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Abstract

A simple bound is presented for the probability that the sum of nonnegative
independent random variables is exceeded by its expectation by more than a
positive number t. If the variables have the same expectation the bound is
slightly weaker than the Bennett and Bernstein inequalities, otherwise it can be
significantly stronger. The inequality extends to one-sidedly bounded martin-
gale difference sequences.
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Suppose that theX;}" | are independent random variables with finite first and
second moments and use the notation= > . X;. Lett > 0. This note
discusses the inequality

—¢2
: -S>t < —_—
(1.1) Pr{E[S] S_t}_eXp(QZiE[X?])’
valid under the assumption that the are non-negative.
Similar bounds have a history beginning in the nineteenth century with the
results of Bienaymé and Chebyshes{)[ Seto? = L 3™ (E [X?] — (E[X)])?).

The inequality
2

Pr{|E[S] - 5| > me} < ——

me2
requires minimal assumptions on the distributions of the individual variables
and, if applied to identically distributed variables, establishes the consistency of
the theory of probability: If theX; represent the numerical results of indepen-
dent repetitions of some experiment, then the probability that the average result
deviates from its expectation by more than a value décreases to zero as as
o2/ (me*), whereo? is the average variance of thé.

If the X, satisfy some additional boundedness conditions the deviation prob-
abilities can be shown to decrease exponentially. Corresponding results were
obtained in the middle of the twentieth century by BernstélnCrameér, Cher-
noff [4], Bennett [[] and Hoeffding []. Their results, summarized in], have
since found important applications in statistics, operations research and com-
puter science (seé]). A general method of proof, sometimes called the expo-
nential moment method, is explained iri] and [2].
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Inequality (L.1) is of a similar nature and can be directly compared to one-
sided versions of Bernstein’s and Bennett's inequalities (see TheoremB in |
which also require the&; to be bounded on only one side. It turns out that, once
reformulated for non-negative variables, the classical inequalities are stronger
than (L.1) if the X; are similar in the sense that their expectations are uniformly
concentrated. If the expectations of the individual variables are very scattered
and/or for large deviationsour inequality (L.1) becomes stronger.

Apart from being stronger than Bernstein’s theorem under perhaps somewhat

extreme circumstances, the new inequalltyl appears attractive because of its A Bound on the Deviation

H A H ; H ; ; Probability for Sums of
simplicity. The proof (sgggested by Colln_ Mc_Dlarmlc_l) is very easy and direct Non-Negative Random
and the method also gives a concentration inequality for martingales of one- Variables

sidedly bounded differences.

In Section2 we give a first proof of{.1) and list some simple consequences.
In Section3 our result is compared to Bernstein’s inequality, in Sectionis
extended to martingales. All random variables below are assumed to be mem-
bers of the algebra of measurable functions defined on some probability space Contents
(Q,%, ). Order and equality in this algebra are assumed to hold only almost
everywhere w.r.tu, i.e. X > 0 meansX > 0 almost everywhere w.r.z on 2.
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Theorem 2.1.Let the{ X;}." , be independent random variablds]X?] < oo,
X; > 0. SetS = ). X, and lett > 0. Then

(2.1) Pr{E[S]— S >t} <exp (ﬁ;m) .

Proof. We first claim that forz > 0

1 A Bound on the Deviation
— 2 Probability for Sums of
<l—-a+ 2% Non-Negative Random
Variables

To see this leff (z) = e™” andg () = 1 —z + (1/2) 2% and recall that for every
realz

Andreas Maurer

(2.2) e* >14+x Title Page

f(z) <g(x)forallz > 0, as claimed. <« >
It follows that for anyi € {1,...,m} and any3 > 0 we have

< >
2 2
Ble ) <1- 08 LX)+ S8 [x2) <o (0B [x]+ TE (7)), Stk

Close

where @.2) was used again in the second inequality. This establishes the bound Quit
) Page 5 of 14

(2.3) InE [e”?M] < —BE[X;] + N [X7].
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Using the independence of thé this implies

lnE lnHE
:ZlnE[e X
7 ﬁZ 2
+7ZE[XJ.

Let x be the characteristic function @f, oo). Then for anyg > 0, x € R we
must havey (z) < exp ((z) S0, using 2.4),

(2.4) < -

InPr{E[S]-S >t} =InE[x(—-t+ E[S] - 9)]
<l Elexp (B (—t+ E[S] = 5))]
= —ﬁt+ﬁE[ | +InE [e77]

ﬂt+—ZE [x?].

We minimize the last expression with=¢/>". £ [X?] > 0 to obtain
42

InPr{E[S]-5 >t} < m7

which implies @.1). ]

Some immediate and obvious consequences are given in
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Corollary 2.2. Letthe{X;}." | be independent random variablds$[X?] < oc.
SetS =), X; and lett > 0.

1. If X; < b; and sev? = F [X?] — (E [X,])” then

Pr{S— E[S] >t} <exp (2240‘2 +22_,t(b4 - E[X])Q) .

2. 1f0 < X; <, then A Bound on the Deviation
Probability for Sums of
—t2 Non-Negative Random
Pr{E[S|— 9 >tlt <e S Variables
(£15)-520 <o (75757

Andreas Maurer

3. If 0 < X; < b, then

) Title Page
—t
Pr{E[S] -S>t} <exp (W) Contents
<44 >»
Proof. (1) follows from application of Theorerd.1 to the random variables p >
Y, = b, — X, since
) ) ) ) ) Go Back
2Y E[Y?]=2) (E[X]] - EX)+E[X) - 26:E[X,] +7) Close
=23 o2 +2) (b — BXi))’, Quit
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while (2) is immediate from Theoreth1and (3) follows trivially from (2). [
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Observe that part (3) of Corollarg.2 is similar to the familiar Hoeffding in-
equality (Theorem 2 in7]) but weaker by a factor of 4 in the exponent. If
there is information on the expectations of tieand F [X;| < b;/4 then (2)
of Corollary 2.2 becomes stronger than Hoeffding’s inequality. If there all
equal then (2) is weaker than what we get from the relative-entropy Chernoff
bound (Theorem 1 in7).

It is natural to compare our result to Bernstein’s theorem which also requires .

. . . A Bound on the Deviation

only one-sided boundedness. We state a corresponding version of the theorem  propanility for Sums of

Non-Negative Random
(See [] or [ ] or [ ]) Variables

Theorem 3.1 (Bernstein’s Inequality). Let { X;}" | be independent random
variables withX; — E'[X;] < dforall i € {1,...,m}. LetS = >  X; and
t > 0. Then, withv2 = E [X?] — E[X;]* we have

Andreas Maurer

N Title Page
—1
3.1 Pr{S—FE|[S| >t} < .
(3.1) r{ [S] >t} <exp (2 ol + 2td/3) Contents
44 44

Now suppose we knowX; < b; for all 7. In this case we can apply part
(1) of Corollary2.2. On the other hand if we sdt= max; (b; — E'[X}]) then < 4
X; — E[X;] < dforall i and we can apply Bernstein’s theorem as well. The

o : : i Go Back
latter is evidently tighter than part (1) of Corollay? if and only if 0 =8
Close
t
5 max (b — B [Xi]) < Z (b; — E[X,])%. Quit
Page 8 of 14

We introduce the abbreviatio$,, = max; (b; — £ [X;]), B1 = >, (bi — £ [X;])
andB, = 3, (b; — E[X;])?. Both results are trivial unless< B,. Assume
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t = eB1, where0 < € < 1, then Bernstein’s theorem is stronger in the interval

3Bs

D<e< ,
“~ BB

which is never empty. The new inequality is stronger in the interval

3B,
BB

<e<l.

The latter interval may be empty, in which case Bernstein’s inequality is stronger
for all nontrivial deviations. This is clearly the case if all thg — F [X;] are
equal, for thenB,y/ (B1B) = 1. This happens, for example, if thg; are
identically distributed. The fact that the new inequality can be stronger in a sig-
nificant range of deviations may be seen if we BéX;] = 0 andb; = 1/i for
ie{l,...,m}, then

332 < 7T2
BBy 2 221 (1/4)

In this case, for every given deviatienthe new inequality becomes stronger
for sufficiently largem.

To summarize this comparison: If the deviation is small and/or the individ-
ual variables have a rather uniform behaviour, then Bernstein’s inequality is

— 0asm — oo.

stronger, otherwise weaker than the new result. A similar analysis applies to the

stronger Bennett inequality and the yet stronger Theorem 3]idn all these
cases a single uniform bound on the variabtes- £ [ X;] enters into the bound
on the deviation probability.
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The key to the proof of Theore@1lies in inequality £.3):

X>0,>0=mhE[e"] < —6E[X]+ﬁ—2E

2
Apart from the inequalite™ < 1 — z + (1/2)2? (for non-negativer) its
derivation uses only monotonicity, linearity and normalization of the expecta-
tion value. It therefore also applies to conditional expectations.

X7

Lemma 4.1. Let X, W be random variablesl}’ not necessarily real valued,
B> 0.

1. If X > 0then

InE [e”?X|W] < —BE [X|W] + 62

E[X*[W].
2.1f X <bandE [X|W] =0andE [X?|W] < ¢* then
2
InE [ W] < % (0% + 7).

Proof. To see part 1 retrace the first part of the proof of Theofein Part 2
follows from applying part 1 t&” = b — X to get
InE [¢"X|W] = b+ InE [e™ |W]
52
< pBb— 5
ﬂ2

BEY|W]+ —E [Y*|W]

Blyw] =2 (B [x2w] +13).
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Part (2) of this lemma gives a concentration inequality for martingales of
one-sidedly bounded differences, with less restrictive assumptions than [

Corollary 2.4.7.

Theorem 4.2. Let X; be random variables $,, = > | X;, Sy = 0. Suppose
thatb;, o; > 0 and thatF [X,,|S,_1] = 0, F[X?]S,-1] < 02 and X,, < b,
then, forg > 0,

(4.1) In B [¢#] < 7; (07 + 1)
and fort > 0,

— 42
4.2 P > < .
@2 (20} <o (g5 )

Proof. We prove {.1) by induction onn. The caser = 1 is just part (2) of the
lemma withiW = 0. Assume that4.1) holds for a given value af. If 3, is the
o-algebra generated k8, thene®» is X, -measurable, so

E [eﬁsn+1|sni| — E [eﬂsneﬁxn-ﬁ—l |Sni| — eﬁsnE [GBXTH—l |Sni|
almost surely. Thus,

I E ["5+1] = In E [E [¢7+1]S,]]
=InFE [eﬁS”E [eﬂX”“\SnH
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62

(4.3) SWE [e"] + 7 (om0 + bria)
52 n+1
(4.4) <5 (oF+0l),

=1

where Lemmal. 1, part 2 was used to get.(3) and the induction hypothesis was
used for §.4).
To get ¢.2), we proceed as in the proof of Theor@m: For 3 > 0,

2 n

InPr{S, >t} <InFE [e’g(s"_t)} < —pt+ 5 Z (03 + bf) .
=1
Minimizing the last expression with =t/ " (¢ + b?) gives @.2). O
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It remains to be seen if our inequality has any interesting practical implications.
In view of the comparison to Bernstein’s theorem this would have to be in a
situation where the random variables considered have a highly non-uniform be-
haviour and the deviations to which the result is applied are large. Apart from
its potential utility the new inequality may have some didactical value due to its

simplicity.
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