whose right side is zero and whose left side consists of a sum of g
(n + 1) terms whose absolute values are asymptoti¢ras +oo,r ¢ Ej) to Contents
the following (n + 1) terms: pp >
(3.3) oo g pdemtnmDle=) g apditilo =) g o < 4
wheregs; = o7 |b;] anda; = b;z% (1 + o (1)) foreachj =0,...,n — 1. Go Back
4 Close
N If do > di P _
(i) If 2 > g forallj=1,...,n—1,then Quit
dy, do Page 9 of 22
3.4 <1 =14+ —.
(3.4) o(f) =1+ max —— =1+
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(iid)

Suppose that (f) < 1+ %, then we have

— 9 d,
(35) dj+j(0—1)< <u) d0+j—0:d0
n n
forall j = 1,...,n — 1. Then the term in(3.3) with exponentd, is a

dominant term a$r — +oo,r ¢ E;). This is impossible. Hence (f) =
1+ %,

Ifd; <d,—1 —(n—j—1)forallj =0,...,n— 2, then we have
d; dp1—(n—j5—1 d,—
(3.6) - (n J )< L<d,,
n—7 n—7 n-—7
forall j =0,...,n—2. Hence max d—f_dn rando (f) <1+d,_;.
0<j<n—1""J

Suppose that (f) <1+ d,,_,. We have forallj =0,...,n — 2,
<d,1—Mn—j—-1)+jc—-—1)+n—-j—1)0o
<d,1+Mn—=-1)(c—1).

Then the term ir{3.3) with exponentl,,_, +(n — 1) (¢ — 1) is a dominant
term as(r — +oo,r ¢ E;). This is impossible. Hence(f) =1+ d,,_1.

Ifd -1 < d] 1 < d +dn 1f0ra"] = 1,77’L—1W|thd]_1—d] =
maxd 7,6] andd;_; — d; > ¢ ]' forall0 < k < j — 1, then we have in
0<k<j J
this case

d;
(3.8) max - =d,_1.

0<j<n—1n — j
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Henceo (f) <1+d, 1. Set

(39) O'j:1+dj_1—dj (]:1,,n—1)
and
(3.10) On=1+dy,_1.

First, we prove that; < 0y < --- < 0,_1 < 0,. From the conditions, we
have

d;_o—d;
(311) djfl—dj>% (]ZQ,,TL—l),
which yields
(3.12) — (1= 2)dj1 — dj > dj2 — jdj_1.
Adding (j — 1) d;_, to both sides of3.12) gives
(313) dj,1 — dj > dj,Q — dj,1 (j = 2, e, = 1) .
Henceo;_, < o; forall j = 2,...,n — 1. Furthermore, from the condi-
tions, we havel,_;—d; < d,_; forallj =1,...,n—1. Hences; < o, for
allj=1,...,n— 1. Finally, we obtain that; < 05 < --- < 0,,_1 < 0y,.
Next suppose; < o < 0,4, forsomej =1,...,n — 1.

(a) First we prove that it > o; forsomej = 1,...,n — 1, andk is any
integer satisfying < k < j, thend, + k(o — 1) < d; +j(c —1).
Since

(314) dk—i-k(O'—l):d]—i-](a'—1)+dk—d]+(k’—j)(0'—1),
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we obtain
(3.15) dp+k (0 —1) <dj+j (0 —1)+dp—dj+(k —j) (0; — 1).

Now from the definition ot in (3.9), we obtain

. dp — d;
(3.16) di—d;+(k = j) (0; = 1) = (k=) |dj1 = dj = ——
Since0 < k < j, it follows from the conditions that Some Results on the Complex
Oscillation Theory of
Differential Equations with
(3.17) di | — d > di — d Polynomial Coefficients
: i .
j —k Benha.rrat Belaidi gnd
Then from(3.16) and(3.17), we obtain that canima naman
(3.18) dp —dj+ (k—j)(o; —1) <0. Title Page
Henced, + k(0 — 1) <d;+j(c—1)forall 0 <k < j. Contents
(b) Now, we prove thatit < o;,, forsomej = 0,...,n—1andk is any 4« dd
integer satisfying < & < n—1, thend,+k (0 — 1) < d;+j(c — 1). < >
First, remark that it = j + 1, then
Go Back
dip1+(J+1)(c—1)=djp1+(c—1)+j(0c—1) Close
<dg+1+(0 - +je—1) Quit

=djp1+ <dJ J+1) +j(oc—1)

Page 12 of 22
<dj+j(oc—-1).
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Hence

(3.19) disr+(G+1)(c—1)<dj+j(oc—1).
We have,

(3.20) 0< 041 <0Ojpg << 0Op1 < 0Oy
Then

B21) djya+ (1 +2) (0 —1) <dj1 + (j+1) (0 = 1) (6 < 0j12)

dp1+(n—1)(c—1)<dpa+(n—2)(c—1)(0c <0p_1).

Therefore from(3.20) and by combining the inequalities if$.19)
and (3.21), we obtain thatl, + k(0 — 1) < d; + j (o — 1) for all
j < k <n — 1. Furthermore

no—1)=mn-1D(-1+(c-1)<m-1)(0—1)+du,

sinces < o, and from(3.21) and(3.19), we deduce that (¢ — 1) <

d;j+j (0 —1). Then froma) andb), we obtain that i; < o < 0,41

forsome j = 1,...,n— 1, thenn(c —1) < d; + j(c — 1) and
dp + k(o —1) < dj +j(oc—1) foranyk # j. It follows that
the term in(3.3) with exponentd; + j (¢ — 1) is a dominant term
(asr — +oo,r ¢ E;). This is impossible. From), it follows that
if o < oy, thend, +k(c—1) < dpforall0 < £k <n-—1and
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n (o —1) < dy. Hence the term if3.3) with exponent, is a domi-
nant term(asr — +oo,r ¢ Ey). This is impossible.
Finally, we deduce that the possible orderg @ire

1+dn,1,1+dn,2—dn,1,...,1—|—dj,1—dj,...,1+d0—d1.

(iv) If dj-y =d; —1forall j =1,...,n— 1, itis easy to see thg®R.3) has
possibly polynomial solutions. Now we discuss polynomial solutions of

equation(2.3), if f1(z),..., f. (2) are linearly independent polynomial
solutions, then by the well-known identity

fl f2 fn
(3.22) h f2 I = Cexp {—/ a1 (8) ds} ,

(n—1) (n—1) (n—1) 0

1 2 n

whereC' # 0 is some constant, we obtain a contradiction. Therefore any
n polynomial solutions are linearly dependent, hence all polynomial solu-
tions have the forny, (z) = cp(z), wherep is a polynomial and: is an
arbitrary constant.

Next, we give several examples that illustrate the sharpness of Th&tem

Example 3.1. Consider the differential equation

(3.23) fr=(6z4+1) f"+32032+1) f —2(z*+22—1) f=0.
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Set

as (z) =—(6z+1), dy = 1;
a; () =323z + 1), dy =2;
(10(2):—2(23+Z2—1), d0:3

We have® > 4 and% > %. Hence, by Theorerd.1(i), all transcendental
solutions of equatior3.23) are of orderl + % = 2. We see for example that
f(z) = e is a solution of(3.23) with o (f) = 2.

Example 3.2. Consider the differential equation
(3.24) f"+zf"+2 (2" =82 —1) f'=3(92° + 32> + 22 +22° + 2) f = 0.
Set

as (z) = z, dy = 1;
ar (z) =2 (2" =82 —1), dy =2;
ag (2) = =3 (92° 4+ 32" + 22" +22° + 2)

d0:6.

We have® > 4 and% > % Hence, by Theorerd.1(i), all transcendental

solutions of equatiori3.24) are of orderl + % = 3. Remark thatf (z) = e’
is a solution of(3.24) with o (f) = 3.

Example 3.3. Consider the differential equation

(3.25) fom2ef — AR+ f 68 4 (1) f=0.
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Set

as (z) = =2z, ds = 1;

az (z) = -4 (2 +1), dy = 2;
a; (2) = 62°, dy = 3;

ag(2) =4 (2= 1), do =4

We havef%'j < %0 for all j = 1,2,3. Hence, by Theorer.1(¢), all tran-
scendental solutions of equatig¢s.25) are of orderl + £ = 2. Remark that
f () = ¢ is a solution of(3.25) with & (f) = 2.

Example 3.4. Consider the differential equation
(3.26) [+ (FP+z2-1)f"+(FP - —z+1)f - (P +1)f=0.
Set

as (2) =22 +2—1, dy = 2;
ay (2) =22 — 22 — 2+ 1, dy = 3;

ao(Z):—(23+1), d0:3

Wehav&ll—l < do < dy + dy andd2—1 <d < 2d2, dy — dy > do2;d2.
Hence, by Theorer.1(iii) , all possible orders of solutions of equatioh26)
arel+dy,=3,1+dy —dy=2,14+dy—dy = 1. Forexamplef (z) = e*isa
solution of(3.26) with o (f) = 1.
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Example 3.5. The equation
f/l/+z3f// - 222f/+ 2Zf — 0
has a polynomial solutiof, (2) = ¢ (22 + 2z) wherec is a constant.

Example 3.6. The equation

1"

f —z(z3+322+22+1)f
—2 (P +32+1) [ +2(F+24+1) f+6(z+1) f=0

"

has a polynomial solutiotfi. () = ¢ (2* + 32?) wherec is a constant.
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2.2

We assume thaf (2) is a transcendental entire solution(@f4) .We adopt the
argument as used in the proof of Theor2rh, and notice that when satisfies

1f ()| = M (r, f) and|z| %41 — 0, we can prove that

n

Lif %> % forallj=1,...,n—1,theno (f) = %,

2.ifd; <dp1—(n—j—1)forallj=0,...,n—2,theno (f) = 1+d,_1;

3.if d; — 1<d31<dj+dn1forallj:1 n—1lwithd;_y —d; =
max _Jandd o —d; > d’? dﬂ forall0<k<j—1 theno (f) =
0<k<]3

1+d, 0ro(f)= 1+dn,2—dn,1 or..oro(f)=1+d;_y —djor..
oro(f)=1+d,—dyoro(f)=1+dy— ds.

We know that wherfe > ndejfor allj =1,...,n—1lord; < dy,—

(n—j—1)forallj =0,....,n—2ord; —1 < dj_1 < dj + d,—, for all

j=1,...,n—1withd;_; —d; = max _,; andd;_, — d; > %=% for
0<k<j J

all0 < k < j — 1, every solutionf # 0 of the corresponding homogeneous
equation of(2.4) is transcendental, so that the equationl) has at most one
exceptional polynomial solution, in fact ffi, f> (f, # f1) are polynomial so-
lutions of (2.4), thenf; — f, # 0 is a polynomial solution of the corresponding
homogeneous equation ¢f.4), this is a contradiction. Whet, _; = d; — 1

for some; = 1,...,n — 1, if the corresponding homogeneous equation of
(2.4) has no polynomial solution, thef.4) has clearly at most one exceptional
polynomial solution, if the corresponding homogeneous equatidi.of has
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a polynomial solutiom (z) , then(2.4) may have a family of polynomial solu-
tions {cp (2) + fo (2)} (fo is a polynomial solution of2.4), ¢ is a constant).
Now we prove) (f) = o (f) for a transcendental solutighof (2.4). Since
b(z) is a polynomial which has only finitely many zeros, it follows thatfis
a zero off (z) and|z| is sufficiently large, then the order of zerozgtis less
than or equal ta from (2.4) . Hence

4.1) N (r, %) <nN (7‘,%) + O (Inr).
By (2.4) , we have
1 1 f) f(n—l) f
@ =y (et e fia).
Hence
(4.3) m ( 1) Zm (T iﬂ)) + O (Inr).
f = f

By o (f) < +o00, we have

()
(4.4) m(r,f—):O(lnr)(jzl,...,n).

)+

Then we get from4.1), (4.3) and(4.4
( ) +d (logr)

(4.5) (

Khl»—
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whered (> 0) is a constant. By4.5), we haves (f) < X(f). On the other
hand, we have

(4.6) N (7”; %) <N (7’, %) <N (7“, %) +m (r, %)

sincem (r, l) is a positive function. Hence

~

(4.7) N (r, %) <T <r, %) =T(r,f)+0(1).

From (4.7), we obtain \ (f) < o (f). Therefore\ (f) = o (f).
Next, we give several examples that illustrate the sharpness of Th&oZem

Example 4.1. Consider the differential equation

(4.8) f"—(6z+1)f"+32(32+1)f —=2(+2>—-1) f
:z(—2z3—222+92+5).

By Theoren?.2(i) , every entire transcendental solution of equatiars) is of
order 1 + © = 2. Remark thatf (z) = z + ¢*’ is a solution of(4.8) with

o(f)=A(f)=2
Example 4.2. Consider the differential equation

mn

(4.9) [ —2zf" —4(ZP+1) [ 4622 +4(P—1) f
:4(2’6—1—324—322—2).
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From Theoren2.2(7), it follows that every entire transcendental solution of
equation(4.9) is of orderl + % = 2. We havef (z) = 2% + e*” is a solution of

(4.9)witho (f) = A (f) =

Example 4.3. Consider the differential equation

(4.10) f’"—l—(z2+z—1)f/’+(23—22—z+1)f/—(z3+1)f

S Y N, PR

If f is a solution of equatiori4.10), then by Theorera.2(iii) , it follows that
o(f) =X(f)=3o0ra(f) =X(f) =20ro(f) =X(f) =1 We havefor
examplef (z) = —z + e* is a solution of(4.10) with o (f) = A (f) =

Example 4.4. The equation
" (224 1) = (2282241 241 f=2(2+1)
has a family of polynomial solutiors: (2> + 2z) + 1} (c is a constant).

Example 4.5. The equation
" 3 2 "o 2 ! _
"+ (24241 f = (285422 +1) f+2(241) f =42 +3

has a family of polynomial solutions: (2* + 2z) + z + 2} (cis a constant).
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