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1. I NTRODUCTION AND RESULTS

Let C be the open complex plane andD ⊂ C be a domain. A familyF of meromorphic
functions defined inD is said to be normal, in the sense of Montel, if for any sequencefn ∈ F
there exists a subsequencefnj

such thatfnj
converges spherically, locally and uniformly inD

to a meromorphic function or∞.
F is said to be normal at a pointz0 ∈ D if there exists a neighbourhood ofz0 in whichF is

normal. It is well known thatF is normal inD if and only if it is normal at every point ofD.
It is an interesting problem to find out criteria for normality of a family of analytic or

meromorphic functions. In recent years this problem attracted the attention of a number of
researchers worldwide.

In 1969 D. Drasin [5] proved the following normality criterion.

Theorem A. LetF be a family of analytic functions in a domainD anda(6= 0), b be two finite
numbers. If for everyf ∈ F , f ′ − afn − b has no zero thenF is normal, wheren(≥ 3) is an
integer.

Chen-Fang [2] and Ye [21] independently proved thatTheorem Aalso holds forn = 2. A
number of authors {cf. [3, 11, 12, 13, 16, 24]} extendedTheorem Ato a family of meromorphic
functions in a domain. Their results can be combined in the following theorem.
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2 INDRAJIT LAHIRI AND SHYAMALI DEWAN

Theorem B. LetF be a family of meromorphic functions in a domainD anda(6= 0), b be two
finite numbers. If for everyf ∈ F , f ′− afn − b has no zero thenF is normal, wheren(≥ 3) is
an integer.

Li [12], Li [13] and Langley [11] provedTheorem Bfor n ≥ 5, Pang [16] proved forn = 4
and Chen-Fang [3], Zalcman [24] proved forn = 3. Fang-Yuan [6] showed thatTheorem B
does not, in general, hold forn = 2. For the casen = 2 they [6] proved the following result.

Theorem C. LetF be a family of meromorphic functions in a domainD anda(6= 0), b be two
finite numbers. Iff ′−af 2−b has no zero andf has no simple and double pole for everyf ∈ F
thenF is normal.

Fang-Yuan [6] mentioned the following example from which it appears that the condition for
eachf ∈ F not to have any simple and double pole is necessary forTheorem C.

Example 1.1. Let fn(z) = nz(z
√
n − 1)−2 for n = 1, 2, . . . andD : |z| < 1. Then each

fn has only a double pole and a simple zero. Alsof ′n + f 2
n = n(z

√
n − 1)−4 6= 0. Since

f#
n (0) = n→∞ asn→∞, it follows from Marty’s criterion that{fn} is not normal inD.

However, the following example suggests that the restriction on the poles off ∈ F may be
relaxed at the cost of some restriction imposed on the zeros off ∈ F .

Example 1.2. Let fn(z) = nz−2 for n = 3, 4, . . . andD : |z| < 1. Then eachfn has only a
double pole and no simple zero. Also we see thatf ′n + f 2

n = n(n− 2z)z−4 6= 0 in D. Since

f#
n (z) =

2n|z|
|z|2 + n2

≤ 2

n
< 1

in D, it follows from Marty’s criterion that the family{fn} is normal inD.

Now we state the first theorem of the paper.

Theorem 1.1. LetF be a family of meromorphic functions in a domainD such that nof ∈ F
has any simple zero and simple pole. Let

Ef = {z : z ∈ D and f ′(z)− af 2(z) = b},
wherea(6= 0), b are two finite numbers.

If there exists a positive numberM such that for everyf ∈ F , |f(z)| ≤M wheneverz ∈ Ef ,
thenF is normal.

The following examples together withExample 1.1show that the condition ofTheorem 1.1
on the zeros and poles are necessary.

Example 1.3.Let fn(z) = n tannz for n = 1, 2, . . . andD : |z| < π. Thenfn has only simple
zeros and simple poles. Also we see thatf ′n − f 2

n = n2 6= 0. Sincef#
n (0) = n2 → ∞ as

n→∞, by Marty’s criterion the family{fn} is not normal.

Example 1.4. Let fn(z) = (1 + e2nz)−1 for n = 1, 2, . . . andD : |z| < 1. Thenfn has no
simple zero and no multiple pole. Also we see thatf ′n + f 2

n 6= 1. Sincef#
n (0) = 2n

3
→ ∞ as

n→∞, by Marty’s criterion the family{fn} is not normal.

Drasin [18, p. 130] also proved the following normality criterion which involves differential
polynomials.

Theorem D. Let F be a family of analytic functions in a domainD and a0, a1, . . . , ak−1 be
finite constants, wherek is a positive integer. Let

H(f) = f (k) + ak−1f
(k−1) + . . .+ a1f

(1) + a0f.

If for everyf ∈ F
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SOME NORMALITY CRITERIA 3

(i) f has no zero,
(ii) H(f)− 1 has no zero of multiplicity less thank + 2,

thenF is normal.

Recently Fang-Yuan [6] proved thatTheorem Dremains valid even ifH(f) − 1 has only
multiple zeros for everyf ∈ F . In the next theorem we extendTheorem Dto a family of
meromorphic functions which also improves a result of Fang-Yuan [6].

Theorem 1.2.LetF be a family of meromorphic functions in a domainD and

H(f) = f (k) + ak−1f
(k−1) + . . .+ a1f

(1) + a0f,

wherea0, a1, . . . , ak−1 are finite constants andk is a positive integer.
Let

Ef = {z : z ∈ D andz is a simple zero ofH(f)− 1}.
If for everyf ∈ F

(i) f has no pole of multiplicity less than3 + k,
(ii) f has no zero,

(iii) there exists a positive constantM such that|f(z)| ≥M wheneverz ∈ Ef ,
thenF is normal.

The following examples show that conditions (ii) and (iii) ofTheorem 1.2are necessary,
leaving the question of necessity of the condition (i) as open.

Example 1.5.Let fn(z) = nz for n = 2, 3, . . .,D : |z| < 1,H(f) = f ′ − f andM = 1
2
. Then

eachfn has a zero atz = 0 andEfn = {1− 1
n
} for n = 2, 3, . . .. So|f(1− 1

n
)| = n− 1 ≥ M

for n = 2, 3, . . .. Sincef#
n (0) = n → ∞ asn → ∞, by Marty’s criterion the family{fn} is

not normal inD.

Example 1.6.Let fn(z) = enz for n = 2, 3, . . .,D : |z| < 1 andH(f) = f ′ − f . Then eachfn

has no zero andEfn = {z : z ∈ D and (n − 1)enz = 1} for n = 2, 3, . . .. Also we see that
for z ∈ Efn, |fn(z)| = 1

n−1
→ 0 asn → ∞. Sincef#

n (0) = n
2
→ ∞ asn → ∞, by Marty’s

criterion the family{fn} is not normal inD.

In connection toTheorem AChen-Fang [3] proposed the following conjecture:

Conjecture 1.3.LetF be a family of meromorphic functions in a domainD. If for every function
f ∈ F , f (k)−afn−b has no zero inD thenF is normal, wherea(6= 0), b are two finite numbers
andk, n(≥ k + 2) are positive integers.

In response to this conjecture Xu [23] proved the following result.

Theorem E. LetF be a family of meromorphic functions in a domainD anda(6= 0), b be two
finite constants. Ifk andn are positive integers such thatn ≥ k + 2 and for everyf ∈ F

(i) f (k) − afn − b has no zero,
(ii) f has no simple pole,

thenF is normal.

The condition (ii) ofTheorem Ecan be dropped if we choosen ≥ k + 4 (cf. [15, 17]). Also
some improvement ofTheorem Ecan be found in [22]. In the next theorem we investigate the
situation when the power off is negative in condition (i) ofTheorem E.

Theorem 1.4.LetF be a family of meromorphic functions in a domainD anda(6= 0), b be two
finite numbers. Suppose thatEf = {z : z ∈ D and f (k)(z) + af−n(z) = b}, wherek, n(≥ k)
are positive integers.

If for everyf ∈ F
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(i) f has no zero of multiplicity less thank,
(ii) there exists a positive numberM such that for everyf ∈ F , |f(z)| ≥ M whenever

z ∈ Ef ,
thenF is normal.

Following examples show that the conditions ofTheorem 1.4are necessary.

Example 1.7. Let fp(z) = pz2 for p = 1, 2, . . . andD : |z| < 1, n = k = 3, a = 1, b = 0.
Thenfp has only a double zero andEfp = ∅. Sincefp(0) = 0 and forz 6= 0, fp(z) → ∞ as
p→∞, it follows that the family{fp} is not normal.

Example 1.8. Let fp(z) = pz for p = 1, 2, . . . andD : |z| < 1, n = k = 1. Thenfp has
simple zero at the origin and for any two finite numbersa(6= 0), b, Efp = {a/p(b− p)} so that
|fp(z)| → 0 asp → ∞ wheneverz ∈ Efp . Sincef#

p (0) = p → ∞ asp → ∞, by Marty’s
criterion the family{fp} is not normal.

For the standard definitions and notations of the value distribution theory we refer to [8, 18].

2. L EMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [1] Let f be a transcendental meromorphic function of finite order inC. If f has
no simple zero thenf ′ assumes every non-zero finite value infinitely often.

Lemma 2.2. [10] Let f be a nonconstant rational function inC having no simple zero and
simple pole. Thenf ′ assumes every non-zero finite value.

The following lemma can be proved in the line of [9].

Lemma 2.3. Let f be a meromorphic function inC such thatf (k) 6≡ 0. Suppose thatψ =
fnf (k), wherek, n are positive integers. Ifn > k = 2 or n ≥ k ≥ 3 then{

1− 1 + k

n+ k
− n(1 + k)

(n+ k)(n+ k + 1)

}
T (r, ψ) ≤ N(r, a;ψ) + S(r, ψ),

wherea(6= 0,∞) is a constant.

Lemma 2.4. [19] Letf be a transcendental meromorphic function inC andψ = fnf (2), where
n(≥ 2) is an integer. Then

lim sup
r→∞

N(r, a;ψ)

T (r, ψ)
> 0,

wherea(6= 0,∞) is a constant.

The following lemma is a combination of the results of [3, 7, 14].

Lemma 2.5. Let f be a transcendental meromorphic function inC. Thenfnf ′ assumes every
non-zero finite value infinitely often, wheren(≥ 1) is an integer.

Lemma 2.6. Letf be a non-constant rational function inC. Thenfnf ′ assumes every non-zero
finite value.

Proof. Let g = fn+1/(n+ 1). Theng is a nonconstant rational function having no simple zero
and simple pole. So byLemma 2.2g′ = fnf ′ assumes every non-zero finite value. This proves
the lemma. �

Lemma 2.7. Let f be a rational function inC such thatf (2) 6≡ 0. Thenψ = f 2f (2) assumes
every non-zero finite value.
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Proof. Let f = p/q, wherep, q are polynomials of degreem, n respectively andp, q have no
common factor.

Let a be a non-zero finite number. We now consider the following cases.

Case 1.Letm = n. Thenf = α+p1/q, whereα is a constant andp1 is a polynomial of degree
m1 < n.

Now

f ′ =
p′1q − p1q

′

q2
=
p2

q2
, say,

wherep2 andq2 are polynomials of degreem2 = m1 + n − 1 andn2 = 2n. Also we note that
m2 < n2. Hence

f ′′ =
p′2q2 − p2q

′
2

q2
2

=
p3

q3
, say,

wherep3 andq3 are polynomials of degreem3 = m2+n2−1 = m1+3n−2 andn3 = 2n2 = 4n.
Also we see thatm3 < n3.

Let ψ = f 2f (2) = P/Q. ThenP , Q are polynomials of degree2m + m3 and 2n + n3

respectively and2m+m3 < 2n+ n3. Thereforeψ is nonconstant.
Nowψ−a = (P −aQ)/Q and the degree ofP −aQ is equal to the degree ofQ. If ψ−a has

no zero thenP − aQ andQ share0 CM (counting multiplicites) and soP − aQ ≡ AQ, where
A is a constant. Thereforeψ = A− a, which is impossible. Soψ − a must have some zero.

Case 2.Letm = n+ 1. Then

f = αz + β +
p1

q
,

whereα, β are constants andp1 is a polynomial of degreem1 < n.
Nowf ′′ = p3/q3, wherep3 andq3 are polynomials of degreem3 = m1 +3n−2 andn3 = 4n

respectively andm3 < n3.
If ψ = P/Q thenP ,Q are polynomials of degree2m+m3 and2n+ n3 respectively. We see

that2m+m3 = 5n+m1 < 6n = 2n+n3 and soψ is nonconstant. Therefore as Case 1ψ− a
must have some zero.

Case 3.Letm 6= n, n+ 1. Then

f ′ =
pq′ − p′q

q2
=
p4

q4
, say,

wherep4, q4 are polynomials of degreem4 = m + n − 1 and n4 = 2n. Also we note that
m4 6= n4.

Hence

f ′′ =
p′4q4 − p4q

′
4

q2
4

=
p5

q5
, say,

wherep5, q5 are polynmials of degreem5 = m4 + n4 − 1 = m+ 3n− 2 andn5 = 2n4 = 4n.
If ψ = P/Q thenP ,Q are polynomials of degree2m+m5 and2n+n5 respectively. Clearly

2m+m5 6= 2n+n5 because otherwisem = n+2/3, which is impossible. Soψ is nonconstant.
Also we see thatψ − a = (P − aQ)/Q, where the degree ofP − aQ is not less than that ofQ.
If ψ − a has no zero then as per Case 1ψ becomes a constant, which is impossible. Soψ − a
must have some zero. This proves the lemma.

�

Lemma 2.8. Let f be a meromorphic function inC such thatf (k) 6≡ 0 anda(6= 0) be a finite
constant. Thenf (k) + af−n must have some zero, wherek andn(≥ k) are positive integers.
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Proof. First we assume thatk = 1. Then byLemmas 2.5and2.6 we see thatfnf ′ + a must
have some zero. Since a zero offnf ′ + a is not a pole or a zero off , it follows that a zero of
fnf ′ + a is a zero off ′ + af−n.

Now we assume thatk = 2. Then byLemmas 2.3, 2.4and2.7 we see thatfnf (2) + a must
have some zero. As the preceding paragraph a zero offnf (2) + a is a zero off (2) + af−n.

Finally we assume thatk ≥ 3. Then byLemma 2.3fnf (k) + a must have some zero. Since a
zero offnf (k) + a is a zero off (k) + af−n, the lemma is proved. �

Lemma 2.9. Let f be a nonconstant meromorphic function inC such thatf has no zero and
has no pole of multiplicity less than3 + k. Thenf (k) − 1 must have some simple zero, wherek
is a positive integer.

Proof. SinceN(r, f (k)) = N(r, f) + kN(r, f) andm(r, f (k)) ≤ m(r, f) + S(r, f), we get

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f)

≤ T (r, f) +
k

3 + k
N(r, f) + S(r, f)

≤ 3 + 2k

3 + k
T (r, f) + S(r, f).

Sincef has no zero and no pole of multiplicity less than3 + k, we get by Milloux inequality
([8, p. 57])

T (r, f) ≤ N(r, f) +N(r, 1; f (k)) + S(r, f)

≤ 1

3 + k
T (r, f) +N(r, 1; f (k)) + S(r, f).

If possible, suppose thatf (k) − 1 has no simple zero. Then we get from above

T (r, f) ≤ 1

3 + k
T (r, f) +

1

2
N(r, 1; f (k)) + S(r, f)

≤
{

1

3 + k
+

3 + 2k

2(3 + k)

}
T (r, f) + S(r, f)

and so
1

2(3 + k)
T (r, f) ≤ S(r, f),

a contradiction. This proves the lemma. �

Lemma 2.10. [4, 20] LetF be a family of meromorphic functions in a domainD and let the
zeros off be of multiplicity not less thank ( a positive integer) for eachf ∈ F . If F is not
normal atz0 ∈ D then for0 ≤ α < k there exist a sequence of complex numberszj → z0, a
sequence of functionsfj ∈ F , and a sequence of positive numbersρj → 0 such that

gj(ζ) = ρ−α
j fj(zj + ρjζ)

converges spherically and locally uniformly to a nonconstant meromorphic functiong(ζ) in C.
Moreover the order ofg is not greater than two and the zeros ofg are of multiplicity not less
thank.

Note 1. If eachf ∈ F has no zero theng also has no zero and in this case we can chooseα to
be any finite real number.
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3. PROOFS OF THE THEOREMS

In this section we discuss the proofs of the theorems.

Proof of Theorem 1.1.If possible suppose thatF is not normal atz0 ∈ D. ThenF1 = {1/f :
f ∈ F} is not normal atz0 ∈ D. Let α = 1. Then byLemma 2.10there exist a sequence of
functionsfj ∈ F , a sequence of complex numberszj → z0 and a sequence of positive numbers
ρj → 0 such that

gj(ζ) = ρ−1
j f−1

j (zj + ρjζ)

converges spherically and locally uniformly to a nonconstant meromorphic fucntiong(ζ) in C.
Also the order ofg does not exceed two andg has no simple zero. Again by Hurwitz’s theorem
g has no simple pole.

By Lemmas 2.1and2.2we see that there existsζ0 ∈ C such that

(3.1) g′(ζ0) + a = 0.

Sinceζ0 is not a pole ofg, it follows thatgj(ζ) converges uniformly tog(ζ) in some neighbour-
hood ofζ0. We also see that−1

g2(ζ)
{g′(ζ) + a} is the uniform limit ofρ2

j{f ′j − af 2
j − b} in some

neighbourhood ofζ0.
In view of (3.1) and Hurwitz’s theorem there exists a sequenceζj → ζ0 such thatf ′j(ζj) −

af 2
j (ζj)− b = 0. So by the given condition

|gj(ζj)| =
1

ρj

· 1

|fj(zj + ρjζj)|
≥ 1

ρjM
.

Sinceζ0 is not a pole ofg, there exists a positive numberK such that in some neighbourhood
of ζ0 we get|g(ζ)| ≤ K.

Sincegj(ζ) converges uniformly tog(ζ) in some neighbourhood ofζ0, we get for all large
values ofj and for allζ in that neighbourhood ofζ0

|gj(ζ)− g(ζ)| < 1.

Sinceζj → ζ, we get for all large values ofj

K ≥ |g(ζj)| ≥ |gj(ζj)| − |g(ζj)− gj(ζj)| >
1

ρjM
− 1,

which is a contradiction. This proves the theorem. �

Proof of Theorem 1.2.Let α = k. If possible suppose thatF is not normal atz0 ∈ D. Then
by Lemma 2.10andNote 1there exists a sequence of functionsfj ∈ F , a sequence of complex
numberszj → z0 and a sequence of positive numbersρj → 0 such that

gj(ζ) = ρ−k
j fj(zj + ρjζ)

converges spherically and locally uniformly to a nonconstant meromorphic functiong(ζ) in C.
Now by conditions (i) and (ii) and by Hurwitz’s theorem we see thatg(ζ) has no zero and has
no pole of multiplicity less than3 + k.

Now by Lemma 2.9g(k)(ζ)− 1 has a simple zero at a pointζ0 ∈ C. Sinceζ0 is not a pole of
g(ζ), in some neighbourhood ofζ0, gj(ζ) converges uniformly tog(ζ).

Since

g
(k)
j (ζ)− 1 +

k−1∑
i=0

aiρ
k−i
j g

(i)
j (ζ) = f

(k)
j (zj + ρjζ) +

k−1∑
i=0

aif
(i)
j (zj + ρjζ)− 1

= H(fj(zj + ρjζ))− 1

J. Inequal. Pure and Appl. Math., 5(2) Art. 35, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 INDRAJIT LAHIRI AND SHYAMALI DEWAN

and
∑k−1

i=0 aiρ
k−i
j g

(i)
j (ζ) converges uniformly to zero in some neighbourhood ofζ0, it follows

thatg(k)(ζ)− 1 is the uniform limit ofH(fj(zj + ρjζ))− 1.
Sinceζ0 is a simple zero ofg(k)(ζ)−1, by Hurwitz’s theorem there exists a sequenceζj → ζ0

such thatζj is a simple zero ofH(fj(zj +ρjζ))−1. So by the given condition|fj(zj +ρjζj)| ≥
M for all large values ofj.

Hence for all large values ofj we get|gj(ζj)| ≥ M/ρk
j and as the last part of the proof of

Theorem 1.1we arrive at a contradiction. This proves the theorem. �

Proof of Theorem 1.4.Let α = k/(1 + n) < 1. If possible suppose thatF is not normal at
z0 ∈ D. Then byLemma 2.10there exist a sequence of functionsfj ∈ F , a sequence of
complex numberszj → z0 and a sequence of positive numbersρj → 0 such that

gj(ζ) = ρ−α
j fj(zj + ρjζ)

converges spherically and locally uniformly to a nonconstant meromorphic functiong(ζ) in C.
Also g has no zero of multiplicity less thank. Sog(k) 6≡ 0 and byLemma 2.8we get

(3.2) g(k)(ζ0) +
a

gn(ζ0)
= 0

for someζ0 ∈ C.
Clearlyζ0 is neither a zero nor a pole ofg. So in some neighbourhood ofζ0, gj(ζ) converges

uniformly tog(ζ).
Now in some neighbourhood ofζ0 we see thatg(k)(ζ) + ag−n(ζ) is the uniform limit of

g
(k)
j + ag−n

j (ζ)− ρnα
j b = ρ

nk
1+n

j

{
f

(k)
j (zj + ρjζ) + af−n

j (zj + ρjζ)− b
}
.

By (3.2) and Hurwitz’s theorem there exists a sequenceζj → ζ0 such that for all large values of
j

f
(k)
j (zj + ρjζj) + af−n

j (zj + ρjζj) = b.

Therefore for all large values ofj it follows from the given condition|gj(ζj)| ≥ M/ρα
j and

as in the last part of the proof ofTheorem 1.1we arrive at a contradiction. This proves the
theorem. �
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