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ABSTRACT. In this paper are established some inequalities involving the Euler gamma function.
We use the ideas and methods that were used by J. Sándor in his paper [2].
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1. I NTRODUCTION

The Euler gamma functionΓ(x) is defined forx > 0 by

Γ(x) =

∫ ∞

0

e−ttx−1dt.

The Psi or digamma function, the logarithmic derivative of the gamma function is defined by

ψ(x) =
Γ

′
(x)

Γ(x)
, x > 0.

C. Alsina and M.S. Tomás in [1] proved the following double inequality:

Theorem 1.1.For all x ∈ [0, 1] and all nonnegative integersn, the following double inequality
is true:

(1.1)
1

n!
≤ Γ(1 + x)n

Γ(1 + nx)
≤ 1.

Using the series representation ofψ(x), J. Sándor in [2] proved the following generalized
result of (1.1):

Theorem 1.2.For all a ≥ 1 and allx ∈ [0, 1], one has:

(1.2)
1

Γ(1 + a)
≤ Γ(1 + x)a

Γ(1 + ax)
≤ 1.
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In this paper, using the series representation ofψ(x) and ideas used in [2] we will establish
some double inequalities involving the gamma function, "similar" to (1.2).

2. M AIN RESULTS

In order to establish the proof of the theorems, we need the following lemmas:

Lemma 2.1. If x > 0, then the digamma functionψ(x) = Γ
′
(x)

Γ(x)
has the following series repre-

sentation

(2.1) ψ(x) = −γ + (x− 1)
∞∑

k=0

1

(k + 1)(k + x)
,

whereγ is the Euler’s constant.

Proof. See [3]. �

Lemma 2.2. Letx ∈ [0, 1] anda, b be two positive real numbers such thata ≥ b. Then

(2.2) ψ(a+ bx) ≥ ψ(b+ ax).

Proof. It is easy to verify thata+ bx > 0, b+ ax > 0. Then by (2.1) we obtain:

ψ(a+ bx)− ψ(b+ ax) = (a+ bx− 1)
∞∑

k=0

1

(k + 1)(a+ bx+ k)

− (b+ ax− 1)
∞∑

k=0

1

(k + 1)(b+ ax+ k)

=
∞∑

k=0

1

k + 1

(
a+ bx− 1

a+ bx+ k
− b+ ax− 1

b+ ax+ k

)

=
∞∑

k=0

(a− b)(1− x)

(a+ bx+ k)(b+ ax+ k)
≥ 0.

�

Alternative proof of Lemma 2.2.Let x > 0, y > 0 andx ≥ y. Then

ψ(x)− ψ(y) = (x− 1)
∞∑

k=0

1

(k + 1)(x+ k)
− (y − 1)

∞∑
k=0

1

(k + 1)(y + k)

=
∞∑

k=0

1

k + 1

(
x− 1

x+ k
− y − 1

y + k

)

=
∞∑

k=0

(x− y)

(x+ k)(y + k)
≥ 0.

Soψ(x) ≥ ψ(y).
In our case: sincea+ bx > 0, b+ ax > 0 it is easy to verify that forx ∈ [0, 1], a ≥ b > 0 we

havea+ bx ≥ b+ ax, soψ(a+ bx) ≥ ψ(b+ ax). �

Lemma 2.3. Letx ∈ [0, 1], a, b (a ≥ b) be two positive real numbers such thatψ(b+ ax) > 0.
Let c, d be two given positive real numbers such thatbc ≥ ad > 0. Then

(2.3) bcψ(a+ bx)− adψ(b+ ax) ≥ 0.
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Proof. Sinceψ(b+ ax) > 0, by (2.2) it is clear thatψ(a+ bx) > 0. Now, sincebc ≥ ad, using
Lemma 2.2, we have:

bcψ(a+ bx) ≥ adψ(a+ bx) ≥ adψ(b+ ax).

Sobcψ(a+ bx)− adψ(b+ ax) ≥ 0. �

Theorem 2.4.Letf be a function defined by

f(x) =
Γ(a+ bx)c

Γ(b+ ax)d
,

wherex ∈ [0, 1], a ≥ b > 0, c, d are positive real numbers such that:bc ≥ ad > 0 and
ψ(b + ax) > 0. Thenf is an increasing function on[0, 1], and the following double inequality
holds:

Γ(a)c

Γ(b)d
≤ Γ(a+ bx)c

Γ(b+ ax)d
≤ Γ(a+ b)c

Γ(a+ b)d
.

Proof. Let g(x) be a function defined byg(x) = log f(x). Then:

g(x) = c log Γ(a+ bx)− d log Γ(b+ ax).

So

g
′
(x) = bc

Γ
′
(a+ bx)

Γ(a+ bx)
− ad

Γ
′
(b+ ax)

Γ(b+ ax)
= bcψ(a+ bx)− adψ(b+ ax).

Using (2.3), we haveg
′
(x) ≥ 0. It means thatg(x) is increasing on[0, 1]. This implies thatf(x)

is increasing on[0, 1].
So forx ∈ [0, 1] we havef(0) ≤ f(x) ≤ f(1) or

Γ(a)c

Γ(b)d
≤ Γ(a+ bx)c

Γ(b+ ax)d
≤ Γ(a+ b)c

Γ(a+ b)d
.

This concludes the proof of Theorem 2.4. �

In a similar way, it is easy to prove the following lemmas and theorems.

Lemma 2.5. Letx ≥ 1 anda, b be two positive real numbers such thatb ≥ a. Then

ψ(a+ bx) ≥ ψ(b+ ax).

Lemma 2.6. Letx ≥ 1, a, b (b ≥ a) be two positive real numbers such thatψ(b+ ax) > 0 and
c, d be any two given real numbers such thatbc ≥ ad > 0. Then

bcψ(a+ bx)− adψ(b+ ax) ≥ 0.

Theorem 2.7.Letf be a function defined by

f(x) =
Γ(a+ bx)c

Γ(b+ ax)d
,

wherex ≥ 1, b ≥ a > 0, c, d are positive real numbers such thatbc ≥ ad > 0 andψ(b+ ax) >
0. Thenf is an increasing function on[1,+∞).

Lemma 2.8. Letx ∈ [0, 1], a, b (a ≥ b) be two positive real numbers such thatψ(a + bx) < 0
andc, d be any two given real numbers such thatad ≥ bc > 0. Then

bcψ(a+ bx)− adψ(b+ ax) ≥ 0.

Using Lemmas 2.2 and 2.8, and the methods we used in Theorem 2.4, the following theorem
can be proved:
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Theorem 2.9.Letf be a function defined by

f(x) =
Γ(a+ bx)c

Γ(b+ ax)d
,

wherex ∈ [0, 1], a ≥ b > 0, c, d are positive real numbers such thatad ≥ bc > 0 and
ψ(a+ bx) < 0. Thenf is an increasing function on[0, 1].

Lemma 2.10. Let x ≥ 1, a, b (b ≥ a) be two positive real numbers such thatψ(a + bx) < 0
andc, d be any two given real numbers such thatad ≥ bc > 0. Then

bcψ(a+ bx)− adψ(b+ ax) ≥ 0.

Using Lemmas 2.5 and 2.10, and the methods we used in Theorem 2.4, the following theorem
can be proved:

Theorem 2.11.Letf be a function defined by

f(x) =
Γ(a+ bx)c

Γ(b+ ax)d
,

wherex > 1, b ≥ a > 0, c, d are positive real numbers such thatad ≥ bc > 0 andψ(a+ bx) <
0. Thenf is an increasing function on[1,+∞).
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