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Abstract

Here in this paper, we establish sharp bounds on the expectations of k" record
increments from general and non-negative parent distributions. We also deter-
mine the probability distributions for which the bounds are attained. The bounds
are numerically evaluated and compared with other rough bounds.
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monotone approximation.
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Consider independent identically (iid) distributed random variakles. . , X,,,

..., with a continuous common distribution function (cdf) We assume

the parent cdf has finite mean = fol F~!(x)dz and finite variancer? =

[ (F~}(z) — p)*dz. Thej*™ order statisticY .., 1 < j < n, is the;"" smallest
value in the finite sequenck,, X, ..., X,. An observationX; will be called

an upper record statistic if its value exceeds that of all previous observations.
That is, X; is a record ifX; > X; for every: < j. The indices at which ST O 0 BEEsiE O
the records occur are called record times. The record times > 0 can be k'" Record Increments
defined as follows:

Mohammad Z. Ragab

T[] = 1,
and Title Page
T,=min{j:j>T,1: X;>Xp, .}, n>1
Contents
Then the sequence of record statistiés, } is defined by « "
Rn:XTn:Tn,n:O,l,Z,... . 4 >
By definition R, is a record statistic (trivial record). Go Back
Like extreme order statistics, record statistics are applied in estimating strength Fllose
of materials, predicting natural disasters, sport achievements etc. Record statis- _
tics are closely connected with the occurrence times of some corresponding M
non-homogeneous Poisson processes often used in shock models (cf. Gupta Page 3 of 25

and Kirmani, 1988). Record statistics are also used in reliability theory. Serious
difficulties for the statistical inference based on records arise due to the fact thats. ineq. pure and Appl. Math. 54) Art. 104, 2004
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ET, = 4+o00,n=1,2,..., and the occurrences of records are very rare in prac-
tice. These problems are removed once we consider the modét oécord
statistics proposed by Dziubdziela and Kopstii (1976).

For a positive integet, letT; , = k£ and

Top=min{j:j>Th 1k, X;>Xr, | k11, i} n>1

ThenR, , = X7, —k+1.17,,, @NdT, ., n > 0, are the sequences Bt record
statistics andk’" record times, respectively. Obviously, we obtain ordinary

record statistics in the case bf= 1. In reliability theory, then* value of Bounds on the Expectations of

k' record statistics is just the failure time oka out-of-T}, , System. For more k! Record Increments

details about record statistics, and their distributional properties, one may re- Mohammad Z. Ragab

fer to Ahsanullah (1995), Arnold et al. (1998) and Ahsanullah and Nevzorov

(2001). _ _ Title Page
Several researchers have discussed the subject of moment bounds of order

statistics. Moriguti (1953) suggested sharp bounds for the expectations of sin- Contents

gle order statistics based on a monotone approximation of respective density <« b

functions of standard uniform samples by means of the derivatives of the great- p 9

est convex minorants of their antiderivatives. Simple analytic formulae for the
sample maxima were given in Gumbel (1954), and Hartley and David (1954). Go Back
Arnold (1985) presented more general sharp bounds for the maximum and ar-

bitrary combination of order statistics, respectively, of possibly dependent sam- Close
ples in terms of central absolute moments of various orders based on the Holder Quit
inequality. Papadatos (1997) established exact bounds for the expectations of Page 4 of 25

order statistics from non-negative populations.
In the context of record statistics, Nagaraja (1978) presented analytic for- | o 1oa 2004
mulae for the sharp bounds of the ordinary records, based on application of http:/jipam.vu.edu.au
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the Schwarz inequality. By the same approach, Grudaied Szynal (1985)
obtained nonsharp bounds féf" record statistics. Ragab (1997) improved
the results using a greatest convex minorant approach. Ragab (2000) evalu-
ated bounds on expectations of ordinary record statistics based on the Holder
inequality. Gajek and Okolewski (1997) applied the Steffensen inequality to
derive different bounds on expectations of order and record statistics.

Recently, Ragab and Rychlik (2002) presented sharp bounds for the expec-
tations ofk'" record statistics in various scale units for a general distribution.

Generally, forl < m < n, we have Bounds on the Expectations of
k" Record Increments

1
(1.1) E(Rukx— Ruk) = / [F~Y(2) = p) P (), 1<m<n, Mohammad Z. Ragab
0
where Title Page
hm,n,k(x) = fn,k(x) - fm,k(x)a 0<z<1, Contents
and e . «“« b
n = —_— 1 - n 1 - B 9 > ]-7 Z 07
fra@) = —=[=In(1 = 2))"(1 - 2) > 1 —1—
is the density function of the' value of thek!" records of the iid standard Go Back
uniform sequence (cf., e.g., Arnold et al., 1998, p. 81). For simplification, we
change the variables and obtain another representatidnidf ( Sl
0o Quit
(1.2) E(Rny — Ring) = /0 FTH 1 = e™)omni(y)e Vdy, Page 5 of 25
where J. Ineq. Pure and Appl. Math. 5(4) Art. 104, 2004
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and
kn+1 (k1)
Jni(y) = —ye T,y >0,

is a density function with respect to the exponential measure on the positive
half-axis. The respective antiderivative is

(Dm,n,k(y) = Gn,k(y) - Gm,k(y) = IGy(n + 1, k) - IGy(m +1,k),

wherelG,(a, b) stands for the incomplete gamma function. This antiderivative _
Bounds on the Expectations of

can be rewritten in the following form: k'h Record Increments
- n k j Mohammad Z. Ragab
(13) (I)m,n,k(y) = —¢ hy Z (LR
j=m+1 J:
Title Page
Applying the Cauchy-Schwarz inequality t®.?), we obtain a classical non- Contents
sharp bound oF'(R,, ; — Ry.x)
4« >»
E<Rn,k - Rm,k) S Bm,n,k<1)07 4 [
where Go Back
Close
k 2m—+1 2m ]f 2n+1 2n
1.4) Bnor(l) =<k —— Bl —— _
(L4 Buni(1) { (2k—1) (m)+ (2k—1> (n) Quit

1 Page 6 of 25

+n+1 2
ok k e m+n
Qk’ -1 m ' J. Ineq. Pure and Appl. Math. 5(4) Art. 104, 2004
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In Section2 of this paper, we establish sharp bounds for the expectations
of k' record increments expressed in terms of scale unit®h Section3, we
establish bounds for the momentsiéf record increments for non-negative par-

ent populations. Computations and comparisons between the classical bounds

and the ones derived in Sectiohand3 are presented and discussed in Section
4,

Bounds on the Expectations of
k" Record Increments

Mohammad Z. Ragab
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In this section we present projection moment bounds on the expectations of
k' record increments in terms of scale units. First we recall Moriguti’s (1953)
approach that will be used in this section. Suppose that a funétibas a
finite integral onfa,b]. Let H(z) = [ h(t)dt, a < x < b, stand for its
antiderivative, and{ be the greatest convex minorantigf Further, leth be a
nondecreasing version of the derivative (e.g. right continuoug).@bviously,

h is a nondecreasing function and constant in the interval whege h. For
every nondecreasing functian on [a, b] for which both the integrals in2(1)

are finite, we have

2.1) jﬁbungh(x)dx < jﬁbu(x)ﬁ(x)dx.

The equality in 2.1) holds iff w is constant in every interval contained in the
set, whered # H.

Analyzing the variability oft,,, ,, () is necessary for evaluations of optimal
bounds. We consider first the problem with = n — 1 (n > 2) andk >
1. For simplicity, we usé,, x(x), onr(x), and B, x(i); ¢ = 1,2, 3 instead of
hnflynyk(‘I), (pnfl,n,k(x% andBn,17n7k(z’); 1= 1, 2, 3.

Functionh,, (x) can be represented as

hmgprq@mmﬂgma—@+q,nzz

Bounds on the Expectations of
k" Record Increments
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It starts from the origin and vanishes aspproaches$ passing the horizontal
axisatr = 1 — e ™* (n > 2, k > 1). By using the facts that

frx(x) =
fon(@) =

we conclude that

[—In(1 — z)]fo—1k(z) and

n+(k—1In(1l—2)] (1 —2) " fuix(z),

:Iw:lw

22) Hy(o) =~ fuaula)(1 — )

X {@[—m(l — )P+ 2k —1)In(1 —2) + (n — 1)}

It follows from (2.2) thath,, ,(z) decreases oD, a, k), (b,x, 1) and increases
ON (an , by i), Wherea, , = 1 — ek, b, = 1 — e~4nk with

— (2k—1)n—\/(2k—1 2n+n(n —1)
n,k — (

)

dn,k -

)
1)
(2k —1) n—l—\/ (2k —1)2n+n(n—1)
2k(k — 1) '
We can easily check that, ;. (a, ) < 0 andh,, x(b,x) > 0.

The antiderivativefd,, . (z) of h, x(z), needed for the Moriguti projection, is
therefore concave decreasing, convex decreasing, convex increasing and con-

cave increasing if0, a, 1], [anx, 1 —e ¥, [1 — e ™% b, 4], [bui, 1], respec-
tively. Further, it is negative witlH,, ,(0) = H,, x(1) = 0. Thus its greatest

Bounds on the Expectations of
k" Record Increments

Mohammad Z. Ragab
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convex minorant?,, ;, is linear in[0,1 — e~?], and[1 — e~/ *~Y 1] for some
B € [enk,n/k]. Thatis,

hng(1 — e Pz, if r<1—eb,
Hn,k(-r) = Hn7k(x), |f 1— 6_5 <r<l1l-— G_n/(k_l)’
—hpp(1— e ™ E=DY (1 —2), if 1—etD <3<,

where( is determined numerically by the equation

(2.3) Do (y) = up(y)(1 — ™).
Note thaty = n/(k — 1) is obtained by solving the equation
(2.4) Dy 1(y) = —Pni(y)e”.

The projection ofp,, ;.(y) onto the convex cone of nondecreasing functions
in L2([0, ), e7¥ dy) (cf. Rychlik, 2001, pp. 14-16) is

gpn,k(ﬁ)v If yéﬁ,
(2.5) PurW) =3 eni(y), if B<y<if,
onk(z), 1y >

By (1.2), (2.5, and the Cauchy-Schwarz inequality, we get

E(Ruy — Rury) = / T = o) — plpnaly) — devdy

Bounds on the Expectations of
k" Record Increments

Mohammad Z. Ragab
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< / TE = ) — () — ey

(2.6) < {/Ooo[ﬁn,k(y) - C]zeydy}% o,

for arbitrary reak. The former inequality becomes equality#if ' (1 —e™¥) —
is constant on{0, 5) and(n/(k — 1), 00). The latter one is attained if

27)  Fl(l—e?)—p=0alB,,(y) —clsgn@,i(y) —c), a>0.

The condition in 2.7) implies the former condition. As a consequence of that,
the bound in 2.6) is attained for arbitrary by the distribution function satis-
fying (2.7). Now we minimize the bound in the RHS dl.() with respect to

¢ =¢@ux(n), n € (B,n/(k—1)). We have

(2.8) /Ooo(ﬁn,k(y) — @ni(n)) e Vdy

= [pnik(n) — enp(@)?(1—e7) + /@ [P (1) = Pnk(y)] e Vdy

n/(k—1)
T / [onk(Y) — ong(n)]e Vdy
+ [oni(n/(k — 1)) — @ni(n)]2e™™/ ¢,

Differentiation of the RHS of .8) and equating the result t leads to
¢©nk(n) = 0. This shows that the unique solution &§) isn = n* = n/k.

Bounds on the Expectations of
k" Record Increments

Mohammad Z. Ragab
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It follows that the optimal bound oR(R,, . — R,.—1x) IS given by

(2.9) Bux(2) = { / mm,k@)]?eydy}%

Summing up, 2.9) with (2.3) and @.4) leads to the following bound

n __n_
@10) B = {0 - )+t () e R
k2n+2 m 1
Tk — e (n ) 0 (2n+1’ 2k:—1)
k2 2n — 2 1
ANCT e (n—1>5<2n_1’2kz—1)

1
K o 1 1 :
BRIP I <n—1>5<2"’2k—1)} ’

whereé(i, j) = IG, -1 (i, j) — IG3(4, j), andg is the unique solution to

(2.11) (k—1)y—nleY=ky—n, n>2 k>1L1

From 2.7), the optimal bound is attained iff
(2.12) FH1—e™) = p=al, i (y)]sen(@, . (y))-

Note that the right-hand side a?.(L2) is non-decreasing, negative (i n/k)
and positive onn/k, o). Moreover, this is constant off, 5) and (n/(k —

Bounds on the Expectations of

k'™ Record Increments

Mohammad Z. Ragab
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1), 00), which is necessary and sufficient for the equality in the former inequal-
ity of (2.6). The condition

/ [F7Y (1 —eY) — p)’e Vdy = o?
0

forcesa = o/ B, x(2). Consequently, the distributions functions of the location-
scale family for which the bounds are attained have the form

07 |f X S 517
@13)  F@)={ Wl (Ba@)st), i G<o<é e
1, if z>&, Mohammad Z. Ragab
where o
G=n-g B k(8), Title Page
and Contents
5 . + o n
2 = M Bnk@)S@nk 1 <4 »r
The distribution function in4.13 is involving the inverse of smooth com- < >
ponenth,, ; ,, , With two atoms of measurds- ¢4 ande="/(*~1) respectively, P——
at the ends of support.
. . cl
Remark 2.1. In the special case of ordinary records.(= n — 1,k = 1), ose
Eqg. (2.10) reduces ton(1 — e ¥) = y and the optimal bound coincides with Quit
the corresponding bound in Rychlik (2001, pp.141). The optimal bound for the Page 13 of 25
extreme case = 1 cannot be obtained from the above bound. Further, the case
n =k = 1, leads to the estimates f(E(RLl - RO,l) = E<R1,1 - M) which J. Ineq. Pure and Appl. Math. 5(4) Art. 104, 2004

were already presented in Ragab and Rychlik (2002). http://jipam.vu.edu.au
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Now we consider the case = 1 andk > 1. In this case, the projec-
tion of 2, ;(x) onto the family of nondecreasing functions in the Hilbert space
L2([0,1),dz) is hy k() = hy p(min{z, 1 — e~ V/E11),

From 2.1), we get

E(Ryp— Xix) < /OOO [F_l(l —e¥) — M] Py (y)e dy

S Bl,k(2)ga
Bounds on the Expectations of
where k" Record Increments
Mohammad Z. Ragab
k‘2€_2 1 kz
Bip(2)={ — e %1 4+ —— _(2k? -2k +1
1+(2) {(/lc—1)26 +(2k:—1)3< +1)
2k—1 1 Title Page
k?e” 51 4 3 2 ’
— 6k™ — 4k k*—2k+1 ) Contents
k= 1P — 12 * 1)
<4< >
Using similar arguments to those in the previous proof, we conclude that the < >
boundB, x(2) is attained for the distribution function of the location-scale fam-
ily Go Back
Close
2.14) F(x
214) Fl) o out
) | r = — ’
y - 1B - Page 14 of 25
H o ke—1 . Ineq. Pure an . Math. rt. 104,
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The distribution function inZ.14) has a jump of height=/(*-1) at the right
end of support.

In the case of ordinary recordsé = 1), one can establish optimal moment
bounds for generdl™ record increment&,, ; — R,,1, 1 < m < n. The function
Cmn(Y) = gn1(y) — gm1(y) can be rewritten as

m!
me,n(y) = gm,l(y) |:Fy — 1:| , 1<m<n.

We can easily note that functién, ,(x) = ¢, (— In(1—z)) starts from the Bounds on the Expectations of
origin, decreases t@,, ,(1 — e™*) < 0, wherev = [(n — 1)!/(m — 1)1]*/(»=™) k" Record Increments
and then increases te at 1 passing the horizontal axis at— ¢, where Mohammad Z. Ragab
v* = [n!/m!]"/("=™)_ The antiderivativeH,, ,(z) needed in making the projec-
tion, is then concave decreasing, convex decreasing, and convex increasing in Ti

- N . . itle Page
0,1—e"],[l—e ¥, 1—¢e" ], and[l —e™" , 1], respectively, with¥,, ,,(0) =
H,, (1) = 0. The corresponding greatest convex minotdpt,, () is linear in Contents
[0, 3*] for someB* € [1 — e, 1 —e~¥"], that is determined numerically by the <« b
following equation p R
— — e Y

(2.15) P (y) = Cmn(y) (L —e7). o Back
By (1.3, Eq. (2.19 can be simplified as p——
(2.16) 23 ?—j - (% - %) (1—e¥). Quit

Jj=m+l Page 15 of 25

Finally the projection ofp,,, ,,(y) in L(]0, c0), e ¥dy) is

J. Ineq. Pure and Appl. Math. 5(4) Art. 104, 2004
@m,n(y) = Pmn (max{ﬁ 7y}) . http://jipam.vu.edu.au
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Hence
E(Rn,k - Rm,k)

o

(2.17)

< / [@m,n(y) o C]Qe_yd:%
0

wherec = (n),n € (8*,00). The constant) = n* = ¢ '(1) minimizes the
RHS of ¢.17), and then the optimal bound simplifies to

2n %]
(218) Byn(2) = ¢, (B7) (1 =) —14e” [(2:) ﬂj‘
j=0 "
om, 2m ﬁ*j ) m4+n m+nﬁ*] %
+(m);j! B ( m >; J!

The bound is attained by

<x < oo.

T — N) - U@m,n(ﬁ*)
g

(219)  F(z) =, <Bm,n(2) Bonn(2)

The distribution 2.19 has a jump of height* and a density with infinite
support to the right of the jump point.

Bounds on the Expectations of
k" Record Increments

Mohammad Z. Ragab

Title Page
Contents
<44 44
< >
Go Back
Close
Quit
Page 16 of 25

J. Ineq. Pure and Appl. Math. 5(4) Art. 104, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:mraqab@accessme.com.jo
http://jipam.vu.edu.au/

In this section, we develop bounds for the momentsé'bfrecord increments
from non-negative parent distributions. The bounds are expressed in terms of
location units rather than scale units. The expectatiokt’ofecord increments

can be represented as

@D BRus— Rt = [ (Gos(Sw) ~ Gus(Sw)lds
0
Bounds on the Expectations of
whereS(y) = —In(1 — F(y)), 0 < y < oo is the hazard function. k" Record Increments
In order to get optimal evaluations for the expectationdri), we should Mohammad Z. Ragab

analyze variablility of the following function:

Gum -G, i
W(y) = x(Y) = #Y) o< y < oo, Title Page
€ Contents
Forn = m+ 1, itis clear to note that the functidiv (y) is unimodal with mode
ETR : . : < >
v =275 . Withn > m + 1, a simple analysis leads to the conclusion that
< >
Z 4;(y), Go Back
J=mtl Close
where uit
(kyyre~ =1 °
q;(y) = # Page 17 of 25

FunctionW’(y) > 0if y < 24t andW’( ) < 0ify

By the ContInUIty J. Ineq. Pure and Appl. Math. 5(4) Art. 104, 2004
of W (y), there exists a root de’ ), sayy € [24

1
:| The derivative of http://jipam.vu.edu.au
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W (y) can be written as

¢ (gms(y) = gnr(¥)) + (Gmp(y) = Gur(y))

e Y

W'(y) =

SinceG, . (y) = gni(y)e™?, we have

e_y

[e™ W' (y)] = o {[m — (k = )ylgmi(y) —

n— (k= 1)ylgni(y)} -

We observe that the functida*W’(y)]’ < 0 fory € [2, 2<]. This leads

to the conclusion thake YW’ (y)] is strictly decreasing and then the ropte
[l 2] must be unique. Consequently/(y) is unimodal function with
mode~. The value ofy can be evaluated numerically from the equation

(3.2) Gmp(y) — Gui(y) =

Form =n — 1,7y =n/(k — 1), which is the unique solution t@(4).
From the non-negativity assumption, we have

E(Roy — o) /W ~ F(y))dy

(3.3) (Gnx (V) = G (V)i

(Gnk(y) — gmi(y)) e .

which leads to

(3.4) Bink(3) =

n-m _ 1 I,

n!

k,m+1 ef(kfl)fy m|knfm
m!

Bounds on the Expectations of
k" Record Increments
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where~ is the unique solution to

n

Kyl ko TEMTmm)
2 i Tml n!

(3.9) y"m =11 .

j=m+1

Note that Eq. .5 is a reduction of§.2). The bound 3.3 is attained in the
limit by a two-point marginal distribution supportedieand.e” with respective
probabilitiesl — e~ ande™".

For the special case = n — 1,y = %5, n > 2 and the bound3,, . »(3)
can be simplified as

k ”(n_l)n—l -n
By 10k(3) = (k‘—l) (= 1) e n>2.k>1.

A useful approximation for! wheren is large, is given by Stirling’s formula
n! 2 +/2wnn™e~". This leads to a simpler formula

E\" e !
B, _ = . .
n-tn(3) (k — 1) 21(n — 1)
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In this section we carry out a numerical study in order to compute the sharp
bounds on the expectations of the& values of thek!” record increments for
selected values afi, n and k. The first step of our calculations is to deter-
mine the parameters, 5* and~ by solving equationsZ3), (2.15 and @.2)
whose left-hand side can be simplified and rewritten in terms of a Poisson
sum of probabilities. Consequently, we numerically solve the equivalent equa-
tions (2.11), (2.16 and @.5), respectively, by means of the Newton-Raphson Bounds on the Expectations of
method. Then using2(10, (2.18), and @3.4), we evaluate the sharp bounds kth Record Increments
B, k(2), Bpn(2) (k=1)andB, (3) for some selected values of, n andk.

Mohammad Z. Ragab

In Table 1, each optimal bound3, (2) is compared with the rough one
B, (1) and the one for non-negative pardsy,(3). Clearly, the rough bound

. L . ) ) Title Page
results in a significant loss of accuracy in evaluatingitierecord increments.
We observe that the bounds, (2) and B,, ;(3) decrease ak increases with Contents
fixed n which has the following explanation. If we consideando as general <« >
location and scale parameters and incrégsee restrict ourselves to narrower < R

classes of distributions and the bounds in the narrower classes become tighter.
Moreover, the relative discrepancy betwden, (2) andB,, ;(3) increases with Go Back
the increase of parameter In fact, one can also argue that the boustls (1)

strictly majorizeB,, ,(2) forn > 1 andk > 1. For this, the discrepancy between e
B,.x(1) and B, x(3) is much larger than that betweéh, ,.(2) andB,, x(3). For Quit
n > k, other calculations show tht, (1) andB,, .(2) beatB,, . (3). Page 20 of 25

Table2 compares the rough bounds, ,,(1) with B, ,(2) for the moments

of ordinary record increments (= 1;1 < m < n). The numerical results show e, (AR A (4T, AR, otk B
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that the application of the Holder inequality combined with the Moriguti mod-
ification results in improvements in evaluating the moments bounds for record
increments{ = 1,1 < m < n). We have excluded,, ,(3) since it can-

not be obtained for the ordinary records increments. Obviously, the bounds
for non-negative distributions are expressed in terms of location units and these
bounds beat the one derived based on combining the Moriguti approach with
the Cauchy-Schwarz inequality when the coefficient of variation exceeds

the ratioB,, »(3)/B,, x(2) depending om > 1 andk > 1.

Bounds on the Expectations of
k" Record Increments

The aim of this paper was the development of the optimal moment bounds
for the k' record increments from both general and non-negative parent distri-
butions. The results can be used effectively in estimating the expected values of
records as well as in characterizing the probability distributions for which the
bounds are attained. Possibly, one open problem is to find the sharp bounds in Title Page
some restricted families of distributions, e.g. ones with symmetric distributions
or with monotone failure rate.
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Table 1: Bounds on the expectationskdf records increments in various loca-
tion or scale units.

ol

[ n]
2

0.3948| 0.6024 | 0.5681 | 0.6090
0.2838| 0.6293 | 0.5803 | 0.4812
0.2213| 0.6667 | 0.6053 | 0.4229
0.1813| 0.7063 | 0.6341 | 0.3898
0.5639| 0.5182 | 0.4636 | 0.5311 Bounds on the Expectations of
0.4409| 0.5300 | 0.4633 | 0.4376 k*" Record Increments
0.3617| 0.5492 | 0.4720 | 0.3871
0.3065| 0.5712 | 0.4846 | 0.3558
0.5410| 0.4774| 0.3994 | 0.4051
0.4588| 0.4891 | 0.4023 | 0.3619
0.3982| 0.5031| 0.4084 | 0.3333
0.6106| 0.4432| 0.3573 | 0.3793
0.5302| 0.4509 | 0.3576 | 0.3421 <« (13
0.4684| 0.4607 | 0.3606 | 0.3162
0.4195| 0.4715| 0.3651 | 0.2972 < >
0.6618| 0.4183| 0.3266 | 0.3579
0.5849| 0.4238 | 0.3259 | 0.3256 Go Back
0.5239| 0.4310| 0.3271| 0.3022
0.4744| 0.4391 | 0.3298 | 0.2846
0.6640| 0.3646 | 0.2524 | 0.2625 Quit
0.6185| 0.3680 | 0.2524 | 0.2494

0.5789| 0.3719 | 0.2528 | 0.2386 Page 22 of 25
0.5440| 0.3761 | 0.2537 | 0.2294
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Table 2: Bounds on the expectations of ordinary records incremestsl(1 <

m < n) in various scale units.

[m]n]

/6*

| Bun(1) | Bnn(2) |

1

1.59362
2.1270
2.6188
3.0855

1.4142 | 0.9905
3.7417 | 3.5943
7.8740 | 7.7991
15.5563 | 15.5150

2.8214
3.3308
3.8117
4.2740

24495 | 2.2254
6.7823 | 6.6925
14.6969 | 14.6462
29.5635 | 29.5321

3.9207
4.4149
4.8898
5.3511

44721 | 4.3485

12.6491 | 12.5929
27.8568 | 27.8204
56.6745 | 56.6489

4.9651
5.4526
5.9261
6.3890

8.3666 | 8.2966
23.9583 | 23.9208
53.3104 | 53.2820
109.3160] 109.2930

OCoo~NOoO~NOOINOOGRAOORA,WORAWN

5.9849
6.4703
6.9447
7.4103

15.8745 | 15.8333
45.8258 | 45.7984
102.7030| 102.6790
211.8210] 211.7990
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