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ABSTRACT. Inthe paper we prove some sufficient conditions for a family of meromorphic func-
tions to be normal in a domain.
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1. INTRODUCTION AND RESULTS

Let C be the open complex plane afid C C be a domain. A familyF of meromorphic
functions defined iD is said to be normal, in the sense of Montel, if for any sequehce F
there exists a subsequenfg such thatf,,, converges spherically, locally and uniformlyIn
to a meromorphic function axo.

F is said to be normal at a poiag € D if there exists a neighbourhood g&f in which F is
normal. It is well known thaf is normal inD if and only if it is normal at every point ab.

It is an interesting problem to find out criteria for normality of a family of analytic or
meromorphic functions. In recent years this problem attracted the attention of a number of
researchers worldwide.

In 1969 D. Drasinl([5] proved the following normality criterion.

Theorem A. LetF be a family of analytic functions in a domalhanda(+# 0), b be two finite
numbers. If for every € F, f' — af™ — b has no zero thetF is normal, where:(> 3) is an
integer.

Chen-Fang[[2] and Ye [21] independently proved thheorenj falso holds forn = 2. A
number of authors {cf.[3, 11, 12, 113,116,124]} extenddueoreni fto a family of meromorphic
functions in a domain. Their results can be combined in the following theorem.
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2 INDRAJIT LAHIRI AND SHYAMALI DEWAN

Theorem B. Let F be a family of meromorphic functions in a domé@randa(+# 0), b be two
finite numbers. If for every € F, f' — af™ — b has no zero thetf is normal, wherew(> 3) is
an integer.

Li [L2], Li [13] and Langley [11] provedrheorenj Bor » > 5, Pang[[16] proved for, = 4
and Chen-Fand [3], Zalcmah [24] proved for= 3. Fang-Yuanl[6] showed thatheorenj B
does not, in general, hold far= 2. For the case = 2 they [6] proved the following result.

Theorem C. Let F be a family of meromorphic functions in a domd@manda(+# 0), b be two
finite numbers. Iff’ — af? — b has no zero and has no simple and double pole for everg F
thenF is normal.

Fang-Yuan[6] mentioned the following example from which it appears that the condition for
eachf € F not to have any simple and double pole is necessarylieoreny C

Example 1.1.Let f,(z) = nz(zy/n —1)"2forn = 1,2,...andD : |z|] < 1. Then each
f» has only a double pole and a simple zero. Afo+ f2 = n(zy/n — 1)~* # 0. Since
f#(0) =n — oo asn — oo, it follows from Marty’s criterion that f,,} is not normal inD.

However, the following example suggests that the restriction on the polgsaf may be
relaxed at the cost of some restriction imposed on the zer@scof-.

Example 1.2. Let f,(z) = nz"2forn = 3,4,...andD : |z| < 1. Then eachy,, has only a
double pole and no simple zero. Also we see #ffat /> = n(n — 2z)z~* # 0in D. Since
2n|z| 2
)= — 1 <= <1
Ji(2) |z|24+n? ~ n
in D, it follows from Marty’s criterion that the family f,,} is normal inD.
Now we state the first theorem of the paper.

Theorem 1.1. Let F be a family of meromorphic functions in a domd&such that nof € F
has any simple zero and simple pole. Let

E;={z:2€D and f'(z) —af?(z) = b},
wherea(# 0), b are two finite numbers.

If there exists a positive numbéf such that for every € F,
thenF is normal.

f(2)] < M whenever € Ey,

The following examples together witixamplg 1.[ishow that the condition ofheorenj 1]1
on the zeros and poles are necessary.

Example 1.3.Let f,,(z) = ntannz forn =1,2,...andD : |z| < 7. Thenf, has only simple
zeros and simple poles. Also we see tifigt- 2 = n? # 0. Sincef#(0) = n> — oo as
n — oo, by Marty’s criterion the family{ f,,} is not normal.

Example 1.4.Let f,(2) = (1 +¢**) ' forn = 1,2,...andD : |z] < 1. Thenf, has no
simple zero and no multiple pole. Also we see tifiat- f2 # 1. Sincef#(0) = %" — o0 as
n — oo, by Marty’s criterion the family{ f,,} is not normal.

Drasin [18, p. 130] also proved the following normality criterion which involves differential
polynomials.

Theorem D. Let F be a family of analytic functions in a domai and ag, a4, . ..,ax_1 be
finite constants, wherkis a positive integer. Let

H(f) = f® + a1 f5 Y + o+ afY + aof.
If for every f € F
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() f has no zero,
(i) H(f)— 1 has no zero of multiplicity less than+ 2,

thenF is normal.

Recently Fang-Yuari [6] proved th@&heoren]| Dremains valid even iff(f) — 1 has only
multiple zeros for everyf € F. In the next theorem we exteritheoreni Dto a family of
meromorphic functions which also improves a result of Fang-Yuan [6].

Theorem 1.2. Let F be a family of meromorphic functions in a domdrand
H(f) =P+ a i f Y+ +arfY +aof,

whereay, aq, . .., a,_1 are finite constants anklis a positive integer.
Let
E;={z:zeDandzisasimple zero off () — 1}.
If for every f € F
(i) f has no pole of multiplicity less thah+ £,
(i) f has no zero,
(iii) there exists a positive constaht such that f(z)| > M whenever ¢ Ey,

thenF is normal.

The following examples show that conditions (ii) and (iii) ©heoreni 1.2are necessary,
leaving the question of necessity of the condition (i) as open.

Example 1.5.Let f,(z) =nzforn=2,3,...,D: |z| <1, H(f) = f' — fandM = L. Then
eachf, hasazeroat =0andE;, = {1l — t}forn=2,3,....So|f(1-1)|=n—1>M
forn = 2,3,.... Sincef#(0) = n — oo asn — oo, by Marty’s criterion the family{ f,,} is
not normal inD.

Example 1.6.Let f,,(z) =e™ forn=2,3,...,D: |z| <landH(f) = f' — f. Then eacly,
has no zero and’y, = {# : z € D and (n — 1)e"* = 1} forn = 2,3,.... Also we see that
for z € Ey,, |fu(2)] = =55 — 0 asn — oo. Sincef#(0) = 2 — oo asn — oo, by Marty's
criterion the family{ f,.} is not normal inD.

In connection tar heorenj AChen-Fang [3] proposed the following conjecture:

Conjecture 1.3.LetF be a family of meromorphic functions in a domRinif for every function
f € F, f® —af"—bhas no zero irD thenF is normal, where:(# 0), b are two finite numbers
andk, n(> k + 2) are positive integers.

In response to this conjecture Xu [23] proved the following result.
Theorem E. Let F be a family of meromorphic functions in a domd@manda(+# 0), b be two
finite constants. Ik andn are positive integers such that> k + 2 and for everyf € F
(i) f*® —af™ —bhas no zero,
(i) f has no simple pole,
thenF is normal.
The condition (ii) ofTheoreni Fcan be dropped if we choose> £ + 4 (cf. [15,[17]). Also

some improvement ofheoreny Fcan be found in[[22]. In the next theorem we investigate the
situation when the power of is negative in condition (i) oTheorenj E

Theorem 1.4.LetF be a family of meromorphic functions in a domédranda(+# 0), b be two
finite numbers. Suppose tht = {z: z € D and ¥ (2) + af™(z) = b}, wherek, n(> k)
are positive integers.

If foreveryf € F
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() f has no zero of multiplicity less than
(ii) there exists a positive numb@é{ such that for everyf € F,
z e Ef,

thenF is normal.

f(2)] > M whenever

Following examples show that the conditionsTdfeorenj 1 }&re necessary.

Example 1.7.Let f,(z) = pz*forp =1,2,...andD : |z| < I,n =k =3,a=1,b=0.
Then f, has only a double zero anid;, = . Sincef,(0) = 0 and forz # 0, f,(2) — oo as
p — oo, it follows that the family{ f, } is not normal.

Example 1.8. Let f,(2) = pzforp = 1,2,...andD : |z|] < 1,n = k = 1. Thenf, has
simple zero at the origin and for any two finite numbefg 0), b, £y, = {a/p(b — p)} so that
|fp(2)] — 0 asp — co whenever: € Ej,. Sincef#(0) = p — oo asp — oo, by Marty’s
criterion the family{ f, } is not normal.

For the standard definitions and notations of the value distribution theory we refér to [8, 18].

2. LEMMAS
In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [1] Let f be a transcendental meromorphic function of finite orde€inf f has
no simple zero theyi’ assumes every non-zero finite value infinitely often.

Lemma 2.2. [10] Let f be a nonconstant rational function i@ having no simple zero and
simple pole. Therf” assumes every non-zero finite value.

The following lemma can be proved in the line of [9].

Lemma 2.3. Let f be a meromorphic function if® such thatf*) # 0. Suppose that) =
frf*) wherek,n are positive integers. i > k = 2 orn > k > 3 then

1+k n(1+ k) .
{1_ n+k (n+k>(n+k+1)}T(W> < N(r,a;9) + 5(r,9),

wherea(+# 0, o) is a constant.

Lemma 2.4.[19] Let f be a transcendental meromorphic functiordrandy = f™f®, where
n(> 2) is an integer. Then

N(r,a;1)

lim sup W > 0,

wherea(# 0, 00) is a constant.
The following lemma is a combination of the results[dfi[3, 7, 14].

Lemma 2.5. Let f be a transcendental meromorphic functionGn Thenf" f* assumes every
non-zero finite value infinitely often, whet€> 1) is an integer.

Lemma 2.6. Let f be a non-constant rational function . Thenf” f’ assumes every non-zero
finite value.

Proof. Letg = f"™'/(n + 1). Theng is a nonconstant rational function having no simple zero
and simple pole. So byemmd 2.p/ = f" f’ assumes every non-zero finite value. This proves
the lemma. OJ

Lemma 2.7. Let f be a rational function irC such thatf® # 0. Theny) = f2f? assumes
every non-zero finite value.
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Proof. Let f = p/q, wherep, ¢ are polynomials of degree, n respectively ang, ¢ have no
common factor.
Let a be a non-zero finite number. We now consider the following cases.

Case 1.Letm = n. Thenf = o+ p; /¢, wherex is a constant angy is a polynomial of degree
my < n.
Now
f/ — p,lq;Qplql — 127 say,
q qz
wherep, and g, are polynomials of degree, = m; + n — 1 andny, = 2n. Also we note that
me < ny. Hence
P2 —szqé _ P sy
5 as
wherep; andgs are polynomials of degre@s = mo+ns—1 = m;+3n—2andnz = 2n, = 4n.
Also we see thati; < n;.
Lety = f2f® = P/Q. ThenP, @ are polynomials of degre2m + ms and 2n + ns
respectively andm + m3 < 2n + ns. Thereforey is nonconstant.
Now —a = (P —a@Q)/Q and the degree aP — a() is equal to the degree ¢f. If 1) — a has
no zero thenP — a@ and @ share0 CM (counting multiplicites) and s® — a@ = AQ, where
A'is a constant. Therefor¢ = A — a, which is impossible. Sp — a must have some zero.

Case 2.Letmn =n + 1. Then
f=aztpt i

whereq, 3 are constants ang, is a polynomial of degresr; < n.

Now f” = ps/q3, whereps andgs are polynomials of degre@; = m; +3n —2 andns = 4n
respectively anans < ns.

If v = P/Q thenP, @ are polynomials of degre®n + m3 and2n + ng respectively. We see
that2m +mg = 5n +m; < 6n = 2n + n3 and soy is nonconstant. Therefore as Case 1 a
must have some zero.

Case 3.Letm # n,n+ 1. Then
- pd =14 _pa

5 —, say,
q g4
wherep,, q, are polynomials of degreer;, = m +n — 1 andny = 2n. Also we note that
Ty 7é Ty4.
Hence
/ /
f// _ p4Q4 - p4Q4 _ ]E’ Say,

QZ ds
whereps, ¢5 are polynmials of degreeis = my +ny — 1 = m + 3n — 2 andns = 2ny = 4n.

If v = P/Q thenP, () are polynomials of degre&n + m; and2n + n; respectively. Clearly
2m+ms # 2n+ ns because otherwise = n+2/3, which is impossible. S0 is nonconstant.
Also we see that — a = (P — aQ))/Q, where the degree d? — a() is not less than that af.
If » — a has no zero then as per Cgse/lbecomes a constant, which is impossibleySe a
must have some zero. This proves the lemma.

O

Lemma 2.8. Let f be a meromorphic function i such thatf®®) # 0 anda( 0) be a finite
constant. Therf® 4 a f~" must have some zero, whérandn(> k) are positive integers.
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Proof. First we assume that = 1. Then byLemmas 2]&nd[2.6 we see thayf™ /' + a must
have some zero. Since a zerofdff’ + a is not a pole or a zero of, it follows that a zero of
f"f'+aisazerooff +af".

Now we assume thadt = 2. Then byLemmas 2/3, 2land2.7we see thaf” f® + a must
have some zero. As the preceding paragraph a zefdo 5% + a is a zero off® + af .

Finally we assume that > 3. Then byLemm"f(’“) + a must have some zero. Since a
zero of {7 f*) + a is a zero off*) 4+ af~™, the lemma is proved. O

Lemma 2.9. Let f be a nonconstant meromorphic functionGnsuch thatf has no zero and
has no pole of multiplicity less thah+ k. Thenf*) — 1 must have some simple zero, whiere
iS a positive integer.

Proof. SinceN (r, f*)) = N(r, f) + kN (r, f) andm(r, f®) < m(r, f) + S(r, f), we get
T(r, f*Y < T(r, f) + kN(r, f) + S(r, f)

<T(r f)+ 3+ikN(r, )+ 50 1)

T(r, )+ S(r, f).

Since f has no zero and no pole of multiplicity less than- &, we get by Milloux inequality
(I8, p. 57])

T(r,f) < N(r f)+ N(r, 1 f*) + S(r, f)
1

< N . (k) )
< g L0 )+ N1 f9) + 50 f)
If possible, suppose th&t*) — 1 has no simple zero. Then we get from above
1 1
< = Z . £(k)
T(r f) < 570 )+ 5N 1 f9) + 50, )
1 3+ 2k
<
{5+ o IO D+ S0
and so
1
T <
2(3+k> (rhf) —S(rhf)?
a contradiction. This proves the lemma. O

Lemma 2.10. [4, 20] Let F be a family of meromorphic functions in a domdnand let the
zeros off be of multiplicity not less thak ( a positive integer) for eaclf € F. If F is not
normal atz, € D then for0 < a < k there exist a sequence of complex numbers- z,, a
sequence of function§ € F, and a sequence of positive numbgys— 0 such that

9;(Q) = p; “ fi(z; + piC)

converges spherically and locally uniformly to a nonconstant meromorphic fungtionn C.
Moreover the order of; is not greater than two and the zerospére of multiplicity not less
thank.

Note 1. If each f € F has no zero thep also has no zero and in this case we can chaose
be any finite real number.
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3. PROOFS OF THE THEOREMS
In this section we discuss the proofs of the theorems.

Proof of Theorern 1] 1If possible suppose th& is not normal at, € D. ThenF, = {1/f :

f € F}isnotnormal at, € D. Leta = 1. Then byLemmg 2.1Jdhere exist a sequence of
functionsf; € F, a sequence of complex numbers— z, and a sequence of positive numbers
p; — 0 such that

9;(Q) = p; £ (25 + Q)
converges spherically and locally uniformly to a nonconstant meromorphic fugtigrin C.
Also the order ofy does not exceed two anchas no simple zero. Again by Hurwitz’'s theorem
g has no simple pole.
By Lemmas$ 2]aAnd2.2we see that there exisfs € C such that

(3.1) g (Co) +a=0.

Since(, is not a pole of, it follows thatg;(¢) converges uniformly tg(¢) in some neighbour-
hood of¢,. We also see th%t;(—lc){g’(o + a} is the uniform limit of p3{ f; — af? — b} in some
neighbourhood of.

In view of ) and Hurwitz's theorem there exists a sequefice: (, such thatf;(¢;) —
af;(¢;) — b= 0. So by the given condition
1 1 1
9:(G)| = —- >—
Ty iz Gl T M
Since(, is not a pole ofj, there exists a positive numb&r such that in some neighbourhood
of ¢ we get]g(¢)| < K.

Sinceg;(¢) converges uniformly tg(¢) in some neighbourhood @f,, we get for all large
values ofj and for all¢ in that neighbourhood af,

19;(¢) —g(Q)] < 1.

Since¢; — ¢, we get for all large values gf

K > g(¢)] > 19;(¢) = 19(&G) — g5(G)] >

which is a contradiction. This proves the theorem. O

L —1
piM
Proof of Theorem 1]2Let o = k. If possible suppose thef is not normal at, € D. Then

by Lemmd 2.TandNote{ 1there exists a sequence of functigfysc 7, a sequence of complex
numbersz; — z, and a sequence of positive numbgys— 0 such that

95(C) = p; " fi (2 + pi€)
converges spherically and locally uniformly to a nonconstant meromorphic fungijonn C.
Now by conditions (i) and (ii) and by Hurwitz’s theorem we see i@t has no zero and has
no pole of multiplicity less thas + k.
Now by Lemmd 2.9)(¢) — 1 has a simple zero at a poigi € C. Since(, is not a pole of
g(¢), in some neighbourhood @f, ¢;({) converges uniformly tg(¢).
Since
k—1
i k i
—1+Z aipy 95" (Q) = 17 (z + Q)+ D a2+ pi¢) — 1
=0

= H(fj(z; +p;iQ)) — 1
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and Zl 0 a,p] ()(g‘) converges uniformly to zero in some neighbourhoodpfit follows
thatg®) (¢) — 1 is the uniform limit of H (f;(z; + p;¢)) — 1.

Since( is a simple zero o§*)(¢) — 1, by Hurwitz's theorem there exists a sequetce- (,
such that;; is a simple zero off (f;(z; + p;¢)) — 1. So by the given conditiofy;(z; + p;(;)| >
M for all large values of.

Hence for all large values gf we get|g;(¢;)| > M/pj? and as the last part of the proof of
Theorenp 1][e arrive at a contradiction. This proves the theorem. O

Proof of Theorem 1]4Let o« = k/(1 + n) < 1. If possible suppose th& is not normal at
2z € D. Then byLemmd 2.1Ghere exist a sequence of functiofis € F, a sequence of
complex numbers; — z, and a sequence of positive numbgys— 0 such that

9;(C) = p; “ fi(z; + piC)

converges spherically and locally uniformly to a nonconstant meromorphic fungiorin C.
Also g has no zero of multiplicity less than Sog® # 0 and byLemmd 2.8ve get
a
(3.2) G —0
Ao

for some(, € C.

Clearly(, is neither a zero nor a pole gf So in some neighbourhood ¢f, g;({) converges
uniformly to g(¢).

Now in some neighbourhood gf we see thagy®) (¢) + ag~"(¢) is the uniform limit of

_nk
g+ ag;™(Q) = b = p3 " {1z + piC) + af (25 + pi¢) — b}
By (3.2) and Hurwitz’s theorem there exists a sequefce ¢, such that for all large values of
J
F (24 piC) + af; (25 + piG) = b
Therefore for all large values gfit follows from the given conditiorig;(¢;)| > M/p$ and

as in the last part of the proof dtheorenj 1]lwe arrive at a contradiction. This proves the
theorem. 0
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