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ABSTRACT. Let D, P(z) denote the polar derivative of a polynomi8(z) of degreen with
respect to real or complex number If P(z) does not vanish ife| < k, k& > 1, then it has been
proved that foa| > 1 andp > 0,

|(l| +k
D,P|. < P|. .
|| ||p — <k7 Z”p || ||p

An analogous result for the class of polynomials having no zerr|in> &,k < 1is also
obtained.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let P, (=) denote the space of all complex polynomi&ls) of degree:. For P € P,, define

1
1 2 ) P
1P|, =< = |P<€z())|p , 1<p< oo,
2w Jo

and
Pl i= max | P(2)].
If P € P,,then
(1.1) 1Pl <Pl
and
(1.2) 1P|, < 0l P,

Inequality [1.1) is a well-known result of S. Bernstein (se€ [12] of [15]), whereas inequality
(L.2) is due to Zygmund_ [16]. ArestoV|[1] proved that the inequality](1.2) remains true for
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2 NISAR A. RATHER

0 < p < 1as well. Equality in[(1]1) and (I.2) holds fé(z) = az",a # 0. If we letp — oo in
(1.7), we get inequality (1]1).

If we restrict ourselves to the class of polynomi&lsc P, having no zero inz| < 1, then
both the inequalitied (1. 1) anf (1.2) can be improved. In fack i€ P, and P(z) # 0 for
z| < 1, then [1.1) and (1]2) can be, respectively, replaced by

n
(1.3) 1Pl < =P
and
(1.4) 1P, < —— 1P| > 1
| R T

Inequality [1.B) was conjectured by P. Erdds and later verified by P. D.[Lax [10] whereas the
inequality (I.4) was discovered by De Bruijri [5]. Rahman and Schmeisser [13] proved that the
inequality [1.4) remains true fér < p < 1 as well. Both the estimates are sharp and equality
in (1.3) and[(1.4) holds foP(z) = az" + b, |a| = |b].

Malik [11] generalized inequality (1].3) by proving that#f € P, and P(z) does not vanish
in |z| < kwherek > 1, then

(1.5) 1P|

= 1 + k
Govil and Rahman |8] extended inequalify (1.5) to ﬂ:pnorm by proving that ifP € P,
andP(z) # 0 for |z| < k wherek > 1, then

(1.6) 1P, < 1Pl p>1

" IIkr + 2|,
It was shown by Gardner and Weemss [7] and independently by Rather [14] that the inequality
(1.8) remains true fob < p < 1 as well.
Let D, P(z) denote the polar derivative of polynomi&lz) of degree: with respect to a real
or complex numbet:. Then

D,P(z) =nP(z) + (a — 2) P'(2).
Polynomial D, P(z) is of degree at most — 1. Furthermore, the polar derivative, P(z)
generalizes the ordinary derivativé(z) in the sense that
D.,P
lim ———~~ ()

a—00 (0%
uniformly with respect ta for |z| < R, R > 0.
A. Aziz [2] extended inequalitie$ (1.1) and ([L.3) to the polar derivative of a polynomial and
proved that ifP € P,, then for every complex numberwith |« > 1,

= P'(2)

(1.7) 1D Pl < nfal 1Pl

and if P € P, andP(z) # 0 for |z| < 1, then for every complex numberwith |«| > 1,
n

(1.8) 1DaPllo < 5 (el + 1Pl

Both the inequalitie§ (1} 7) anfd (1.8) are sharp. If we divide both sid¢s 9f (1.7) ahd (18) by
and letja| — oo, we get inequalitieg (1} 1) and (1.3) respectively.

A. Aziz [2] also considered the class of polynomi@tsc P, having no zero irjz| < k and
proved that if? € P, andP(z) # 0 for |z| < k wherek > 1, then for every complex number
a with |a| > 1,

la] + k
1.9 1Dl <0 (555) 1P
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The result is best possible and equality[in (1.9) holds/6r) = (= + k)™ wherea is any real
number witha > 1.

It is natural to seek a,, - norm analog of the inequality (1.7). In view of tHg, - norm
extension[(1]2) of inequality (1.1), one would expect thdt iE P,, then

(1.10) [DaP|, < nlal[|P],,

is the L, - norm extension of (1}7) analogous fo (1.2). Unfortunately, inequality](1.10) is not,
in general, true for every complex numherTo see this, we take in particular= 2, P(z) =
(1 —iz)" anda = 1§ whered is any positive real number such that

n++/2n(2n —1)
3n —2 ’
then from [(1.ID), by using Parseval’s identity, we get, after simplication
n(1+6)? <2(2n —1)6°
This inequality can be written as

n++/2n(2n —1) n—+/2n(2n —1)
(1.12) <(5 — 5o > ((5 — 5o ) > 0.

Sinced > 1, we have

(5_n— 2n(2n—1)) > (1_71— 2n(2n—1)>
3n — 2 an — 2

:<%n—D+ 2mmy—n>>0

(1.11) 1<6<

3n —2
and hence fronj (1.12), it follows that

n++/2n(2n —1)
(5 3n — 2 ) =0

n++/2n(2n — 1)
3n —2 ’
which clearly contradictg (1.11). Hence inequality (1.10) is not, in general, true for all polyno-
mials of degree, > 1.
While seeking the desired extension of inequality|(1.8) to/th@orm, recently Govil et al.
[9] have made an incomplete attempt by claiming to have provedftifat P, and P(z) does
not vanish inz| < 1, then for every complex numberwith |o| > 1, andp > 1,

la] +1
. <
(1.13) HDJWP_H<H1 =) 1P, -

A. Aziz, N.A. Rather and Q. Aliya [4] pointed out an error in the proof of inequality (1.13)
given by Govil et al. [[9] and proved a more general result which not only validated inequality
(1.13) but also extended inequalify ([1.6) for the polar derivative of a polynahial P,. In
fact, they proved that iP € P, andP(z) # 0 for |z| < k wherek > 1, then for every complex
numbera with |« > 1 andp > 1,

la] + k
1.14 D.P||. <
(114 H Hp_n(nk )17

This gives

0>
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The main aim of this paper is to obtain certdip inequalities for the polar derivative of a
polynomial valid for0 < p < oo. We begin by proving the following extension of inequality
(1.9) to the polar derivatives.

Theorem 1.1.1f P € P,, then for every complex numberandp > 0,
(1.15) [1DaPll, < nllaf+ 1) [P,

Remark 1. If we divide the two sides of (1.15) blyy| and makga| — oo, we get inequality
(1.2) for eachp > 0.

As an extension of inequality (1.6) to the polar derivative of a polynomial, we next present
the following result which includes inequalitigs (1.13) apd (L.14) for gach 0 as a special
cases.

Theorem 1.2.1f P € P, and P(z) does not vanish inz| < k wherek > 1, then for every
complex numbes with |a| > 1 andp > 0,

la] + k
1.16 D.P| <
(116) H '“—”(M )1l

In the limiting case, whep — oo, the above inequality is sharp and equality[in (1.16) holds
for P(z) = (2 + k)™ wherea is any real number withy > 1.
The following result immediately follows from Theor¢m[1.2 by taking- 1.

Corollary 1.3. If P € P, and P(z) does not vanish ifz| < 1, then for every complex number
a with || > 1T andp > 0,

lo] + 1
1.17 D, P|. <
@17) n \u_n(m 1) 1Pl

Remark 2. Corollary[1.3 not only validates inequality (I]13) for> 1 but also extends it for
0<p<1laswell

Remark 3. If we let p — oo in (1.16), we get inequality (1.9). Moreover, inequallty {1.6) also
follows from Theoren 1]2 by dividing the two sides of inequality (1.16)dlyand then letting

la] — oo.
We also prove:

Theorem 1.4.1f P € P, and P(z) has all its zeros inz| < k wherek < 1 and P(0) # 0, then
for every complex numberwith |a| < 1 andp > 0,

la] + k
. <
(1.18) ||DaPHp =n (Hk -, P ||

In the limiting case, whep — oo, the above inequality is sharp and equality[in (1.18) holds
for P(z) = (2 + k)™ for any reala with 0 < o < 1.
The following result is an immediate consequence of Thegrein 1.4.

Corollary 1.5. If P € P, and P(z) has all its zeros ifjz| < k wherek < 1, then for every
complex numbes with |a| < 1,

la] + k
PPl <0 (5555 ) 1Pl

The result is best possible and equality[in (1.18) holds/6r) = (= + k) for any realo with
0<a<l.
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Finally, we prove the following result.

Theorem 1.6. If P € P, is self- inversive, then for every complex numbemdp > 0,

lo] + 1
D, Pl <
| L_HOH_HHH

The above inequality extends a result due to Dewan and @jvibr the polar derivatives.

2. LEMMAS
For the proof of these theorems, we need the following lemmas.

Lemma 2.1([2]). If P € P, and P(z) does not vanish ifz| < k£ wherek > 1, then for every
real or complex numbey with |y| > 1,

|DyP(2)| < k|DyQ(z)| for |z[=1
whereQ(z) = z"P(1/Z).
Settinga = vk wherek > 1in Lemmd 2.1, we immediately get:

Lemma 2.2.If P € P, and P(z) does not vanish ifz| < k£ wherek > 1, then for every real
or complex numbet with |«| > 1,

|DoP(2)| < k|Daj2Q(z)] for |z =1
whereQ(z) = z"P(1/Z) .

Lemma2.3.1f P € P,andP(z) # 0in|z| < k wherek > 1 andQ(z) = 2" P(1/Zz), then for
|z| =1,
kIP'(2)] <1Q'(2)].

Lemmd 2.8 is due to Malik [9].

Lemma2.4.1f P € P, andP(z) # 0in |z| < k wherek > 1 andQ(z) = 2"P(1/%Z), then for
every real3,0 < ¢ < 2,

|K*P'(2) + ”Q'(2)| <k |P'(z) +€7Q'(2)| for |z =1.

Proof of Lemma 2]4By hypothesisP € P,, and P(z) does not vanish ife| < k wherek > 1
andQ(z) = 2" P(1/z). Therefore, by Lemm[a:zl.s, we have

K |P'(2))* < 1Q(2)]” for |z =1.
Multiplying both sides of this inequality b@k2 — 1) and rearranging the terms, we get
(2.1) P () +1Q () < K |P'(2)] + K*|Q'(2)] for |2] =1.
Adding2 Re (k:QP’( Q' (2 )elﬁ) to the both sides o 1), we obtain frf = 1,
K2P'(2) + €°Q'(2)|" < K2 |P'(2) + €°Q'(2)[* for |z| =1
and hence
|K2P'(2) + Q' (2)| < k|P'(2) +€”Q'(2)| for |z]=1.
This proves Lemmpa 2.4. O
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Lemma 2.5.1f P € P, andQ(z) = 2"P(1/Z), then for every > 0 and g real,0 < § < 2,

21 27 21
/ / |P'(e”) + Q' (e”)|" dodp < 2mn” / |P(e)]" do.
0 0 0
Lemmd 2.5 is due to the author [14] (see also [3]).

Lemma 2.6.If P € P, and P(z) does not vanish inz| < k wherek > 1 andQ(z) =

2"P(1/Z), then for every complex number g real,0 < 5 < 27, and p > 0,

2T 2 2
[ [ 10 + 02D s Qe a0 < 2 ol + 07 [ [P ab.
0 0 0

Proof of Lemma 2]6We haveQ(z) = 2"P(1/z), therefore,P(z) = 2"Q(1/Z) and it can be
easily verified that fofH < 0 < 2,

nP<€i9) . 6i9p/<61'9) — ez‘(nfl)GQ%eig) and nQ(ew) . 61’9@/(61'0) _ ez’(nfl)ep,<6i9).

Also, sinceP € P, and P(z) does not vanish ife| < k,k > 1, thereforeQ € P,. Hence for
every complex number, 5 real,0 < § < 27, we have

|DaP(ei9) + ewk:QDa/sz(ew”
(nP(e?) + (o — )P () + k2e™ (nQ(ew) + (% - eia) Q’(ei9)> ‘
= |(nP(e) — 7P (%)) + k2™ (nQ(e) — Q) (7))

+ a (P’(ew) + eiBQ’(ew)) ]
_ ‘(ei(n—l)ew+ k2€iﬁei(n—1)em> TLa (P’(eie) I er/(ez‘G))‘
< ol |[P'(e”) +ePQ'(e”)| + |K* P'(e”) + Q' ()] .

This gives, with the help of Lemmja 2.4,
|Dap(ei0) + eiﬁk2Da/k2Q(ei0)| < ‘04 ‘Pl(eie) + eiﬁQ/(ew)‘
+ L }P/(ez‘e) + eiﬁQl(ei9)|
= (la[ + k) |P'(e?) + 7Q'(e7)]

which implies for eachy > 0,
21 27 ) ) )
/ / | Do P(e”) + e k> D, y2Q(e”)|” dbdp
0 0

2T 2T
§(|a|+k)p/0 /O |P'(e) + Q' (e”)|" dodp.

Combining this with Lemmpa 2]5, we get

2

2T 2T
| [ 1PaP(e) 4 5D e dods < 2mn (ol + b7 [P .
0 0 0

This completes the proof of Lemra P.6. O
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3. PROOFS OF THE THEOREMS

Proof of Theorer I]1let Q(z) = 2" P(1/Z), thenP(z) = 2"Q(1/Z) and (as before) fob <
0 < 2w, we have

nP(ew) _ eiOP/<€i9) _ ei(nfl)éw and nQ<ei9) _ ei@@/(eie) _ ei(nfl)em’
which implies for every complex numberandg real,0 < 3 < 2,
‘DQP(ew) + ¢ {nQ(ew) + (a — ew)Q’(ew)}}
= [nP(e”) + (a — ) P'(e”) + " {nQ(e”) — e Q' (") + Q' () } |
— | {np(eze) _ eiGP/(eiG)} + eiﬁ {nQ(ezG) o 6i6Q/(ei0)}
+a{P(e”) +e7Q(e”)} |
= ' VQ! (1) + eV Preil) o {P'(e?) + P Q) ()} |
< [ ET) 4 PV + [a] |[P(e) + PQ ()]
= (Ja] + 1) [P'(”) +€7Q/ ()]
This gives with the help of Lemnija 2.5 for eaeh- 0,

[ [ 1P+ (e + 0 = @) v
< (Ja] + 1) /0 K /0 K |P'(e”) + Q' ()] dodss
(3.1) < 2mn? (|a] +1)P /% |P(e)]" do.
Now using the fact that for any > 0, 0
/027r la+be|” dB > 2r max (|al”, [b[")

(seel[5, Inequality] (Z2]1)]), it follows fronj (3.1) that

{ / IDaP<e”>!pd9}; <n (la]+1) { / ) |P(6i9)}pd9};7 p>0.

This completes the proof of Theor¢m]1.1. O

Proof of Theorer 1]2Since P € P, and P(z) does not vanish ifz| < k& wherek > 1, by
Lemmg 2.2, we have for every real or complex numberith |a| > 1,

(3.2) |DoP(2)| < k| Doj2Q(2)] for |z] =1,
whereQ(z) = z"P(1/z). Also, by Lemm, for every real or complex numberp > 0 and
G real,
s 2m ) ) )
(3.3) / { / | Do P(e") +elﬁk2Da/,€2Q(ew)|pdﬁ} do
0 0
2m

< 2mn? (Ja| + k’)p/0 |P(e)|" do.

Now for every real3,0 < § < 2w andR > r > 1, we have
‘R—l—eiﬂ| > |7’—|—ei5

Y
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which implies
2 2
/ ’R+em‘pd62/ ‘r+eiﬁ|pdﬁ, p > 0.
0 0

If DoP(c) # 0, we takeR = k?|D,2Q(e”)| / |DoP(e)| andr = k, then by [3.D),
R >r>1,and we get

21
/IQJW%+WWQM@WW%5
0

27 | 1.2 et p
= ‘Dap(eie)}p/o : Da/kQ(Q() et 1| as
oup [ ||F2Dayie T
= | Do P(e"”)] /0 ‘—D /]’;( g) N e 11| ap
ovw [ || %2 Dayre ’
— | Do P(e”)] /0 ‘—D /]’;( g) )| o] as

2
ZU%PW%V/ [k + €[ dp.
0
For D, P(e”) = 0, this inequality is trivially true. Using this ir] (3.3), we conclude that for
every real or complex numberwith |a| > 1 andp > 0,
2m ) 2m ) 2m )
/\m#Ww/\mﬂwwwswwm+W/\HWWm
0 0 0
which immediately leads t$ (1..6) and this completes the proof of Thelorém 1.2. O

Proof of Theorer 1]4By hypothesis, all the zeros of polynomial z) of degree liein |z| < k
wherek < 1 andP(0) # 0. Therefore, ifQ(z) = 2"P(1/Z) , thenQ(z) is a polynomial of
degreen which does not vanish ifx| < (1/k), where(1/k) > 1. Applying Theorenj 1.2 to the
polynomial@(z), we get for every real or complex numbewith |5| > 1 andp > 0,

oo {[ el <o ([ oo

Now since
|Q(ei9)‘ = ‘P(ew) : 0<60<2rm
and
1 1
| == k
I

it follows that (3.4) is equivalent to
(3.5) {/QW‘DQ i0) | d6}1<n Elgl+1 {/2ﬂ|P(€i9>}pd9};
' RN ERad M W
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Also, we have for every with || > 1 and0 < 6 < 2,
|DsQ(e”)] = [nQ(e”) + (8 — €)Q'(e”)]
_ ‘nei”G_P(ew) (8 — e <nei(n—1)6_P(ei9)' _ ei(n—2)9P,(6i9)>‘

= |8 (nP(e) — PP (e)) + Pe?))
= |8 (nP(e”) — e’ P'(e”)) + P'(e")]
— ‘B‘ ‘Dl/gp(ew)‘ )

Using this in[(3.5), we get foj3| > 1,

27 ; p % k’ﬂ|—|—1 2 ; » %
(3.6) {/0 |m‘DmP(e9)] de} §n<m> {/0 |P(e)] de} . p>0.

Replacingl /5 by a so thatja| < 1, we obtain from|(3.6)

([T}’ o (5E) [}

for [a| < 1 andp > 0. This proves Theorefn 1.4. O
Proof of Theorer 1]6SinceP(z) is a self inversive polynomial of degreg P(z) = ()(z) for

all z € CwhereQ(z) = 2"P(1/z). This gives for every complex numbar
|DaP(2)] = [DaQ(2)], z€C

so that

(3.7) |DaQ(e”)/DoP(e”)| =1, 0<6<2m.
Also, since)(z) is a polynomial of degree, then

(3.8) DaQ(e”) = nQ(e”) — ?Q'(e”) + aQ'(e”).

Combining [3.1) and (3]8), it follows that for every complex numbandp > 0,

2 2 2
i0 0\ |P P p 0y |P
(3.9) /0 /0 |DoP(e) + DaQ(e™)|" d8dB < 2mn” (|o + 1) /0 |P()|" df.

Using (3.7) in [3.P) and proceeding similarly as in the proof of Thedrein 1.2, we immediately
get the conclusion of Theorgm 1..6. O
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