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ABSTRACT. In this paper, we introduce and study a new class of generalized nonlinear mixed
quasi-variational inequalities involving maximg@imonotone mapping. Using the resolvent op-
erator technique for maximatmonotone mapping, we prove the existence of solution for this

kind of generalized nonlinear multi-valued mixed quasi-variational inequalities without com-
pactness and the convergence of iterative sequences generated by the new algorithm. We also
discuss the convergence and stability of the iterative sequence generated by the perturbed itera-
tive algorithm for solving a class of generalized nonlinear mixed quasi-variational inequalities.
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1. INTRODUCTION

In recent years, variational inequalities have been generalized and extended in many differ-
ent directions using novel and innovative techniques. These have been used to study wider
classes of unrelated problems arising in optimization and control, economics and finance, trans-
portation and electrical networks, operations research and engineering sciences in a general and
unified framework, see [1] +[15], [18] +[27] and the references therein. An important and use-
ful generalization of variational inequality is called the variational inclusion. It is well known
that one of the most important and interesting problems in the theory of variational inequalities
is the development of an efficient and implementable algorithm for solving variational inequal-
ities. For the past years, many numerical methods have been developed for solving various
classes of variational inequalities, such as the projection method and its variant forms, linear
approximation, descent, and Newton’s methods.
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2 MAO-MING JIN

Recently, Huang and Fang [10] introduced a new class of maxjrmabnotone mappings
and proved the Lipschitz continuity of the resolvent operator for maxiyrabnotone map-
pings in Hilbert spaces. They also introduced and studied a new class of generalized variational
inclusions involving maximah-monotone mappings and constructed a new algorithm for solv-
ing this class of generalized variational inclusions by using the resolvent operator technique for
maximaln-monotone mappings.

The main purpose of this paper is to introduce and study a new class of generalized nonlinear
mixed quasi-variational inequalities involving maximyaionotone mappings. Using the resol-
vent operator technique for maximaimonotone mappings, we prove the existence of a solution
for this kind of generalized nonlinear multivalued mixed quasi-variational inequalities without
compactness and the convergence of iterative sequences generated by the new algorithm. We
also discuss the convergence and stability of the iterative sequence generated by the perturbed
iterative algorithm for solving a class of generalized nonlinear mixed quasi-variational inequal-
ities. The results shown in this paper improve and extend the previously known results in this
area.

2. PRELIMINARIES

Let H be a real Hilbert space endowed with a ndfri and an inner produgt, -), respec-
tively. Let 2" CB(H), andH(-,-) denote the family of all the nonempty subsetsFbf the
family of all the nonempty closed bounded subset&oaind the Hausdorff metric ofi B(H ),
respectively. Let), N : H x H — H be two single-valued mappings with two variables and
g : H — H be a single-valued mapping. L&t7,G : H — CB(H) be three multivalued
mappings and/ : H x H — 2! be a multivalued mapping such that for each H, M(-, 1)
is maximaln-monotone withRan(g) (Y Dom M(-,t) # (. Now we consider the following
problem:

Findu € H,z € Su,y € Tu, andz € Gu such thay(u) € Dom(M(-, z)) and

(2.1) 0€ N(z,y) + M(g(u),2)).
Problem|(2.11) is called a generalized nonlinear multivalued mixed quasi-variational inequality.
Some special cases of the problgm](2.1):
(1) If n(z,y) = x — y for all z,y in H andG is the identity mapping, then problein (2.1)

reduces to finding € H, x € Su, y € Tuw such thay(u) € Dom(M(-,«)) and

(2.2) 0€ N(z,y) + M(g(u),u).
Problem [(2.R) is called the multivalued quasi-variational inclusion, which was studied
by Noor [18] — [22].

(Il) If S, T are single-valued mappings a6ds the identity mapping, then problefn (.1) is
equivalent to finding. € H such thay(u) € Dom(M(-,«)) and

(2.3) 0€ N(Su,Tu) + M(g(u),u)).

Problem|[(2.B) is called a generalized nonlinear mixed quasi-variational inequality.
(M) If M(-,t) = 0p(-,t), wherep : Hx H— R|J{+oo} is a functional such that for each
fixedtin H, o(-,t) : H — R|J{+o0o} is lower semicontinuous angsubdifferentiable
on H, anddy(-, t) denotes they-subdifferential ofy(-, t), then problem[(2]1) reduces
to the following problem:
Findu € H,z € Su andy € Tu such that

(2.4) (N(@,y),n(v,9(u)) = ¢(g(u), z) — (v, 2)
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for all v in H, which which appears to be a new one. Furthermor®(if,y) = = — y
forall x,y in H, S, T are single-valued mappings andis the identity mapping, then
problem [2.%) reduces to the general quasi-variational-like inclusion considered by Ding
and Luo [3].
(IV) If S,T : H— H are single-valued mappingsgis an identity mapping\V(z,y) =z —y
forall z,yin H,andM (-,t) = dp forall t in H, wheredy denotes thg-subdifferential
of a proper convex lower semicontinuous functien H — R|J{+oc}, then problem
(2.7) reduces to the following problem:
Findu € H such that

(2.5) (Su —Tu,n(v,u)) > o(u) — ¢(v)

for all v in H, which is called the strongly nonlinear variational-like inclusion problem
considered by Lee et al. [15].

(V) If G is an identity mappingy(z,y) = x —y andM (-, t) = dp for eacht € H, where
¢ : H — R|J{+oc} is a proper convex lower semicontinuous function /dnand
g(H) (N Dom(dp(-,t)) # 0 for eacht € H anddy(-,t) denotes the subdifferential of
functiony(-, ¢), then problem[(2]1) reduces to findinge H,z € Su andy € Tw such
thatg(u) € Dom(d¢(+,t)) and

(2.6) (N(z,y),v —g(u)) > p(g(u)) — p(v)

for all v in H. Furthermore, ifN(z,y) = x — y for all z,y in H, andg is an identity
mapping, then the probler (2.6) is equivalent to the set-valued nonlinear generalized
variational inclusion considered by Huang [6] and, in turn, includes the variational in-
clusions studied by Hassouni and Moudafi [5] and Kazmi [14] as special cases.

For a suitable choice aV,n, M, S, T, G, g, and for the spacé/, one can obtain a number
of known and new classes of variational inclusions, variational inequalities, and corresponding
optimization problems from the general set-valued variational inclusion proplem (2.1). Further-
more, these types of variational inclusions enable us to study many important problems arising
in the mathematical, physical, and engineering sciences in a general and unified framework.

Definition 2.1. Let 7" be a selfmap of{, z, € H and letz,,;, = f(T,z,) define an iteration
procedure which yields a sequence of poifits}° , in H. Suppose thafx € H : Tz = x} #
§ and{x,}>° , converges to a fixed point of T'. Let{y,} C H andlete,, = ||y,+1—f (T, yn)|l-
If lim ¢, = 0 implies that lim y, = z*, then the iteration procedure defined by,;, =

n—0o0

f(T,x,) is said to bél’-stable or stable with respect1a

Lemma 2.1([16]). Let{a,}, {b.}, and{c,} be three sequences of nonnegative numbers satis-
fying the following conditions: there existg such that

An+1 S (1 - tn)an + bntn + Cn,

for all n > ny, wheret,, € [0,1], > t, = oo, lim b, = 0and) > ¢, < co. Then

lim a, = 0.

Definition 2.2. A mappingg : H — H is said to be
() «a-strongly monotone if there exists a constant 0 such that

<9(U1) — g(u2),u; — U2> > a||u1 - U2”27

forallu; € H,i=1,2;
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(i) B-Lipschitz continuous if there exists a constgnt- 0 such that
lg(u1) = g(us)|| < Bllur — uall,
forallu; e H,i =1,2.
Definition 2.3. A multivalued mappings : H — C'B(H) is said to be
(i) H-Lipschitz continuous if there exists a constant 0 such that
H(Su1, Suz) < vlfur — ualf,

forallu, € H,i =1,2;
(i) strongly monotone with respect to the first argumentaf, ) : H x H — H, if there
exists a constant > 0 such that

<N($17 ) - N(x% ')7“1 - U2> Z IMHUI - U2H2,
forall z; € Su;,u; € H,i=1,2.

Definition 2.4. AmappingN(-,-) : Hx H — H is said to be Lipschitz continuous with respect
to the first argument if there exists a constant 0 such that

[N (ug, ) = N(ug,-)|| < v|uy — usl,
forallu; € H,i=1,2.

In a similar way, we can define Lipschitz continuity &f(-,-) with respect to the second
argument.
Definition 2.5. Letn : H x H — H be a single-valued mapping. A multivalued mapping
M : H — 2" is said to be
(i) n-monotone if

(x —y,n(u,v)) >0 forallu,v € H,x € Mu,y € Mu;
(ii) strictly n-monotone if
(x —y,n(u,v)) >0 forallu,v € H,x € Mu,y € Mv

and equality holds if and only if = v;
(iii) strongly n-monotone if there exists a constant- 0 such that

(x —y,m(u,v)) > rl|u— v forall u,v € H,x € Mu,y € Mu;
(iv) maximaln-monotone ifM is n-monotone and’ + \M)(H) = H forany A > 0.

Remark 2.2.

(1) If n(u,v) = u — v for all u,v in H, then (i)-(iv) of Definition[2.5 reduce to the classi-
cal definitions of monotonicity, strict monotonicity, strong monotonicity, and maximal
monotonicity, respectively.

(2) Huang and Fang gave one example of maxipaalonotone mapping in [1.0].

Lemma 2.3([10]). Letn : H x H — H be strictly monotone andl/ : H — 2 be a maximal
n-monotone mapping. Then the following conclusions hold:
(1) (z—y,n(u,v)) > 0forall (v,y) € Graph(M ) implies that(u, z) € Graph(M ), where
Graph(M) = {(u,z) € H x H : © € Mu};
(2) the inverse mapping/ + AM)~! is single-valued for any > 0.
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Based on Lemmia 2.3, we can define the resolvent operator for a mayimahotone map-
ping M as follows:

(2.7) JM(z) =T +pM)"'(z) forallz e H,
wherep > 0 isaconstantang : H x H — H is a strictly monotone mapping.

Lemma 2.4([10]). Letn : H x H — H be strongly monotone and Lipschtiz continuous with
constant® > 0 andr > 0, respectively. Led/ : H — 2% be a maximah-monotone mapping.
Then the resolvent operatdij” for M is Lipschitz continuous with constants, i.e.,

1M () — M ()| < %Hu —v| forallu,v € H.

3. ITERATIVE ALGORITHMS
We first transfer probleny (2.1) into a fixed point problem.

Lemma 3.1. For givenu € H, x € Su,y € Tu, andz € Gu, (u,z,y, z) is a solution of the
problem [(2.1) if and only if

(3.1) g(u) = J10 (g(u) = pN(z,y)),
whereJ) %) = (I + pM(-, 2))~' andp > 0 is a constant.
Proof. This directly follows from the definition oﬁ,ﬁ”("“). O]
Remark 3.2. Equality (3.1) can be written as
u= (1= ANu+Au— g(u) + 110 (g(u) = pN (2, y))],

where() < A < 1is a parameter ang > 0 is a constant. This fixed point formulation enables
us to suggest the following iterative algorithm for probl¢m}(2.1) as follows:

Algorithm 3.1. Letn, N : H x H — H,g : H — H be single-valued mappings asdT’, G :
H — CB(H) be multivalued mappings. Let/ : H x H — 2% be such that for each fixed
te H,M(-,t): H— 2" is a maximal-monotone mapping satisfyingu) € Dom(M(-, z)).
For given\ € [0,1], ug € H, xg € Sug, yo € Tup andzy € Guy, let
ur = (1= Ao + A [ug = g(uo) + J)"*) (g(ug) — pN (20, 0))] -
By Nadler [17], there exist; € Suq, y; € Tu; andz; € Gu; such that
[0 — @1l < (1 + 1)H(Suo, Sua),
lyo — |l < (14 D)H(Tuo, Tur),
||Z() - Zl” S (]_ + 1)H(GU,O, Gul)
Let
uy = (1 = ANug + A [Ul —g(u1) + Jy("zl)@(%) - PN(l’byl))] .
By induction, we can obtain sequendes, }, {x.}, {v.} and{z,} satisfying

Unt1 = (1 - )‘)un + A [un - g(un) + Jéw.’zn)(g(un) - pN(Im yn))} )

(3.2) Tp € Sy,  ||Tn — Tual] < (14 (14 n)"HH(Sup, Stny1),
Yn € Tum ||yn - yn—f—l“ S (1 + (1 + n)il)H(TUm Tun+1)7
Zn € gUnp, ||2n - Zn-‘,—l” S (1 + (1 + n)il)H(Guna Gun+1)7

forn=1,2,3,...,where0 < A\ < 1andp > 0 are both constants.

Now we construct a new pertured iterative algorithm for solving the generalized nonlinear
mixed quasi-variational inequality (2.3) as follows:
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Algorithm 3.2. Letn, N : H x H — H andS,T : H — H be single-valued mappings. Let
M : H x H — 2 be such that for each fixede H, M(-,t) : H — 2 is a maximaly-
monotone mapping satisfyindu) € Dom(M (-, w)). For givenu, € H, the perturbed iterative
sequencé€u,, } is defined by

Upt1 = (1 — ap)uy, + aplv, — g(vn) + J,],w("v”)(g(vn) — pN(Sv,, Tv,))] + anen,
(3.3)

forn =0,1,2,..., where{e,} and{f,} are two sequences of the elementsgbintroduced
to take into account possible inexact computation and the sequéagés{,} satisfy the
following conditions:

0<ay, B, <1(n>0), and Zan:oo.
n=0

Let {y,} be any sequence if and defing(e, } by

;

Yn+1 — {(1 - an)yn + o [xn - g(mn)
37 (gn) = PN (S Twa))| + tnen

€p =

‘ I

\ %mz(l—-@ﬁyn+%%[ul—ng)+wEV“%79@m)—pAKS%uT%Jﬂ-+ﬁmh,

forn=0,1,2,....

(3.4)

4. MAIN RESULTS

In this section, we first prove the existence of a solution of prollem (2.1) and the convergence
of an iterative sequence generated by Algorifhn 3.1.

Theorem 4.1.Letn : H x H — H be strongly monotone and Lipschitz continuous with
constants) and 7, respectively. Leb,T,G : H — CB(H) be H-Lipschitz continuous with
constantsy, 3, v, respectivelyy : H — H beu-Lipschitz continuous ang-strongly monotone.
LetN : Hx H — H be Lipschitz continuous with respect to the first and second arguments with
constantg and(, respectively, and : H — C'B(H) be strongly monotone with respect to the
first argument ofV (-, -) with constant. LetM : H x H — 2 be a multivalued mapping such
that for each fixed € H, M(-,t) is maximalp-monotone. Suppose that there exist constants
p > 0andk > 0 such that for each,y, z € H,

(4.1) [TV CD (2) — TV ()| < Kz -yl

and

VIrr—8(1-h)(BI?—(£2a?—(262) (12 —62(1-h)2)
T(€2a7-C257) ’

( _ r=5(1=h)¢B
P 2@a=0p7)

(4.2) > 61— h)CB + /(202 — (20?)(12 — 82(1 — h)?), Ea > (5,

( h=(1+6r)/1—=2v+pu?+ Ky, pr¢ < (1 —h), h<]l.

Then the iterative sequencés, }, {z,}, {y,} and{z,} generated by Algorithin 3.1 converge
strongly tou*, z*, y* andz*, respectively andu*, z*, y*, z*) is a solution of problenf (21).
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Proof. It follows from (3.2), [4.1) and Lemmnja 3.4 that

[
= |1 = M) — 1) + At — trnes — (9(un) = (1))

+,1C (g(un) = pN (20, 9a)) = Ty 2 (g(un1) = pN (201, 1)] |
< (1= Nt = thpea | + Aty = -1 = (9(ts2) = g())]

+ AL (g(un) = pN (20, 4n)) = T (g(un1) = PN (201, Yn1)) ||

+ A }|Jé\4(”zn)(9(un—1) — PN (2p—1,Yn-1))

— I (g 1) = pN (@1, o)) |

< (1= Mt = thnea | + Al = -1 — (g(t) = glttn-))]

+ A5 llg(n) = 9tn-1) = PV @y 9) = N (@t g1 )|+ A2 = 20

< (1= Nt =t + A (14 5) 1t = 1 = (9(10) = glatn0)) |

T
+ )‘g”uﬂ — Up—1 — p(N<xn7 yn) - N(.’Kn,l, yn>>H
T
(43) + )‘ngN(*xnflayn) - N(xnfla ynfl)H + )\HHZn - anlH-

Sincey is strongly monotone and Lipschitz continuous, we obtain

= -1 = (g(un) — g(utn—1))II*

= Jlun = wnal* = 2w = w1, 9(n) = 9(un—1)) + llg(un) — glun—)|I*
(4.4) < (1 =20 + 1) |Jug — un—1]|*
SinceS is H-Lipschitz continuous and strongly monotone with respect to the first argument of
N(-,-) andN is Lipschitz continuous with respect to the first argument, we have

[tn = tn—1 = p(N (T, yn) — N(xn—lvyn))Hz
= ||un - un—1||2 - 2P<Un — Up-1, N(xn7yn) - N<xn—17 yn))
+ PN (@0, yn) = N(@n-1,9a)|I°

(4.5) < (1=2pr + P21 +n D2 ||up — un_1]|*.

Further, sincél’, G are’H-Lipschitz continuous andV is Lipschitz continuous with respect to
the second argument, we get

4.6)  [IN(@a-1,4n) = N(@a-1:Yn-1)ll < Clyn — vl < CBA+n" ) — wnall,
A7)z = zaall < v+ 07 Hlun — wnal-

By (4.3) — [4.7), we obtain
tn — tn_1]] < (T =X+ A1+ 7611 =20+ p2
+ATOTIN/1 = 2pr + p2€2(1 +n1)2a2
+ X8 CBA+ 0T + Aey(1T+n7h)

= (1= A+ My + At (p)lun — un—1|
(4.8) = O ||t — wn—1][,
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where

B = (1+76 )1 =20+ p2 +ry(14+n71),
ta(p) = 70711 = 2pr 4+ p2€2(1 + n—1)2a2 4 pro~'¢B(1+n"") and
0, =1— X+ A, + Aty (p).

Lettingd = 1 — A + Ak + At(p), where

h=1+7YV1—-20+p2+ky and t(p) =71"1\/1—2pr + p22a2 + pré (S,

we have that,, — h, ¢,(p) — t(p) andd,, — 6 asn — oc. It follows from condition|(4.2) that
9 < 1. Henced,, < 1 for n sufficiently large. Therefore] (4.8) implies thfi, } is a Cauchy
sequence itf and so we can assume that— u* € H asn — oo. By the Lipschitz continuity
of S, T andG we obtain

2 = 2naall < (14 (1 +0) " )H(Stn, Stn—1) < oL+ (1+1) ") [Jun — ],
9 = ynall < (L4 (14 n) ) H(Ttn, Tun-1) < B+ (1+n0)7)|un — wnall,
120 = za-all < (14 (1 +70) " YH(Gun, Gui—1) < (14 (14 1)) [Jun — ol

It follows that {z,},{v.} and{z,} are also Cauchy sequencesfih We can assume that
r, — x*, y, — y* andz, — z*, respectively. Note that for,, € Su,,, we have
d(z*, Su™) < ||z* — x| + d(zn, Su*)
< ||z* — x| + H(Sup, Su*)
< Jla* = 2l + aflun — u*| =0,

asn — oo. Hence we must have* € Su*. Similarly, we can show thaj* € Tw* and
z* € Gu*. From

Ung1 = (L= Nty + A [t — glun) + I (g(un) = pN (20, yn))]
it follows that
g(u”) = IO (g(u) — pN (2", y")).
By Lemmg 3.1{u*, z*, y*, z*) is a solution of problenf (2} 1). This completes the proof. O

Remark 4.2. For an appropriate and suitable choice of the mappingé, S, T, G, g, M and
the spacd{, we can obtain several known resultslin [1], [8], [5] + [8].[14],/[18] =I[22],/[24] —
[26] as special cases of Theorem|4.1.

Now we prove the convergence and stability of the iterative sequence generated by the Algo-
rithm[3.2.

Theorem 4.3.Letn : H x H — H be strongly monotone and Lipschitz continuous with
constantsy and 7, respectively. Let,T : H — H be Lipschitz continuous with constants

a, 3, respectivelyg : H — H be u-Lipschitz continuous and-strongly monotone. LeV :

H x H — H be Lipschitz continuous with respect to the first and second arguments with
constants and(, respectively, and : H — H be strongly monotone with respect to the first
argument ofV (-, -) with constant-. LetM : H x H — 2" be a multivalued mapping such that
for each fixed € H, M(-,t) is maximaly-monotone. Suppose that there exist constants)

andx > 0 such that for eachr, y, = € H,

(4.9) [ 710 (2) = S0 ()| < wlla —yll,
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and
(| eresems| _ \/r—e(-h)CBP (a2 R (32 (1-h)?)
T(£2a2_<262) T(£2a2_c2ﬁ2) 9
(4.10) _ 202 — C232) (72 — 02(1 — h)2
7> 0(1 = h)(B + /(22 — (20%)(72 = 0*(1 = h)?),  &a > (B,
( h=(0+dr /1 =20+ pu?2+k, pr(B<6(1—h), h<l.

If lim ||e,]| = 0, lim ||f,] = 0, then

(I) The sequencéu,} defined by Algorithnj 3]2 converges strongly to the unique solution

u* of problem [2.8).
() If 3572 €, < oo, then lim y,, = u*.

n—oo

(ty 1 hm Y = u*, then lim ¢, = 0.

n—oo

Proof. (1) It follows from Theorenj 4.]L that there exist$ € H which is a solution of problem

(2.3) and so
(4.11) g(u) = I (g(u) = pN(Su*, Tu)).
From (4.9),[(4.1}1) and Algorithin 3.2, it follows that
[

= [ = ) = ) = @ o = 0 = (g(0n) = g(u))

+ I (g(0,) = pN (Svn, Tv)

= M gu) = pN(Su, Tu))| + anen
< (1= ap)flun =l + anfon = = (g(va) = g(u?))|| + anllen]
T (g(0) = PN (Sva, Tn)) = JAC) (g () = pN(Su”, Tu))|

+ ay

+a, |1 (g(u*) — pN(Su®, Tu)) — T30 (g(w*) — pN (Su*, Tu)) ||
< (1= an)[|un — u'|| + anflvn — u* = (g(vn) — g(u”))|| + anlleal
7— * * * *
+anzllg(va) = g(u?) = p(N (Svn, Twn) = N(Su”, Tu"))[| + anrfJon — ]|

* T * *
< (1= an) i — | + e (14 5) flun =" = (9(00) = g(u)l| + el

Dljon — w — p(N(Svn, Tvp) — N(Su*, Tvy))||

+ozn5|

(4.12) + oznpgﬂN(Su*, Tuv,) — N(Su*, Tu")|| + ants||vn — u*|.

By the Lipschitz continuity ofV, S, T', g and the strong monotonicity ¢f andg, we obtain
(4.13) [on = u™ = (g(va) = (NI < (1 = 20+ p®)[Jvn — u”[|?,

(4.14)  |jv, —u* — p(N(Svy, Tv,) — N(Su*, Tv,))||* < (1 —2pr + p*2a?)||Jv, — u*|?,
(4.15) IN(Su*, Tv,) — N(Su*, Tu"))|| < (B|vn — u”|.

It follows from (4.12) —[(4.1p) that

(4.16) [t g1 — u*|| < (1 = an)l[un — 7| + Oow[[on — || + am|lenl],
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where

0=r+(1+76 )1 =20+ p2+76"/1 = 2pr + p2€2a2 + pr6~ (B
Similarly, we have
(4.17) [vn — u*|| < (1= Bu)llun — u*[| + 08nllun — w|| + Bull full-
From (4.16) and (4.17), we have

[tngr — | < [1—=an(1 = 0)(1+05:)llun — u*|| + anfubl[ full + anllenl
Condition [4.1D) implies thal < 6 < 1, and so
(4.18) [tner —u*|| <1 — an(l = 0)]||un — u*|| + (1 — 0)d,,

whered,, = (B,0]|f.]| + llenl)(1 — )™t — 0, asn — oo. It follows from (4.18) and Lemma
2.1 thatu,, — u* asn — oc.

Now we prove that.* is a unique solution of problerfi (2.3). In fact.ifis also a solution of
problem (2.8), then

g(w) = 1" (g(u) — pN(Su, Tu)),
and, as the proof of (4.16), we have
[u” = ull < Ollu” =],

where( < ¢ < 1 and sou* = u. This completes the proof of Conclusion (I).
Next we prove Conclusion (Il). Using (3.4) we obtain

[Ynt1 — ||
< g = {1 = an)yn + an | 20 — g(z2)
+ J,ﬁw("“)(g(xn) — pN(an,Twn))} + anen}H
-+ H(l — ) Yn + o [T, — g(z)
+ Jy("z")(g(xn) — pN(Szn, Txy))] + e, — '
(4.19) = ||(1 = )y + [z — g(z)
+ J/],V[("x")(g(xn) — pN(an,Txn))] + ape, — u*” + €.
As the proof of inequality| (4.18), we have
(4.20) |[(1 = c)yn + i [0 — g(zn) + Jy("m")(g(xn) — pN(Szy, Txy))] + ane, — u'
< (T =an(l=0)|lyn — w'[| + an(l — 0)d,.

It follows from (4.19) and[(4.20) that
(4.21) [Yyn1 =@ < (1 = an(l = O))llyn — u’[| + n(1 = O)dn + €.
Since}"> e, < 00, d, — 0, andd_ " o, < oco. It follows that [4.21) and Lemnia 3.1 that

lim gy, = u*.
n—oo

Now we prove Conclusion (lll). Suppose thhtn y,, = u*. Then we have

en = ||yt — (1 = an)yn + [ 2n
—g(x,) + Jéw("””")(g(mn) — pN(Szy, Tx,))] + aney||
< yngr = )| + || (1 = an)yn + o [2n
— g(z,) + Jy("x”)(g(mn) — pN(Sz,, Txy,))] + e, — u*
<y — 'l + (1 = (1 = 0)l[yn — v + an(l = O)dr, — 0

J. Inequal. Pure and Appl. Math?(3) Art. 114, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MIXED QUASI-VARIATIONAL INEQUALITIES 11

asn — oo. This completes the proof. 0J
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