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ABSTRACT. Let DαP (z) denote the polar derivative of a polynomialP (z) of degreen with
respect to real or complex numberα. If P (z) does not vanish in|z| < k, k ≥ 1, then it has been
proved that for|α| ≥ 1 andp > 0,

‖DαP‖p ≤

(
|α|+ k

‖k + z‖p

)
‖P‖p .

An analogous result for the class of polynomials having no zero in|z| > k, k ≤ 1 is also
obtained.
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1. I NTRODUCTION AND STATEMENT OF RESULTS

Let Pn(z) denote the space of all complex polynomialsP (z) of degreen. ForP ∈ Pn, define

‖P‖p :=

{
1

2π

∫ 2π

0

∣∣P (eiθ)
∣∣p} 1

p

, 1 ≤ p < ∞,

and
‖P‖∞ := max

|z|=1
|P (z)| .

If P ∈ Pn, then

(1.1) ‖P ′‖∞ ≤ n ‖P‖∞
and

(1.2) ‖P ′‖p ≤ n‖P‖p.

Inequality (1.1) is a well-known result of S. Bernstein (see [12] or [15]), whereas inequality
(1.2) is due to Zygmund [16]. Arestov [1] proved that the inequality (1.2) remains true for
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2 NISAR A. RATHER

0 < p < 1 as well. Equality in (1.1) and (1.2) holds forP (z) = azn, a 6= 0. If we let p →∞ in
(1.2), we get inequality (1.1).

If we restrict ourselves to the class of polynomialsP ∈ Pn having no zero in|z| < 1, then
both the inequalities (1.1) and (1.2) can be improved. In fact, ifP ∈ Pn andP (z) 6= 0 for
|z| < 1, then (1.1) and (1.2) can be, respectively, replaced by

(1.3) ‖P ′‖∞ ≤ n

2
‖P‖∞

and

(1.4) ‖P ′‖p ≤
n

‖1 + z‖p

‖P‖p , p ≥ 1.

Inequality (1.3) was conjectured by P. Erdös and later verified by P. D. Lax [10] whereas the
inequality (1.4) was discovered by De Bruijn [5]. Rahman and Schmeisser [13] proved that the
inequality (1.4) remains true for0 < p < 1 as well. Both the estimates are sharp and equality
in (1.3) and (1.4) holds forP (z) = azn + b, |a| = |b| .

Malik [11] generalized inequality (1.3) by proving that ifP ∈ Pn andP (z) does not vanish
in |z| < k wherek ≥ 1, then

(1.5) ‖P ′‖∞ ≤ n

1 + k
‖P‖∞ .

Govil and Rahman [8] extended inequality (1.5) to theLp-norm by proving that ifP ∈ Pn

andP (z) 6= 0 for |z| < k wherek ≥ 1, then

(1.6) ‖P ′‖p ≤
n

‖k + z‖p

‖P‖p , p ≥ 1.

It was shown by Gardner and Weems [7] and independently by Rather [14] that the inequality
(1.6) remains true for0 < p < 1 as well.

Let DαP (z) denote the polar derivative of polynomialP (z) of degreen with respect to a real
or complex numberα. Then

DαP (z) = nP (z) + (α− z)P ′(z).

PolynomialDαP (z) is of degree at mostn − 1. Furthermore, the polar derivativeDαP (z)
generalizes the ordinary derivativeP ′(z) in the sense that

lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect toz for |z| ≤ R,R > 0.
A. Aziz [2] extended inequalities (1.1) and (1.3) to the polar derivative of a polynomial and

proved that ifP ∈ Pn, then for every complex numberα with |α| ≥ 1,

(1.7) ‖DαP‖∞ ≤ n |α| ‖P‖∞
and ifP ∈ Pn andP (z) 6= 0 for |z| < 1, then for every complex numberα with |α| ≥ 1,

(1.8) ‖DαP‖∞ ≤ n

2
(|α|+ 1) ‖P‖∞ .

Both the inequalities (1.7) and (1.8) are sharp. If we divide both sides of (1.7) and (1.8) by|α|
and let|α| → ∞, we get inequalities (1.1) and (1.3) respectively.

A. Aziz [2] also considered the class of polynomialsP ∈ Pn having no zero in|z| < k and
proved that ifP ∈ Pn andP (z) 6= 0 for |z| < k wherek ≥ 1, then for every complex number
α with |α| ≥ 1,

(1.9) ‖DαP‖∞ ≤ n

(
|α|+ k

1 + k

)
‖P‖∞ .

J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 103, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


Lp INEQUALITIES FOR THEPOLAR DERIVATIVE 3

The result is best possible and equality in (1.9) holds forP (z) = (z + k)n whereα is any real
number withα ≥ 1.

It is natural to seek anLp - norm analog of the inequality (1.7). In view of theLp - norm
extension (1.2) of inequality (1.1), one would expect that ifP ∈ Pn, then

(1.10) ‖DαP‖p ≤ n |α| ‖P‖p ,

is theLp - norm extension of (1.7) analogous to (1.2). Unfortunately, inequality (1.10) is not,
in general, true for every complex numberα. To see this, we take in particularp = 2, P (z) =
(1− iz)n andα = iδ whereδ is any positive real number such that

(1.11) 1 ≤ δ <
n +

√
2n(2n− 1)

3n− 2
,

then from (1.10), by using Parseval’s identity, we get, after simplication

n(1 + δ)2 ≤ 2(2n− 1)δ2.

This inequality can be written as

(1.12)

(
δ −

n +
√

2n(2n− 1)

3n− 2

)(
δ −

n−
√

2n(2n− 1)

3n− 2

)
≥ 0.

Sinceδ ≥ 1, we have(
δ −

n−
√

2n(2n− 1)

3n− 2

)
≥

(
1−

n−
√

2n(2n− 1)

3n− 2

)

=

(
2(n− 1) +

√
2n(2n− 1)

3n− 2

)
> 0

and hence from (1.12), it follows that(
δ −

n +
√

2n(2n− 1)

3n− 2

)
≥ 0.

This gives

δ ≥
n +

√
2n(2n− 1)

3n− 2
,

which clearly contradicts (1.11). Hence inequality (1.10) is not, in general, true for all polyno-
mials of degreen ≥ 1.

While seeking the desired extension of inequality (1.8) to theLp-norm, recently Govil et al.
[9] have made an incomplete attempt by claiming to have proved thatif P ∈ Pn andP (z) does
not vanish in|z| < 1, then for every complex numberα with |α| ≥ 1, andp ≥ 1,

(1.13) ‖DαP‖p ≤ n

(
|α|+ 1

‖1 + z‖p

)
‖P‖p .

A. Aziz, N.A. Rather and Q. Aliya [4] pointed out an error in the proof of inequality (1.13)
given by Govil et al. [9] and proved a more general result which not only validated inequality
(1.13) but also extended inequality (1.6) for the polar derivative of a polynomialP ∈ Pn. In
fact, they proved that ifP ∈ Pn andP (z) 6= 0 for |z| < k wherek ≥ 1, then for every complex
numberα with |α| ≥ 1 andp ≥ 1,

(1.14) ‖DαP‖p ≤ n

(
|α|+ k

‖k + z‖p

)
‖P‖p .
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4 NISAR A. RATHER

The main aim of this paper is to obtain certainLp inequalities for the polar derivative of a
polynomial valid for0 < p < ∞. We begin by proving the following extension of inequality
(1.2) to the polar derivatives.

Theorem 1.1. If P ∈ Pn, then for every complex numberα andp > 0,

(1.15) ‖DαP‖p ≤ n(|α|+ 1) ‖P‖p .

Remark 1. If we divide the two sides of (1.15) by|α| and make|α| → ∞, we get inequality
(1.2) for eachp > 0.

As an extension of inequality (1.6) to the polar derivative of a polynomial, we next present
the following result which includes inequalities (1.13) and (1.14) for eachp > 0 as a special
cases.

Theorem 1.2. If P ∈ Pn and P (z) does not vanish in|z| < k wherek ≥ 1, then for every
complex numberα with |α| ≥ 1 andp > 0,

(1.16) ‖DαP‖p ≤ n

(
|α|+ k

‖k + z‖p

)
‖P‖p .

In the limiting case, whenp →∞, the above inequality is sharp and equality in (1.16) holds
for P (z) = (z + k)n whereα is any real number withα ≥ 1.

The following result immediately follows from Theorem 1.2 by takingk = 1.

Corollary 1.3. If P ∈ Pn andP (z) does not vanish in|z| < 1, then for every complex number
α with |α| ≥ 1 andp > 0,

(1.17) ‖DαP‖p ≤ n

(
|α|+ 1

‖1 + z‖p

)
‖P‖p .

Remark 2. Corollary 1.3 not only validates inequality (1.13) forp ≥ 1 but also extends it for
0 < p < 1 as well.

Remark 3. If we let p →∞ in (1.16), we get inequality (1.9). Moreover, inequality (1.6) also
follows from Theorem 1.2 by dividing the two sides of inequality (1.16) by|α| and then letting
|α| → ∞.

We also prove:

Theorem 1.4. If P ∈ Pn andP (z) has all its zeros in|z| ≤ k wherek ≤ 1 andP (0) 6= 0, then
for every complex numberα with |α| ≤ 1 andp > 0,

(1.18) ‖DαP‖p ≤ n

(
|α|+ k

‖k + z‖p

)
‖P‖p .

In the limiting case, whenp →∞, the above inequality is sharp and equality in (1.18) holds
for P (z) = (z + k)n for any realα with 0 ≤ α ≤ 1.

The following result is an immediate consequence of Theorem 1.4.

Corollary 1.5. If P ∈ Pn andP (z) has all its zeros in|z| ≤ k wherek ≤ 1, then for every
complex numberα with |α| ≤ 1,

‖DαP‖∞ ≤ n

(
|α|+ k

1 + k

)
‖P‖∞ .

The result is best possible and equality in (1.18) holds forP (z) = (z + k)n for any realα with
0 ≤ α ≤ 1.
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Lp INEQUALITIES FOR THEPOLAR DERIVATIVE 5

Finally, we prove the following result.

Theorem 1.6. If P ∈ Pn is self- inversive, then for every complex numberα andp > 0,

‖DαP‖p ≤ n

(
|α|+ 1

‖1 + z‖p

)
‖P‖p .

The above inequality extends a result due to Dewan and Govil[6] for the polar derivatives.

2. L EMMAS

For the proof of these theorems, we need the following lemmas.

Lemma 2.1([2]). If P ∈ Pn andP (z) does not vanish in|z| < k wherek ≥ 1, then for every
real or complex numberγ with |γ| ≥ 1,

|DγkP (z)| ≤ k
∣∣Dγ/kQ(z)

∣∣ for |z| = 1

whereQ(z) = znP (1/z).

Settingα = γk wherek ≥ 1 in Lemma 2.1, we immediately get:

Lemma 2.2. If P ∈ Pn andP (z) does not vanish in|z| < k wherek ≥ 1, then for every real
or complex numberα with |α| ≥ 1,

|DαP (z)| ≤ k
∣∣Dα/k2Q(z)

∣∣ for |z| = 1

whereQ(z) = znP (1/z) .

Lemma 2.3. If P ∈ Pn andP (z) 6= 0 in |z| < k wherek ≥ 1 andQ(z) = znP (1/z), then for
|z| = 1,

k |P ′(z)| ≤ |Q′(z)| .

Lemma 2.3 is due to Malik [9].

Lemma 2.4. If P ∈ Pn andP (z) 6= 0 in |z| < k wherek ≥ 1 andQ(z) = znP (1/z), then for
every realβ, 0 ≤ β < 2π,∣∣k2P ′(z) + eiβQ′(z)

∣∣ ≤ k
∣∣P ′(z) + eiβQ′(z)

∣∣ for |z| = 1.

Proof of Lemma 2.4.By hypothesis,P ∈ Pn andP (z) does not vanish in|z| < k wherek ≥ 1

andQ(z) = znP (1/z). Therefore, by Lemma 2.3, we have

k2 |P ′(z)|2 ≤ |Q′(z)|2 for |z| = 1.

Multiplying both sides of this inequality by(k2 − 1) and rearranging the terms, we get

(2.1) k4 |P ′(z)|2 + |Q′(z)|2 ≤ k2 |P ′(z)|2 + k2 |Q′(z)|2 for |z| = 1.

Adding2 Re
(
k2P ′(z)Q′(z)eiβ

)
to the both sides of (2.1), we obtain for|z| = 1,∣∣k2P ′(z) + eiβQ′(z)
∣∣2 ≤ k2

∣∣P ′(z) + eiβQ′(z)
∣∣2 for |z| = 1

and hence ∣∣k2P ′(z) + eiβQ′(z)
∣∣ ≤ k

∣∣P ′(z) + eiβQ′(z)
∣∣ for |z| = 1.

This proves Lemma 2.4. �
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Lemma 2.5. If P ∈ Pn andQ(z) = znP (1/z), then for everyp > 0 and β real, 0 ≤ β < 2π,∫ 2π

0

∫ 2π

0

∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣p dθdβ ≤ 2πnp

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ.

Lemma 2.5 is due to the author [14] (see also [3]).

Lemma 2.6. If P ∈ Pn and P (z) does not vanish in|z| < k wherek ≥ 1 and Q(z) =

znP (1/z), then for every complex numberα, β real, 0 ≤ β < 2π, and p > 0,∫ 2π

0

∫ 2π

0

∣∣DαP (eiθ) + eiβk2Dα/k2Q(eiθ)
∣∣p dθdβ ≤ 2πnp (|α|+ k)p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ.

Proof of Lemma 2.6.We haveQ(z) = znP (1/z), therefore,P (z) = znQ(1/z) and it can be
easily verified that for0 ≤ θ < 2π,

nP (eiθ)− eiθP ′(eiθ) = ei(n−1)θQ′(eiθ) and nQ(eiθ)− eiθQ′(eiθ) = ei(n−1)θP ′(eiθ).

Also, sinceP ∈ Pn andP (z) does not vanish in|z| < k, k ≥ 1, therefore,Q ∈ Pn. Hence for
every complex numberα, β real,0 ≤ β < 2π, we have∣∣DαP (eiθ) + eiβk2Dα/k2Q(eiθ)

∣∣
=
∣∣∣(nP (eiθ) + (α− eiθ)P ′(eiθ) + k2eiβ

(
nQ(eiθ) +

( α

k2
− eiθ

)
Q′(eiθ)

)∣∣∣
=
∣∣(nP (eiθ)− eiθP ′(eiθ)

)
+ k2eiβ

(
nQ(eiθ)− eiθQ′(eiθ)

)
+ α

(
P ′(eiθ) + eiβQ′(eiθ)

)
|

=
∣∣∣(ei(n−1)θQ′(eiθ) + k2eiβei(n−1)θP ′(eiθ)

)
+ α

(
P ′(eiθ) + eiβQ′(eiθ)

)∣∣∣
≤ |α|

∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣+ ∣∣k2P ′(eiθ) + eiβQ′(eiθ)

∣∣ .
This gives, with the help of Lemma 2.4,∣∣DαP (eiθ) + eiβk2Dα/k2Q(eiθ)

∣∣ ≤ |α| ∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣

+ k
∣∣P ′(eiθ) + eiβQ′(eiθ)

∣∣
= (|α|+ k)

∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣ ,

which implies for eachp > 0,∫ 2π

0

∫ 2π

0

∣∣DαP (eiθ) + eiβk2Dα/k2Q(eiθ)
∣∣p dθdβ

≤ (|α|+ k)p

∫ 2π

0

∫ 2π

0

∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣p dθdβ.

Combining this with Lemma 2.5, we get∫ 2π

0

∫ 2π

0

∣∣DαP (eiθ) + eiβk2Dα/k2Q(eiθ)
∣∣p dθdβ ≤ 2πnp (|α|+ k)p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ.

This completes the proof of Lemma 2.6. �
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3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1.Let Q(z) = znP (1/z), thenP (z) = znQ(1/z) and (as before) for0 ≤
θ < 2π, we have

nP (eiθ)− eiθP ′(eiθ) = ei(n−1)θQ′(eiθ) and nQ(eiθ)− eiθQ′(eiθ) = ei(n−1)θP ′(eiθ),

which implies for every complex numberα andβ real,0 ≤ β < 2π,∣∣DαP (eiθ) + eiβ
{
nQ(eiθ) + (α− eiθ)Q′(eiθ)

}∣∣
= |nP (eiθ) + (α− eiθ)P ′(eiθ) + eiβ

{
nQ(eiθ)− eiθQ′(eiθ) + αQ′(eiθ)

}
|

= |
{
nP (eiθ)− eiθP ′(eiθ)

}
+ eiβ

{
nQ(eiθ)− eiθQ′(eiθ)

}
+ α

{
P ′(eiθ) + eiβQ′(eiθ)

}
|

= |ei(n−1)θQ′(eiθ) + eiβei(n−1)θP ′eiθ) + α
{
P ′(eiθ) + eiβQ′(eiθ)

}
|

≤ |ei(n−1)θQ′(eiθ) + eiβei(n−1)θ ′(eiθ)|+ |α| |P ′(eiθ) + eiβQ′(eiθ)|
= (|α|+ 1) |P ′(eiθ) + eiβQ′(eiθ)|.

This gives with the help of Lemma 2.5 for eachp > 0,∫ 2π

0

∫ 2π

0

∣∣DαP (eiθ) + eiβ
{
nQ(eiθ) + (α− eiθ)Q′(eiθ)

}∣∣p dθdβ

≤ (|α|+ 1)p

∫ 2π

0

∫ 2π

0

∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣p dθdβ

≤ 2πnp (|α|+ 1)p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ.(3.1)

Now using the fact that for anyp > 0,∫ 2π

0

∣∣a + beiβ
∣∣p dβ ≥ 2π max (|a|p , |b|p) ,

(see [5, Inequality (2.1)]), it follows from (3.1) that{∫ 2π

0

∣∣DαP (eiθ)
∣∣p dθ

} 1
p

≤ n (|α|+ 1)

{∫ 2π

0

∣∣P (eiθ)
∣∣p dθ

} 1
p

, p > 0.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2.SinceP ∈ Pn andP (z) does not vanish in|z| < k wherek ≥ 1, by
Lemma 2.2, we have for every real or complex numberα with |α| ≥ 1,

(3.2) |DαP (z)| ≤ k
∣∣Dα/k2Q(z)

∣∣ for |z| = 1,

whereQ(z) = znP (1/z). Also, by Lemma 2.6, for every real or complex numberα, p > 0 and
β real,

(3.3)
∫ 2π

0

{∫ 2π

0

∣∣DαP (eiθ) + eiβk2Dα/k2Q(eiθ)
∣∣p dβ

}
dθ

≤ 2πnp (|α|+ k)p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ.

Now for every realβ, 0 ≤ β < 2π andR ≥ r ≥ 1, we have∣∣R + eiβ
∣∣ ≥ ∣∣r + eiβ

∣∣ ,
J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 103, 10 pp. http://jipam.vu.edu.au/
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which implies ∫ 2π

0

∣∣R + eiβ
∣∣p dβ ≥

∫ 2π

0

∣∣r + eiβ
∣∣p dβ, p > 0.

If DαP (eiθ) 6= 0, we takeR = k2
∣∣Dα/k2Q(eiθ)

∣∣ / ∣∣DαP (eiθ)
∣∣ and r = k, then by (3.2),

R ≥ r ≥ 1, and we get∫ 2π

0

|DαP (eiθ) + eiβk2Dα/k2Q(eiθ)|pdβ

=
∣∣DαP (eiθ)

∣∣p ∫ 2π

0

∣∣∣∣k2Dα/k2Q(eiθ)

DαP (eiθ)
eiβ + 1

∣∣∣∣p dβ

=
∣∣DαP (eiθ)

∣∣p ∫ 2π

0

∣∣∣∣∣∣∣∣k2Dα/k2Q(eiθ)

DαP (eiθ)

∣∣∣∣ eiβ + 1

∣∣∣∣p dβ

=
∣∣DαP (eiθ)

∣∣p ∫ 2π

0

∣∣∣∣∣∣∣∣k2Dα/k2Q(eiθ)

DαP (eiθ)

∣∣∣∣+ eiβ

∣∣∣∣p dβ

≥
∣∣DαP (eiθ)

∣∣p ∫ 2π

0

∣∣k + eiβ
∣∣p dβ.

For DαP (eiθ) = 0, this inequality is trivially true. Using this in (3.3), we conclude that for
every real or complex numberα with |α| ≥ 1 andp > 0,∫ 2π

0

∣∣k + eiβ
∣∣p dβ

∫ 2π

0

∣∣DαP (eiθ)
∣∣p dθ ≤ 2πnp (|α|+ k)p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ,

which immediately leads to (1.16) and this completes the proof of Theorem 1.2. �

Proof of Theorem 1.4.By hypothesis, all the zeros of polynomialP (z) of degreen lie in |z| ≤ k

wherek ≤ 1 andP (0) 6= 0. Therefore, ifQ(z) = znP (1/z) , thenQ(z) is a polynomial of
degreen which does not vanish in|z| < (1/k), where(1/k) ≥ 1. Applying Theorem 1.2 to the
polynomialQ(z), we get for every real or complex numberβ with |β| ≥ 1 andp > 0,

(3.4)

{∫ 2π

0

∣∣DβQ(eiθ)
∣∣p dθ

} 1
p

≤ n

(
|β|+ 1

k∥∥z + 1
k

∥∥
p

){∫ 2π

0

∣∣Q(eiθ)
∣∣p dθ

} 1
p

.

Now since ∣∣Q(eiθ)
∣∣ =

∣∣P (eiθ)
∣∣ , 0 ≤ θ < 2π

and ∥∥∥∥z +
1

k

∥∥∥∥
p

=
1

k
‖z + k‖p ,

it follows that (3.4) is equivalent to

(3.5)

{∫ 2π

0

∣∣DβQ(eiθ)
∣∣p dθ

} 1
p

≤ n

(
k |β|+ 1

‖z + k‖p

){∫ 2π

0

∣∣P (eiθ)
∣∣p dθ

} 1
p

.
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Also, we have for everyβ with |β| ≥ 1 and0 ≤ θ < 2π,∣∣DβQ(eiθ)
∣∣ =

∣∣nQ(eiθ) + (β − eiθ)Q′(eiθ)
∣∣

=
∣∣∣neinθP (eiθ) + (β − eiθ)

(
nei(n−1)θP (eiθ)− ei(n−2)θP ′(eiθ)

)∣∣∣
=
∣∣∣β (nP (eiθ)− eiθP ′(eiθ)

)
+ P ′(eiθ))

∣∣∣
=
∣∣β (nP (eiθ)− eiθP ′(eiθ)

)
+ P ′(eiθ)

∣∣
=
∣∣β∣∣ ∣∣∣D1/βP (eiθ)

∣∣∣ .
Using this in (3.5), we get for|β| ≥ 1,

(3.6)

{∫ 2π

0

|β|
∣∣∣D1/βP (eiθ)

∣∣∣p dθ

} 1
p

≤ n

(
k |β|+ 1

‖z + k‖p

){∫ 2π

0

∣∣P (eiθ)
∣∣p dθ

} 1
p

, p > 0.

Replacing1/β by α so that|α| ≤ 1, we obtain from (3.6){∫ 2π

0

∣∣DαP (eiθ)
∣∣p dθ

} 1
p

≤ n

(
|α|+ k

‖z + k‖p

){∫ 2π

0

∣∣P (eiθ)
∣∣p dθ

} 1
p

,

for |α| ≤ 1 andp > 0. This proves Theorem 1.4. �

Proof of Theorem 1.6.SinceP (z) is a self inversive polynomial of degreen, P (z) = Q(z) for
all z ∈ C whereQ(z) = znP (1/z). This gives for every complex numberα,

|DαP (z)| = |DαQ(z)| , z ∈ C

so that

(3.7)
∣∣DαQ(eiθ)/DαP (eiθ)

∣∣ = 1, 0 ≤ θ < 2π.

Also, sinceQ(z) is a polynomial of degreen, then

(3.8) DαQ(eiθ) = nQ(eiθ)− eiθQ′(eiθ) + αQ′(eiθ).

Combining (3.1) and (3.8), it follows that for every complex numberα andp > 0,

(3.9)
∫ 2π

0

∫ 2π

0

∣∣DαP (eiθ) + DαQ(eiθ)
∣∣p dθdβ ≤ 2πnp (|α|+ 1)p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ.

Using (3.7) in (3.9) and proceeding similarly as in the proof of Theorem 1.2, we immediately
get the conclusion of Theorem 1.6. �
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