SOME INEQUALITIES FOR THE GAMMA FUNCTION

ARMEND SH. SHABANI

Department of Mathematics University of Prishtina

Avenue "Mother Theresa", 5 Prishtine

10000, Kosova-UNMIK

EMail: armend_shabani@hotmail.com

Received: 04 May, 2007

Accepted: 15 May, 2007

Communicated by: A. Laforgia

2000 AMS Sub. Class.: 33B15.

Key words: Euler gamma function, Inequalities.

Abstract: In this paper are established some inequalities involving the Euler gamma func-

tion. We use the ideas and methods that were used by J. Sándor in his paper

[2].

Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

Title Page

Contents

44 >>

←

Page 1 of 9

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

3

2 Main Results 4

Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

The Euler gamma function $\Gamma(x)$ is defined for x > 0 by

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt.$$

The Psi or digamma function, the logarithmic derivative of the gamma function is defined by

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}, \quad x > 0.$$

C. Alsina and M.S. Tomás in [1] proved the following double inequality:

Theorem 1.1. For all $x \in [0, 1]$ and all nonnegative integers n, the following double inequality is true:

(1.1)
$$\frac{1}{n!} \le \frac{\Gamma(1+x)^n}{\Gamma(1+nx)} \le 1.$$

Using the series representation of $\psi(x)$, J. Sándor in [2] proved the following generalized result of (1.1):

Theorem 1.2. For all $a \ge 1$ and all $x \in [0, 1]$, one has:

(1.2)
$$\frac{1}{\Gamma(1+a)} \le \frac{\Gamma(1+x)^a}{\Gamma(1+ax)} \le 1.$$

In this paper, using the series representation of $\psi(x)$ and ideas used in [2] we will establish some double inequalities involving the gamma function, "similar" to (1.2).

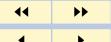
Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

Title Page

Contents



Page 3 of 9

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Main Results

In order to establish the proof of the theorems, we need the following lemmas:

Lemma 2.1. If x > 0, then the digamma function $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ has the following series representation

(2.1)
$$\psi(x) = -\gamma + (x-1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(k+x)},$$

where γ is the Euler's constant.

Proof. See [3].

Lemma 2.2. Let $x \in [0,1]$ and a,b be two positive real numbers such that $a \geq b$. Then

$$(2.2) \psi(a+bx) \ge \psi(b+ax).$$

Proof. It is easy to verify that a + bx > 0, b + ax > 0. Then by (2.1) we obtain:

$$\psi(a+bx) - \psi(b+ax) = (a+bx-1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(a+bx+k)}$$
$$-(b+ax-1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(b+ax+k)}$$
$$= \sum_{k=0}^{\infty} \frac{1}{k+1} \left(\frac{a+bx-1}{a+bx+k} - \frac{b+ax-1}{b+ax+k} \right)$$
$$= \sum_{k=0}^{\infty} \frac{(a-b)(1-x)}{(a+bx+k)(b+ax+k)} \ge 0.$$

Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

Title Page

Contents

Page 4 of 9

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Alternative proof of Lemma 2.2. Let x > 0, y > 0 and $x \ge y$. Then

$$\psi(x) - \psi(y) = (x - 1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(x+k)} - (y - 1) \sum_{k=0}^{\infty} \frac{1}{(k+1)(y+k)}$$
$$= \sum_{k=0}^{\infty} \frac{1}{k+1} \left(\frac{x-1}{x+k} - \frac{y-1}{y+k} \right)$$
$$= \sum_{k=0}^{\infty} \frac{(x-y)}{(x+k)(y+k)} \ge 0.$$

So $\psi(x) \ge \psi(y)$.

In our case: since a+bx>0, b+ax>0 it is easy to verify that for $x\in[0,1], a\geq b>0$ we have $a+bx\geq b+ax$, so $\psi(a+bx)\geq\psi(b+ax)$.

Lemma 2.3. Let $x \in [0,1]$, a,b $(a \ge b)$ be two positive real numbers such that $\psi(b+ax) > 0$. Let c,d be two given positive real numbers such that $bc \ge ad > 0$. Then

$$(2.3) bc\psi(a+bx) - ad\psi(b+ax) \ge 0.$$

Proof. Since $\psi(b+ax)>0$, by (2.2) it is clear that $\psi(a+bx)>0$. Now, since $bc\geq ad$, using Lemma 2.2, we have:

$$bc\psi(a+bx) \ge ad\psi(a+bx) \ge ad\psi(b+ax).$$

So
$$bc\psi(a+bx) - ad\psi(b+ax) \ge 0$$
.

Theorem 2.4. Let f be a function defined by

$$f(x) = \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d},$$

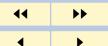
Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

Title Page

Contents



Page 5 of 9

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where $x \in [0,1]$, $a \ge b > 0$, c, d are positive real numbers such that: $bc \ge ad > 0$ and $\psi(b+ax) > 0$. Then f is an increasing function on [0,1], and the following double inequality holds:

$$\frac{\Gamma(a)^c}{\Gamma(b)^d} \le \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d} \le \frac{\Gamma(a+b)^c}{\Gamma(a+b)^d}.$$

Proof. Let g(x) be a function defined by $g(x) = \log f(x)$. Then:

$$g(x) = c \log \Gamma(a + bx) - d \log \Gamma(b + ax).$$

So

$$g'(x) = bc\frac{\Gamma'(a+bx)}{\Gamma(a+bx)} - ad\frac{\Gamma'(b+ax)}{\Gamma(b+ax)} = bc\psi(a+bx) - ad\psi(b+ax).$$

Using (2.3), we have $g'(x) \ge 0$. It means that g(x) is increasing on [0,1]. This implies that f(x) is increasing on [0,1].

So for $x \in [0,1]$ we have $f(0) \le f(x) \le f(1)$ or

$$\frac{\Gamma(a)^c}{\Gamma(b)^d} \le \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d} \le \frac{\Gamma(a+b)^c}{\Gamma(a+b)^d}.$$

This concludes the proof of Theorem 2.4.

In a similar way, it is easy to prove the following lemmas and theorems.

Lemma 2.5. Let $x \ge 1$ and a, b be two positive real numbers such that $b \ge a$. Then

$$\psi(a+bx) \ge \psi(b+ax).$$

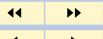
Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

Title Page

Contents



Page 6 of 9

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Lemma 2.6. Let $x \ge 1$, a, b ($b \ge a$) be two positive real numbers such that $\psi(b+ax) > 0$ and c, d be any two given real numbers such that $bc \ge ad > 0$. Then

$$bc\psi(a+bx) - ad\psi(b+ax) \ge 0.$$

Theorem 2.7. Let f be a function defined by

$$f(x) = \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d},$$

where $x \ge 1, b \ge a > 0, c, d$ are positive real numbers such that $bc \ge ad > 0$ and $\psi(b+ax) > 0$. Then f is an increasing function on $[1,+\infty)$.

Lemma 2.8. Let $x \in [0,1]$, a,b $(a \ge b)$ be two positive real numbers such that $\psi(a+bx) < 0$ and c,d be any two given real numbers such that $ad \ge bc > 0$. Then

$$bc\psi(a+bx) - ad\psi(b+ax) \ge 0.$$

Using Lemmas 2.2 and 2.8, and the methods we used in Theorem 2.4, the following theorem can be proved:

Theorem 2.9. Let f be a function defined by

$$f(x) = \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d},$$

where $x \in [0,1]$, $a \ge b > 0$, c,d are positive real numbers such that $ad \ge bc > 0$ and $\psi(a+bx) < 0$. Then f is an increasing function on [0,1].

Lemma 2.10. Let $x \ge 1$, a, b ($b \ge a$) be two positive real numbers such that $\psi(a + bx) < 0$ and c, d be any two given real numbers such that $ad \ge bc > 0$. Then

$$bc\psi(a+bx) - ad\psi(b+ax) \ge 0.$$

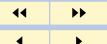
Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

Title Page

Contents



Page 7 of 9

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Using Lemmas 2.5 and 2.10, and the methods we used in Theorem 2.4, the following theorem can be proved:

Theorem 2.11. *Let* f *be a function defined by*

$$f(x) = \frac{\Gamma(a+bx)^c}{\Gamma(b+ax)^d},$$

where $x>1, b\geq a>0, c,d$ are positive real numbers such that $ad\geq bc>0$ and $\psi(a+bx)<0$. Then f is an increasing function on $[1,+\infty)$.

Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

> Go Back Full Screen

> Page 8 of 9

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] C. ALSINA AND M.S. TOMÁS, A geometrical proof of a new inequality for the gamma function, *J. Ineq. Pure Appl. Math.*, **6**(2) (2005), Art. 48. [ONLINE: http://jipam.vu.edu.au/article.php?sid=517].
- [2] J. SÁNDOR, A note on certain inequalities for the gamma function, *J. Ineq. Pure Appl. Math.*, **6**(3) (2005), Art. 61. [ONLINE: http://jipam.vu.edu.au/article.php?sid=534].
- [3] E.T. WHITTAKER AND G.N. WATSON, A Course of Modern Analysis, Camb. Univ. Press, 1996.
- [4] W. RUDIN, *Principles of Mathematical Analysis*, New York, McGraw-Hill, 1976.

Inequalities for the Gamma Function

Armend Sh. Shabani

vol. 8, iss. 2, art. 49, 2007

Title Page

Contents

Page 9 of 9

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756