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Abstract

A simple bound is presented for the probability that the sum of nonnegative
independent random variables is exceeded by its expectation by more than a
positive number t. If the variables have the same expectation the bound is
slightly weaker than the Bennett and Bernstein inequalities, otherwise it can be
significantly stronger. The inequality extends to one-sidedly bounded martin-
gale difference sequences.
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1. Introduction
Suppose that the{Xi}m

i=1 are independent random variables with finite first and
second moments and use the notationS :=

∑
i Xi. Let t > 0. This note

discusses the inequality

(1.1) Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i E [X2
i ]

)
,

valid under the assumption that theXi are non-negative.
Similar bounds have a history beginning in the nineteenth century with the

results of Bienaymé and Chebyshev ([3]). Setσ2 = 1
m

∑
i

(
E [X2

i ]− (E [Xi])
2).

The inequality

Pr {|E [S]− S| ≥ mε} ≤ σ2

mε2

requires minimal assumptions on the distributions of the individual variables
and, if applied to identically distributed variables, establishes the consistency of
the theory of probability: If theXi represent the numerical results of indepen-
dent repetitions of some experiment, then the probability that the average result
deviates from its expectation by more than a value ofε decreases to zero as as
σ2/ (mε2), whereσ2 is the average variance of theXi.

If the Xi satisfy some additional boundedness conditions the deviation prob-
abilities can be shown to decrease exponentially. Corresponding results were
obtained in the middle of the twentieth century by Bernstein [2], Cramér, Cher-
noff [4], Bennett [1] and Hoeffding [7]. Their results, summarized in [7], have
since found important applications in statistics, operations research and com-
puter science (see [6]). A general method of proof, sometimes called the expo-
nential moment method, is explained in [10] and [8].
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Inequality (1.1) is of a similar nature and can be directly compared to one-
sided versions of Bernstein’s and Bennett’s inequalities (see Theorem 3 in [7])
which also require theXi to be bounded on only one side. It turns out that, once
reformulated for non-negative variables, the classical inequalities are stronger
than (1.1) if the Xi are similar in the sense that their expectations are uniformly
concentrated. If the expectations of the individual variables are very scattered
and/or for large deviationst our inequality (1.1) becomes stronger.

Apart from being stronger than Bernstein’s theorem under perhaps somewhat
extreme circumstances, the new inequality (1.1) appears attractive because of its
simplicity. The proof (suggested by Colin McDiarmid) is very easy and direct
and the method also gives a concentration inequality for martingales of one-
sidedly bounded differences.

In Section2 we give a first proof of (1.1) and list some simple consequences.
In Section3 our result is compared to Bernstein’s inequality, in Section4 it is
extended to martingales. All random variables below are assumed to be mem-
bers of the algebra of measurable functions defined on some probability space
(Ω, Σ, µ). Order and equality in this algebra are assumed to hold only almost
everywhere w.r.t.µ, i.e. X ≥ 0 meansX ≥ 0 almost everywhere w.r.t.µ onΩ.
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2. Statement and Proof of the Main Result
Theorem 2.1.Let the{Xi}m

i=1 be independent random variables,E [X2
i ] < ∞,

Xi ≥ 0. SetS =
∑

i Xi and lett > 0. Then

(2.1) Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i E [X2
i ]

)
.

Proof. We first claim that forx ≥ 0

e−x ≤ 1− x +
1

2
x2.

To see this letf(x) = e−x andg (x) = 1−x+(1/2) x2 and recall that for every
realx

(2.2) ex ≥ 1 + x

so thatf ′(x) = −e−x ≤ −1 + x = g′ (x). Sincef (0) = 1 = g (0) this implies
f (x) ≤ g (x) for all x ≥ 0, as claimed.

It follows that for anyi ∈ {1, . . . ,m} and anyβ ≥ 0 we have

E
[
e−βXi

]
≤ 1− βE [Xi] +

β2

2
E
[
X2

i

]
≤ exp

(
−βE [Xi] +

β2

2
E
[
X2

i

])
,

where (2.2) was used again in the second inequality. This establishes the bound

(2.3) ln E
[
e−βXi

]
≤ −βE [Xi] +

β2

2
E
[
X2

i

]
.
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Using the independence of theXi this implies

ln E
[
e−βS

]
= ln

∏
i

E
[
e−βXi

]
=
∑

i

ln E
[
e−βXi

]
≤ −βE [S] +

β2

2

∑
i

E
[
X2

i

]
.(2.4)

Let χ be the characteristic function of[0,∞). Then for anyβ ≥ 0, x ∈ R we
must haveχ (x) ≤ exp (βx) so, using (2.4),

ln Pr {E [S]− S ≥ t} = ln E [χ (−t + E [S]− S)]

≤ ln E [exp (β (−t + E [S]− S))]

= −βt + βE [S] + ln E
[
e−βS

]
≤ −βt +

β2

2

∑
i

E
[
X2

i

]
.

We minimize the last expression withβ = t/
∑

i E [X2
i ] ≥ 0 to obtain

ln Pr {E [S]− S ≥ t} ≤ −t2

2
∑

i E [X2
i ]

,

which implies (2.1).

Some immediate and obvious consequences are given in
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Corollary 2.2. Let the{Xi}m
i=1 be independent random variables,E [X2

i ] < ∞.
SetS =

∑
i Xi and lett > 0.

1. If Xi ≤ bi and setσ2
i = E [X2

i ]− (E [Xi])
2 then

Pr {S − E [S] ≥ t} ≤ exp

(
−t2

2
∑

i σ
2
i + 2

∑
i (bi − E [Xi])

2

)
.

2. If 0 ≤ Xi ≤ bi then

Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i biE [Xi]

)
.

3. If 0 ≤ Xi ≤ bi then

Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i b
2
i

)
Proof. (1) follows from application of Theorem2.1 to the random variables
Yi = bi −Xi since

2
∑

E
[
Y 2

i

]
= 2

∑(
E
[
X2

i

]
− E [Xi]

2 + E [Xi]
2 − 2biE [Xi] + b2

i

)
= 2

∑
i

σ2
i + 2

∑
i

(bi − E [Xi])
2 ,

while (2) is immediate from Theorem2.1and (3) follows trivially from (2).

http://jipam.vu.edu.au/
mailto:andreasmaurer@compuserve.com
http://jipam.vu.edu.au/


A Bound on the Deviation
Probability for Sums of
Non-Negative Random

Variables

Andreas Maurer

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 8 of 14

J. Ineq. Pure and Appl. Math. 4(1) Art. 15, 2003

http://jipam.vu.edu.au

3. Comparison to Other Bounds
Observe that part (3) of Corollary2.2 is similar to the familiar Hoeffding in-
equality (Theorem 2 in [7]) but weaker by a factor of 4 in the exponent. If
there is information on the expectations of theXi andE [Xi] ≤ bi/4 then (2)
of Corollary2.2becomes stronger than Hoeffding’s inequality. If thebi are all
equal then (2) is weaker than what we get from the relative-entropy Chernoff
bound (Theorem 1 in [7]).

It is natural to compare our result to Bernstein’s theorem which also requires
only one-sided boundedness. We state a corresponding version of the theorem
(see [1] or [10] or [9])

Theorem 3.1 (Bernstein’s Inequality). Let {Xi}m
i=1 be independent random

variables withXi − E [Xi] ≤ d for all i ∈ {1, . . . ,m}. Let S =
∑

Xi and
t > 0. Then, withσ2

i = E [X2
i ]− E [Xi]

2 we have

(3.1) Pr {S − E [S] ≥ t} ≤ exp

(
−t2

2
∑

i σ
2
i + 2td/3

)
.

Now suppose we knowXi ≤ bi for all i. In this case we can apply part
(1) of Corollary2.2. On the other hand if we setd = maxi (bi − E [Xi]) then
Xi − E [Xi] ≤ d for all i and we can apply Bernstein’s theorem as well. The
latter is evidently tighter than part (1) of Corollary2.2 if and only if

t

3
max

i
(bi − E [Xi]) <

∑
i

(bi − E [Xi])
2 .

We introduce the abbreviationsB∞ = maxi (bi − E [Xi]), B1 =
∑

i (bi − E [Xi])
andB2 =

∑
i (bi − E [Xi])

2. Both results are trivial unlesst < B1. Assume
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t = εB1, where0 < ε < 1, then Bernstein’s theorem is stronger in the interval

0 < ε <
3B2

B1B∞
,

which is never empty. The new inequality is stronger in the interval

3B2

B1B∞
< ε < 1.

The latter interval may be empty, in which case Bernstein’s inequality is stronger
for all nontrivial deviationsε. This is clearly the case if all thebi − E [Xi] are
equal, for thenB2/ (B1B∞) = 1. This happens, for example, if theXi are
identically distributed. The fact that the new inequality can be stronger in a sig-
nificant range of deviations may be seen if we setE [Xi] = 0 andbi = 1/i for
i ∈ {1, . . . ,m}, then

3B2

B1B∞
<

π2

2
∑m

i=1 (1/i)
→ 0 asm →∞.

In this case, for every given deviationε, the new inequality becomes stronger
for sufficiently largem.

To summarize this comparison: If the deviation is small and/or the individ-
ual variables have a rather uniform behaviour, then Bernstein’s inequality is
stronger, otherwise weaker than the new result. A similar analysis applies to the
stronger Bennett inequality and the yet stronger Theorem 3 in [7]. In all these
cases a single uniform bound on the variablesXi−E [Xi] enters into the bound
on the deviation probability.
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4. Martingales
The key to the proof of Theorem2.1 lies in inequality (2.3):

X ≥ 0, β ≥ 0 =⇒ ln E
[
e−βX

]
≤ −βE [X] +

β2

2
E
[
X2
]

.

Apart from the inequalitye−x ≤ 1 − x + (1/2) x2 (for non-negativex) its
derivation uses only monotonicity, linearity and normalization of the expecta-
tion value. It therefore also applies to conditional expectations.

Lemma 4.1. Let X, W be random variables,W not necessarily real valued,
β ≥ 0.

1. If X ≥ 0 then

ln E
[
e−βX |W

]
≤ −βE [X|W ] +

β2

2
E
[
X2|W

]
.

2. If X ≤ b andE [X|W ] = 0 andE [X2|W ] ≤ σ2 then

ln E
[
eβX |W

]
≤ β2

2

(
σ2 + b2

)
.

Proof. To see part 1 retrace the first part of the proof of Theorem2.1. Part 2
follows from applying part 1 toY = b−X to get

ln E
[
eβX |W

]
= βb + ln E

[
e−βY |W

]
≤ βb− βE [Y |W ] +

β2

2
E
[
Y 2|W

]
=

β2

2
E
[
Y 2|W

]
=

β2

2

(
E
[
X2|W

]
+ b2

)
.

http://jipam.vu.edu.au/
mailto:andreasmaurer@compuserve.com
http://jipam.vu.edu.au/


A Bound on the Deviation
Probability for Sums of
Non-Negative Random

Variables

Andreas Maurer

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 14

J. Ineq. Pure and Appl. Math. 4(1) Art. 15, 2003

http://jipam.vu.edu.au

Part (2) of this lemma gives a concentration inequality for martingales of
one-sidedly bounded differences, with less restrictive assumptions than [5],
Corollary 2.4.7.

Theorem 4.2. Let Xi be random variables ,Sn =
∑n

i=1 Xi, S0 = 0. Suppose
that bi, σi > 0 and thatE [Xn|Sn−1] = 0, E [X2

n|Sn−1] ≤ σ2
n and Xn ≤ bn,

then, forβ ≥ 0,

(4.1) ln E
[
eβSn

]
≤ β2

2

n∑
i=1

(
σ2

i + b2
i

)
and fort > 0,

(4.2) Pr {Sn ≥ t} ≤ exp

(
−t2

2
∑n

i=1 (σ2
i + b2

i )

)
.

Proof. We prove (4.1) by induction onn. The casen = 1 is just part (2) of the
lemma withW = 0. Assume that (4.1) holds for a given value ofn. If Σn is the
σ-algebra generated bySn theneβSn is Σn-measurable, so

E
[
eβSn+1 |Sn

]
= E

[
eβSneβXn+1|Sn

]
= eβSnE

[
eβXn+1|Sn

]
almost surely. Thus,

ln E
[
eβSn+1

]
= ln E

[
E
[
eβSn+1 |Sn

]]
= ln E

[
eβSnE

[
eβXn+1|Sn

]]
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≤ ln E
[
eβSn

]
+

β2

2

(
σ2

n+1 + b2
n+1

)
(4.3)

≤ β2

2

n+1∑
i=1

(
σ2

i + b2
i

)
,(4.4)

where Lemma4.1, part 2 was used to get (4.3) and the induction hypothesis was
used for (4.4).

To get (4.2), we proceed as in the proof of Theorem2.1: Forβ ≥ 0,

ln Pr {Sn ≥ t} ≤ ln E
[
eβ(Sn−t)

]
≤ −βt +

β2

2

n∑
i=1

(
σ2

i + b2
i

)
.

Minimizing the last expression withβ = t/
∑

(σ2
i + b2

i ) gives (4.2).
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5. Conclusion
It remains to be seen if our inequality has any interesting practical implications.
In view of the comparison to Bernstein’s theorem this would have to be in a
situation where the random variables considered have a highly non-uniform be-
haviour and the deviations to which the result is applied are large. Apart from
its potential utility the new inequality may have some didactical value due to its
simplicity.
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