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ABSTRACT. A new necessary and sufficient condition for the weighted Hardy inequality is
proved for the casé < p < ¢ < oo. The corresponding limiting Pélya-Knopp inequality

is also proved fof) < p < g < oco. Moreover, a corresponding limiting result in two dimensions

is proved. This result may be regarded as an endpoint inequality of Sawyer’s two-dimensional
Hardy inequality. But here we need only one condition to characterize the inequality whereas in
Sawyer’s case three conditions are necessatry.
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1. INTRODUCTION

We are inspired by the clever Hardy-Polya observation to the Hardy inequality,

00 1 x p D p [e’e)
/0 <;/0 f(t)dt) dr < (E) /0 fP(@)dz, f>0,p>1,

that by changing to f% and tendingy — oo we obtain the Pdlya-Knopp inequality

/Ooo Gf(z)dr < e/ooo f(@)dz

with the geometric mean operator

Gf(z) = exp (i / lnf(t)dt) |

0
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2 ANNA WEDESTIG

Letl < p < g < oo. In particular, in [3] the authors tried to find a new condition for the
weighted inequality

(1.1) (/OOO (exp (é /0 lnf(t)dt))qu(x)dx>}l <c (/Ooo fp(x)v(x)dx>’l’

by using the weighted Hardy inequality

(1.2) </0°o (/jf(t)dt)qu(:c)dx); <c (/OOO fp(:c)v(:c)d:c);

and replacing:(z) and f(z) by u(z)z~? and f(z) by f*(z) respectively in[(1]2). Then, by
replacingg with £ andp with 2 so that[(1.p) becomes

(&7

(/000 (% /0 x f‘“(t)dt) ' u(m)dgc>}] <C ( /0°° fp@)v(x)dm);

and lettingae — 0 we obtain [(I.]l). The natural choice was of course to try to use the usual
“Muckenhoupt” condition (see [4] andl[6])

i, 1
Ay = sup (/ u(t)dt) ' </ U(t)l—l’/dt> <oo, P = Lﬂ
>0 \Jg 0 p—1

which, with the same substitutions, will be

[un

P

Ay(a) = sup (/Oo u(t)tidt>é (/Oxvaa—p(t)dt) - < 0.

However, asx — 0 the first term tends t0. By making a suitable change in the condition
Ay(«) the author was able to give a sufficient condition. [Th [7] this problem was solved in
a satisfactory way by first proving a new necessary and sufficient condition for the weighted
Hardy inequality[(1.R), namely

Aps =supV(z) 7 ( /0 ’ u(t)V(t)th); < o0,

x>0

whereV (z) = [ v(t)'~?'dt, which was also already proved in the case: ¢ in [9], and the
bounds for the best possible constanin (1.2) are

Aps < C <p'Aps.

Then, by using the limiting procedure described above, they obtained the following necessary
and sufficient condition for the inequalify (1.1) to hold fox p < ¢ < oo :

1

z q
Dps = supx_% (/ w(t)dt) < 00,
>0 0
where

(1.3) w(t) = <eXp (% /0 I @@))Zu(w

and )

Dps <C <erDpg.
The lower bound was also proved in a lemma ([7, Lemma 1]) directly by using the following
test function:

s—1

P X(too)(T), s>1,t>0.

Fl@) =t v X (@) + (ze) 5t
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HARDY TYPE INEQUALITIES 3

By omitting different intervals the following two lower bounds were pointed out:
Dps <C

1 . 1
s>1 \ 1+ (s—1)e* >0 ¢ x% -

Moreover, in[5] the following theorem was proved:

and

Theorem 1.1.Let0 < p < ¢ < oo andu, v be weight functions. Then there exists a positive
constantC' < oo such that the inequality (1.1) holds for gll> 0 if and only if there is & > 1
such that

(1.4) Do = Do.c(s,q,p) = Supt% (/ de) < 00,
t

t>0 TP

wherew(z) is defined by{ (1]3). Moreover,f is the least constant for which (1.1) holds, then

1
S — 1 P s—1
sup ( ) Doa(s,q,p) <C <infe 7 Doc(s,q,p).
s>1 S s>1

We see that the conditiof (1.4) and the condition from Lemma [Llin [7] is the same but the
lower bound is different. Since

(1.5) (%)‘ (%);: (Sgl); ((%)_Q .

for all s > 1, we note that the lower bound from Lemma 1[in [7] is better than that from [5].
This suggests that the bounds for the best constant(1.1)) with the condition[(1]4) should be

s—1)e* P . =1
(1.6) SUP4s1 (ﬁ) Do.g(s,q,p) < Cinfsie ™ Dog(s, g, p)-
In [5] the authors also proved that for the upper bourghould bes = 1 + § Thus, the best
possible bounds for the constartshould be

(s —1)e*) \» 1 p
1.7 ———— | D <C<eiDopg(l+= .
(1.7) ssl>111) (1 e 0.6(s,4,p) <C <erDog(l+ q,%p)

In Section 2 of this paper we prove a new necessary and sufficient condition for the weighted
Hardy inequality [(1.R) to hold (see Theorem 1). In Section 3 we make the limiting procedure
described above in our new Hardy inequality and obtain condjtioh (1.4) for the inequality ( 1.1)
to hold and we also receive the expected bounds (1[6) br (1.7) (see Theorem 2). Finally, in
Section 4 we prove that a two-dimensional version of the inequality (1.1) can be characterized
by a two-dimensional version of the conditign (1.4) and, moreover, the bounds corresponding
to (1.6) or [1.7) hold (see Theorem 3). This result fits perfectly as an end point inequality of the
Hardy inequalities proved by E. Sawyer|([8], Theorem 1) for the (rectangular) Hardy operator

H(f)(z122) = /Ogc /Ox f(t1, t2)dt 1 dts.

We note that for the Hardy case E. Sawyer showed that three conditions were necessary to char-
acterize the inequality but in our endpoint case only one condition is necessary and sufficient.
In Section 5 we give some concluding remarks, shortly discuss the different weight condition
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for characterizing the Hardy inequality and prove a two-dimensional Minkowski inequality we
needed for the proof of Theorem 3 but which is also of independent interest (see Proposition 1).

2. ANEW WEIGHT CHARACTERIZATION OF HARDY’'SINEQUALITY
Our main theorem in this section reads:

Theorem 2.1.Let1 < p < ¢ < oo, ands € (1, p) then the inequality

(2.1) (/Ooo (/:f(t)dt)qu(x)dx) <C (/OOO fp(x)v(x)dx)’l’

holds for all f > 0 iff
(2.2) Aw(s,q,p) = sup V(t)S;1 (/00 u(m)V(x)q(p;S)dx> ! < 00,

t>0

Q=

whereV (t) = f(f v(x)'~? dx. Moreover ifC is the best possible constant 2.1 ) then

1
7

(23) 2L, (%) ” Aw(s,q,p) < C < inf (p_ 1),, Aw (s, ¢, p)-

Proof of Theorerfi 2]1Let f7(z)v(z) = g(z) in (2.1). Then|[(2.]1) is equivalent to

(2.4) (/OOO (/Omg(t);v(t);dt)qu(x)dx)}] <C (/Ooog(x)dx>; .

Assume that[(2]2) holds. We have, by applying Hélder's inequality, the facDtWat) =
v(t)'* = v(t)”» and Minkowski's inequality,

</OOO (/Oxg(t)év(t);dt)qu(x)dx)é

Hence [(2.4) and thu$ (2.1) holds with a constant satisfying the right hand side inequality in
23.
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HARDY TYPE INEQUALITIES 5

Now we assume thdt (2.1) and this {2.4) holds and choose the test function

o) = (L) V00 v o) + V)00 im0,

wheret is a fixed number- 0. Then the right hand side is equal to

(/Ot (p f 8)p V()" *v(z) " da + /too V(x)sv(x)lp'd$> ’

» 1
p 1-s 1 1-s )"
< _
- ((p—S) e =" )
Moreover, the left hand side is greater than

(/too (/Ot g : Ve /t x V(y);v(y)l‘p’dy)q U(a:)da:) |

Hence, [(2.4) implies that

<pfs) (/too V(aj)(li)qu(x)dx); <C ((pfs>’”+ Sil)év(ﬂlps

i.e., that
1

(pﬁs) ((zﬁs)p + i 1); V()T (/too V(x)(li)qu(x)dx)q <c

or, equivalently, that

)Y v (1 |

) v < / V(x)(1—§>qu(x)dx) <

) es)

p—s s—1

We conclude thaf (2} 2) and the left hand side of the estimalte ¢f (2.3) hold. The proofis complete.
0

Remark 2.2. If we replace the interval0, oo) in (2.1) with the intervala, b), then, by mod-
ifying the proof above, we see that Theorem| 2.1 is still valid with the same bounds and the
condition

Aw(s,q,p) =sup V()7 </th(x)V(x)q<pps)dx>; < o0,

t>0
whereV/ (t) = [ v(x)'"dx.
3. AWEIGHT CHARACTERIZATION OF POLYA-KNOPP'S INEQUALITY

In this section we prove that a slightly improved version of Thedrem 1.1 can be obtained just
as a natural limit of our Theorem 2.1.

Theorem 3.1.Let0 < p < g < oo and s > 1. Then the inequality

(3.1) (/OOO (exp G /O lnf(t)) dt)qu(x)da:>é <C (/Ooo fp(:c)v(:c)dx> ’
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holds for all f > 0 if and only if Do (s, ¢, p) < oo, whereDo (s, q,p) is defined by[(1]4).
Moreover, ifC' is the best possible constant jn (3.1), then

3.2 sup [ ———" ) Doa(s,q,p) <C<eiDog (1+2,q,p).
(3.2) S>If<1+(s—1)es 0.c(8,4,p) 0.c s

Remark 3.2. Theoren 31 is due to B. Opic and P. Gurka, but our lower bounfl in (3.2) is
strictly better (se€] (115)). As mentioned before, other weight characterizatiohs Jof (3.1) have
been proved by L.E. Persson and V. Stepanov [7] and H.P. Heinig, R. Kerman and M. Krbec

[1].

Proof. If we in the inequality[(3.]l) replacg”(z)v(z) with f7(z) and letw(z) be defined as in
(1.3), then we see thdt (3.1) is equivalent to

([ eol( o)) o) ([ o)

Further, by using Theorefn 2.1 withz) = w(z)z ™4 andv(x) = 1, we have that

63 ([ (2 [ som) ws) <c( [ peoa)

holds for allf > 0 if and only if

1
s=1 ® w(x q
(34) AW(87 Q7p) = Supt P (/ (ﬂ) dl’) = DO.G(SJ Q7p) < 00.
t>0 t €T
Moreover, ifC is the best possible constant|in (3.3), then

(3.5) sup (< <pL> ) Doc(s,q,p) <C

1<s<p _p_ L
p— ) - -1

=

-1
S inf (p ) DO.G(S7 Q7p)

1<s<p p—s

Now, we replacef in (3.3) with /¢, 0 < a < p, and after that we replagewith 2 andg with

4in (3.3) - (3.5), we find that for < s < £

(3.6) </0°° (i /O fa(t)dt) : w(x)dx)

<, (/ fp(x)dx) ’
0
holds for all f > 0 if and only if

q p
D ( 7_7_> :Da s Yo <
0G\s o o 0.c(5,4,p) <00

Q=
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Moreover, ifC, is the best possible constant|in (3.6), then

1

= P
()"
(3.7) sup. ? - Doa(s,q,p) <C
1<s< 2 & 1
o <p—f’as> + 1
pP—«
< inf (p a) Do.c(s,q,p).
I<s<2Z \p—as

We also note that

(l /$ fa(t)dt> ‘ ! expl /5” In f(t)dt, asa — 0.
T Jo z Jy

We conclude thaf (3]1) holds exactly whiem,, ,, C,, < oo and this holds, according to (3.7),
exactly when[(3}4) holds. Moreover, when— 0, (3.7) implies that[(3]2) holds, where we
have inserted the optimal valye= 1 +§ on the right hand side as pointed outlin [5]. The proof
is complete. O

4. WEIGHTED TWO-DIMENSIONAL EXPONENTIAL INEQUALITIES

In [8], E. Sawyer proved a two-dimensional weighted Hardy inequality for the casg <
q < oo. More exactly, he showed that for the inequality

1
4 q

/ / / /f (tLtQ) dtldtz U)(l'l’l'g)dl'ldfﬂg
0 0 0
0
<C (/ / I? ($17132) v ($2,SU2) d$1d$2> ’
0 0

to hold, three different weight conditions must be satisfied. Here we will show that when we
consider the endpoint inequality of this Hardy inequality, we only need one weight condition to
characterize the inequality. Our main result in this section reads:

Theorem 4.1.Let0 < p < ¢ < oo, and let u,v and f be positive functions of?. If

0 < by, by < 00, then
1
1 T a2 q q
/ / log f(ylva)dyldy2>:| U(I17$2)d$1d$2)
T1Z2 Jo 0

b1 pba
o ([
o Jo
bi pbs
<C (/ fp(xl,xz)v(xl,xz)dxldx2>
o Jo

P

if and only if

1
bi b2 s1q  soq q
/ / xry P xy P ow(ry, xa)dridrs | < o0,

Y1 Y2

si=1 sp—l
(4.2) Du(s1snpod) = sup 9.7 y.7 (
y1€(07b1)
yQG(O’bQ)

wheres;, s, > 1 and
1 561 $2 1 %
— log ————dtdt
w(zy, T2) {eXp (WQ /0 /O 8 i ) 2)] u(r1, z9)
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and the best possible constaritin (4.1) can be estimated in the following way:

L 1
es1 (31 — 1) P 682<82 _ 1) 5

4.3 su Dy (51, 9. .
( ) sl,szlil (651(31—1)+1) (652(82—1)+1 W( 1,52, P q)

<C

s1t+sp—2
< inf e 7 DW(817327p7 Q>
51,82>1

Remark 4.2. For the case = ¢ = 1, b; = by = oo a similar result was recently proved by H.
P. Heinig, R. Kerman and M. Krbecl[1] but without the estimates of the operator norm (= the
best constant’ in (4.1)) pointed out in[(4]3) here.

We will need a two-dimensional version of the following well-known Minkowski integral
inequality:

(4.4) (/ab@(x) (/jqf(y)dy)rdgc)i < /abqf(y) (/ybcb(x)dx>idy.

The following proposition will be required in the proof of Theorem|4.1. Proposition 4.3 will be
proved in Sectiof]5.

Proposition 4.3. Letr > 1, ay, as, by, by € R, a1 < by .ay < by and let® and ¥ be measurable
functions ofay, b1 X [ag, bs] . Then

by bo xr1 o T %
(45) (/ / (I)(l'l,l'g) (/ / \I](yl,yg)dyldyg) dl’ldﬂfg)
al a al a2
b1 b2 b1 b2 %
< / / U(y1,12) (/ / @($1,9€2)d9€1d2> dy1dys.
al ag Y1 Y2

Proof of Theorerft 4]1Assume that (4]2) holds. Lefxy, z0) = f*(21, z2)v(z1, 22) in (4.7):

by b2 1 1 2 %
/ / [eXp ( / / log g(y1, y2)dy1dy2>}
0 0 12 Jo 0

1
X [exp (le,ij/ / lOg 1 2 dtldtg):| .I'l,iL'Q dl’ld.ZCQ)
(/ / lL‘l,ZEQ d$1d1'2>

1o 1 ,
— log ———dt,dt
w(iﬁ,ﬂ?z) [GXP (x1$2 /0 /o 0g U(tl,tz) 1 2)} U(931>$2)7

then we can equivalently writg (4.1) as

b1 bo 1 T T2 %
(4.6) (/ / {exp( / / logg(yl,yg)dyldyg)] w(xl,xg)dxld@)
o Jo T1%2 Jo 0
b1 b %
§C</ / 9($1,$2)d$1d$2>
o Jo

J. Inequal. Pure and Appl. Math4(3) Art. 61, 2003 http://jipam.vu.edu.au/
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Lety, = x1t; andys = z4to, then [4.6) becomes

1
by pbo 1,1 : 4
(47) (/ / [exp (/ / 1Ogg($1t1,x2t2)dt1dt2>:| W(.Tl,l’g)dl'ldfﬂQ)
0 0 0 0

b1 ba
C (/ / g(xl,a:Q)d:cldx2>
0 0
By using the result

1,1 m
<exp/ / log tfllt?ldtldtg) = ¢ (1t}
o Jo

and Jensen’s inequality, the left hand sidg of](4.7) becomes

51+52 2 b1 b2 %
/ / [exp/ / log tsl L2t (:)sltl,:Bth)] dt1dt2:| w(wy, x2)drdrs
s]+sg—2 b1 ba T 1 1 %
S € P / / / / til1t§21g($1t1,$2t2)dt1dt21 U)(Slfl,xg)dl’ldxg
o Jo LJo Jo
1
s1+sp—2 bi b2 1 1 % —s1 4 _s2q a
=e » / / / / ity (yl,yz)dyldyg} ry Txy Pw(wy,xa)dridrs | .
o Jo

Therefore, by also using Minkowski’s integral inequality (4.5) fox ¢ and Fubini’s theorem
for p = ¢, we find that the left hand side ip (4.6) can be estimated as follows:

1
s+s 2 bl b2 bl b2 q q % p
1 2 $1— 1 821 —Slp _5219
< //y1 Y5  9(y1,Y2) (/ / Py w(xl,xz)dxldxz) dyrdy;
Y1 Y2
1
s1tsg—2 bl b2 5
<e » DW(51,327(]710>‘ / / 9(1/173/2)0@1(13/2 .
0o Jo

Hence, [(4.) and, thus, (4.1) holds with a constarsatisfying the right hand side estimate in
@.3).

Now, assume thaf (4.1) holds. For fixadandt,, 0 < ¢; < by, 0 < t2 < by, we choose the
test function

3=

IN

Q=

Q=

g (z1,22) = go (w1, 12) = tfth_IX(o,tl) (1) X(0,t2) (22)
s,—1
_ e—SQt 2
+ 17 X0 (T1) = X(ta,00) (T2)
Ty
es1gsil _
+ —xs} X(tr,00) (1) 13 X (042) (22)
1

—(s1+s2)451—1 82_1
e~ (sits2)gsi—lyd

+ xielxgg X(t1,00) (xl) X (t2,00) (xQ) .
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Then the right side of (4]6) yields

b1 b2 %
</ / go (?jbyz) dyldyz)
0 0
b2 _82t82 1
(/ / ty 'ty dyrdys +/ / ty ———dyrdys
b1 —s1¢ 81 1 b1 b2 —(s1+s2)4s1—1182—1 P
e t ot
/ / ty ' ———dyrdys +/ / 5 dy1dyz)
Y1 Y2
t2 -1 et tl -1
1 1-— 1-—
<+82—1< (bg) >+81—1< (bl) >
e~ Slp—s2 t s1—1 (tQ)Szl P
+ 1— (2 1— (2
(81 — 1) (SQ — 1) ( (bl) > ( b2

e %2 e 1 e fle™52 %
< (1
= ( +32—1+31—1+(31—1)(52—1)) !

=

ie.,

br b2 z el (sp—1)+1
(4.8) (/0 /0 9o (Y1, Y2) dyld?/2> < ( est (sp — 1) )

e (sg—1)+1 >
es2 (s9 — 1) '
Moreover, for the left hand side ih (4.6) we have

b1 b2 1 T1  pT2 %
(4.9) (/ / w(xy, 2) leXP( / / 10%9(91;92)@/@92)] dI1d$2)
0o Jo T1x2 Jo 0
b1 bo 1 1 To % é
> / / w(37173?2) {exp( / / logg(yl7y2)dyld92):| dzydxs
t1 to T1T2 0 0

With the functiong(y1, y2) we get that

3=

S

1 x1 )
exp / / log go(y1, y2)dyrdys | = exp (I1 + Lo + I3+ 1y),
122 Jo 0

where

tit
= / / log tl 1t dyldy2 10 t — logtg,
$1$2 122

6752 82 1
= / / log (tl ! 32 ) dy1dys
ZEll’g

= ——logtl —|—
T

t1to t1
logt1 + (59 — 1) — logtg + logty — Syt log x5,
x

T1X2 1
16—31 81 1
]3 = / / log (tQ 81 ) dyldyg
1’11‘2

= —x—loth + —logt2 + (81 — 1)—10gt1 —|—

t
log t, — 51—2 log x4,
T1T2 T

J. Inequal. Pure and Appl. Math4(3) Art. 61, 2003 http://jipam.vu.edu.au/
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and

51+52)t51 1t82 1
= / / log ( 51 52 > dyldyg
xll’z y1 Y2

log tl

t1t
:(sl—l)logtl—(31—1)—10gt1— 172
i) T1T2

t 11t
+ (89 — 1) logty — (s9 — 1) —110gt2 o log to
I T1T9
3] to
— sylogzy + —logty + 51— log
T i)
iy t1
— sglogxe + — logty + so— log xs.
i) T

Now we see that

t(sl_l)t(SQ_l)
L+ I+ 13+ 1, =log %
T Ty

so that, by[(4.9),

by b2 1 1 T2 % %
//w(%@) {exp< / / IOggo(yl,yz)dyldwﬂ dzdxs
0 0 T1x2 Jo 0
bi b Js1-1)(52-1) 1
// $1,ZL‘2 TZSQ dl‘ldl'Q
)

t1 to

1

Hence, by[(4.6) and (4.8),

Q=

b1 bo

s1—1 sp—1 _dg g,
t, 7 ty" 7wy’ Tw(xy, xo)drydas

S(J(‘es1 (31—1)+1>i (es2(32_1)+1>;

et (s;—1) es2 (sg — 1)

( e (s1 — 1) )( (55 — 1) )éDW@hSQ’q?p)SG

est(sy—1)+1 e2(sg — 1)+ 1
We conclude thaf (4]2) holds and that the left hand inequality ir] (4.3) holds. The proof is
complete. O

Corollary 4.4. Let0 < p < ¢ < oo, and letf be a positive function oR? . Then

[e’e} o0 1 1 T2 q
(4.10) (/ / [exp ( / / log f (v, yg)dyldy2>] a:‘f‘lxg‘Q)dxld@)
0 0 T122 Jo 0

(/ / fP(xy, xo) 2] x22dx1dx2>p
holds with a finite constart®’ if and only if

Q1+1_ﬁ1—|—1
q p

J. Inequal. Pure and Appl. Math4(3) Art. 61, 2003 http://jipam.vu.edu.au/
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and
062—|—1_62—|—1

q p
and the best constaiit has the following estimate:

( e (sp — 1) e%2(sy — 1) )( 1 1 )2 p1+82 (p)i
s>t \€51(s1— 1)+ 1 es2(sg—1)+1 s1—1 s9—1 q

s1+s9 +

<C< inf e »

s1,52>1

Proof. Apply Theoren) 3.1 with the weights(x;, z,) = 25 25? andv(zy, ) = 27 2. O

B1+B82+2

Remark 4.5. If p = ¢, then the inequality (4.10) is sharp with the const@nt ¢~ » | see
Theorem 2.2 in[[2]

5. FINAL REMARKS AND PROOF

5.1. On Minkowski’s integral inequalities. In order to prove the two-dimensional Minkowski
integral inequality in Propositign 4.3 we in fact need the following forms of Minkowski’s inte-
gral inequality in one dimension:

Lemma5.1.

a) Letr > 1,a,b € R,a < bandc < d. If ® and¥ are positive measurable functions on
la, ], then [4.4) holds.
b) If K(x y) is a measurable function qa b] x [c,d], then

61) ( [ /ch@,y)dy)’"dx) <[ / K,y dx) 0y

For the reader’s convenience we include here a simple proof.
Proof.

b) Let ' = —. By using the sharpness in Holder's inequality, Fubini’s theorem and an

obvious estimate we have

1
b d r G b d
/ </ K(x,y)dy) dr | = sup /go(x) (/ K(x,y)dy) dx
a ¢ H‘P(x)”LT/(a,b)Sl a c
d b
= s ([ ®twetwac)
lle(x)ll 7, i(a, b)<1 c a
S/ (/ K(z,y)e dx) dy
c oz HL (ab)<1
/ (/ K”xy)dx) dy.

a) The proof follows by applying (5.1) with=a, d = b and
O (2)¥(y), a<y<u,

K(z,y) =
0, r<y<b.
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O

Proof of Propositiot 4BPutx = (z1,22), y = (y1,42), a = (a1,a2), b = (b1, bs); by the
symbolx <y we meant; < y; andxzs < s, etc.;du(y) =¥ (y)dy anddr(x) =P (x)dx.
Then the inequality (4]5) reads:

1 1
r r r

[ [ ) a) < [ [ 6] aun.

<x<b Sysx a<y<b <x<b

We use the Holder inequality and the Fubini theorem and get

r :
[ | ] a) ao) = swo [ g [ dut) ) dvix
<x<b lasy<x W9l <10 e <y<x
— / g(x)dw(x) | dp(y)
Hg”Lr’(dy)SlaSySb <%<b
1
< / / dv(x) | du(y).
a<y<b \y<x<b
The proof is complete. O

Remark 5.2. By using the technique in the proof of Propositjon|4.3, we find that the following
n-dimensional version of (4.5) holds:
Letn € Z, andr > 1. Then

(5.2) (/:---/ainq>(x1,x2,...,xn>

1 Tn r
X (/ / \I/(yl,yg,...,yn)dyl...dyn) dxl...da:n>
1 by bn
[ [

by b v
X (/ / q)(xl,xQ,...,mn)dxl...dxn) dy; ... dyp,.
v Yn

SIS

Remark 5.3. In view of our proof of Theorem 4|1 and Remark]5.2, we find that there exists
also an-dimensional variant of Theorem 4(& € Z. ), where the actual endpoint Hardy type
inequality can be characterized by only one weight condition.

Remark 5.4. Forr = 1 the inequalities i (4]4 )| (4.5), (8.1), arid (5.2) are reduced to equalities
according to the Fubini theorem.
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5.2. On the conditions and the best constant in the Hardy inequality[(2]1):As we have

seen, there are at least three different conditions to characterize the Hardy inefuality (2.1) for
1 < p < g < oo, namely the classical (Muckenhoupt) condition (see [4], [6]), the condition
by L.E. Persson and V. Stepanov (see [7]) and the new condition derived in Theofem 2.1. It is
difficult to make a comparison in the general case and here we only consider the power weight
case, i.e. when(z) = 2979, v(x) = z°. In this case the inequality (2.1) holds for #I> 0 iff

a+1_b—|—1
q p

and

N
S
Il
7~ N
3
N——
Q=
N\
i)
|
S| =
_|_
—_
~—
N———
Q

1
p—1Yy¢
M\s—1) ~
Moreover, ifC is the best constant ifi (2.1), théhhas the following estimates:

1

Ay <C< (Hﬁ,)q(lﬁi)p Aw,
p q

Aps < C < p'Aps,

and
(L) 1
p p—1\7
sup Aw(s,q,p) < C < inf Aw(s,q,p).
1<s<p (L) + L I<s<p \p — 8
p—s —1
Note in this case, with = 2t@—4 q , we have from the upper bound, that

P-HIP

C < inf Aw(s,q,p) (p_1>p

1<s<p p—S

1
B e (P11 (p—1
=i, (01) (52)
o /
:(Hz,) (HB) Au.
p q

We finish this paper by giving a numerical example.

1
P’

=

Example 5.1.Letp = 3,¢ = 4, ands = 1.15 for the lower bound ofdy (s, ¢, p). Then with
the conditionA,, we have the following bounds:

Ay < C < Ay - 1.711077405,
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with the condition4 p s we have the following bounds:
A - 1189207115 < C' < Ay - 1783810673,

and with the conditiomyy (s) we have the following bounds:
Apr - 1.396254480 < C' < Ay - 1.711077405.
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