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ABSTRACT. Inthis paper two-dimensional Vilenkin-like systems will be investigated. We prove
the Sunouchi operator is bounded frdiff to L7 for (2/3 < ¢ < 1). As a consequence, we
prove the Sunouchi operatorig bounded forl < s < oo and of weak typgH%, L').

Key words and phrasesSunouchi operator, Vilenkin-like systems.

2000Mathematics Subject Classificat o42C10.

1. INTRODUCTION

The operatot/ (called the Sunouchi operator) was first introduced and investigated by Sunouchi
[1], [2] in Walsh-Fourier analysis.He showed a characterization for thgpaces fop > 1 by
means ofU/, since this characterization fails to hold for= 1. It was of interest to investigate
the boundedness &f on a Hardy space. In[3] Simon showed tibais a sublinear bounded
map from the dyadic Hardy spadg' into L'.

The Vilenkin analogue of the Sunouchi operator was given by [Gat[4], [5]. He investigated
the boundedness a&f from (Vilenkin) H* into L' and proved that if a Vilenkin group has an
unbounded structure arfid’® is defined by means of the usual maximal function, theis not
bounded. Furthermore, when they considered a modifiedpace (introduced by Simonl/[6]),
then a necessary and sufficient condition could be given for a Vilenkin group/thati* —

L' be bounded. All Vilenkin groups with bounded structure and certain groups without this
boundedness property satisfy the condition given by Gat. Thus, in the so-called bounded case,
the (H', L') -boundedness df remains true also for Vilenkin system. [ [7] Simon extended
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this result, by showing théH?, L.7)-boundedness of/ for all 0 < ¢ < 1. Moreover, the
equivalence

1
Il ~ 108, (5<0<1)

was also obtained fof with mean value zero.
In this paper we consider a two-dimensional case with respect to generalized Vilenkin-like
systems.

2. PRELIMINARIES AND NOTATIONS

In this section, we introduce important definitions and notations. Furthermore, we formulate
some known results with respect to Vilenkin-like systems, which play a basic role in further
investigations. For details, see [8] by Vilenkin ahd [9] by Schipp, Wade, Simon and Pal.

Letm := (mg, k € N) (N:={0,1,...,}) be a sequence of integers, each of them not less
than 2. Denote by, them,, -th cyclic group(k € N). That is,Z,,, can be represented by
the set{0, 1, ..., m; — 1}, where the group operator is the mog addition and every subset
is open. The Harr measure &), is given such thau({;j}) = mik (j € Zm,, k €N).

Let GG,,, denote the complete direct product &f,,'s equipped with product topology and
product measurg, thenG,, forms a compact Abelian group with Haar measure 1. The elements
of G,, are sequences of the formy, x4, ..., z, ... ), wherez, € Z,, foreveryk € N and the
topology of the grouyg-,, is completely determined by the sets

L,(0) := {(zo, 21, ..., Thy... ) EGp:2pg =0(k=0,...,n—1)}

(Ip(0) := Gp). Let I,,(z) :== [,(0) + x (n € N); My := 1 and My, := mpM; for k €
N, the so-called generalized powers. Then everg N can be uniquely expressed as=
Y peo My, 0 < ny, < my, n € N. The sequencéng,ny,...) is called the expansion of
with respect ton. We often use the following notationBi| := max{k € N : n; # 0} (that s,
Mjpy <1 < Mip41) andn®) = 372 n; M;.

LetG,, == {1, : n € N} denote the character group@f,. We enumerate the elements of
G, as follows. Fork € N andz € G,, denote by, thek-th generalized Rademacher function:

re(x) 1= exp <2w%> (£ € Gy1: V/—1,k €N).
k

It is known forx € G,,,n € N that

2.1) > ri(r) = { - :I iz i 8

m
i=0 v

Now we define the), by
Uy = HT:k (n € N).
k=0

G, is a complete orthonormal system with respegt.to
G. Gat introduced the so-called Vilenkin-liker o) system. Let functions,,, o/ : G,, —
C (n,j, k € N) satisfy:
)] 04;-“ is measurable with respectp (i.e. a;? dependsonly omg, z1,...,2;_1,J, k € N);
i) [aF] =a¥(0) =af =a) =1 (j,k € N);
i) a =120 (neN).
Let x,, := ¥na, (n € N). The systemy := {x,, : n € N} is called a Vilenkin-like(or i «)
system (see [10] and [13] for examples).
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Q) If a? = 1 for eachk, j € N, then we have the "ordinary" Vilenkin systems.
(2) If m; =2 forall j € Nanda?” = (8;)", where

B;(z) = exp (27TL <x;;1 +- 4 2?&)) (n,j €N,z € Gp),

then we have the character system of the group of 2-adic integers.
(3) If

Xn(x) :=exp <2m (Z ]\/T[Lj Z:ij])) (x € Gpyn € N),
=0 T =0

then we have a Vilenklin-like system which is useful in the approximation of limit peri-
odic almost even arithmetical functions.

In [10] Gat proved that a Vilenkin-like system is orthonormal and complef€ 4+, ). De-
fine the Fourier coefficients, the Dirichlet kernels, and Fejér kernels with respect to the Vilenkin-
like systemy as follows:

() = fn) = / fw PO = f(feLNGw)):

3 Gm
n—1
Dif(y,a:) = Dn(y,x) = Xn<y X”(‘r)7
k=0
1 n—1
Ki(y,z) = Kuly, @) = — > DX(y,x);
k=0
h+H-1
K;z(,H(yvx) = Kh,H(y7:C> = Z D;((y,llf),
j=h

where the bar means complex conjugation.
In [10] Gét also proved the following expression of the Dirichlet kernel functions.

M,, fy—zel,

(2.2) Dy, (y, ) = Dy, (y — x) = { 0, ify—azeG,\I.

Moreover,

DX(y,z) = o (y)an(x) Dy (y — @)

= )%l@) | YDy —a) 3wy —a)

(n € P:=N\{0}, y,z € Gp,),

where the system is the "ordinary" Vilenkin system.
If m = (m,,n € N) is also a generating sequence then we consider the Vilenkin grgup
as well. We write)/,, instead of)M,,. Let G := G,, x G and

Xk, 1(2,y) = xk(@)xi(y) (k,l €N, 2 € G, y € Gp)

be the two-parameter Vilenkin groups and Vilenkin systems, respectively.
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The symbolL”? (0 < p < oo) will denote the usual Lebesgue space of complex-valued
functionsf defined onz with the norm (or quasinorm)

b= ([ 1£7)" ©<p<o0). Ifle = essuplsl

If f e L', thenf(k,1) = |, fXwq (k, L € N) is the usual Fourier coefficient gt Let S, f
(n,l € N) be the(n, [)-th rectangular partlal sum gf

n—1 1—1

Spif = Y (ks )Xk

k=0 j=0
The so-called (martingale) maximal function 6fs given by

/ / f‘ (€ G, y € G).
]n Il(y

Furthermore, lef® be the hybrid maximal function of defined by

f(t,y)dt
In(x)

Define the Hardy spacH?(G,, x G;;) for 0 < p < oo as the space of functiorfsfor which

[ fllzzw 2= {1l < oo
Then|| f| x» is equivalent td|@ f||,, whereQ f is the quadratic variation of:

Qf = (ZZ rAn,sz)

n=0 [=0

- (ZZ ‘S n»le -5 n71\;fz—1f - SMnthlf + SMnflvjv[l—lf 2)
n=0 [=0

Sviit o f =Sy S =Sy i J =0 (n,l€N).
Let H® be the set of functiong such that

£l = [1F5 1 < oo
In [11] Weisz defined the two-dimensional Sunouchi operator as follows:

(2,9) = sup M3

f“(m,y) = sup M, (xEGm, yEGm)

[N

1

Uf = (Z > IS0 f = Sonran f = 030 Son f + Canran f '2>

n=0 m=0

whereo f is the Cesaro means of the Walsh Fourier serieg @ L'. Now we extend the
definition to the two-dimensional Vilenkin-like systems as follows:

1
2\ 2
oo oo |Mpy1— 1M9+1 1

2.2 Z Z £ R) X (f € LY).

n+1M5+1

If @ = (a,, n € N), 8= (8., n € N)are bounded sequences of complex numbers, then let

Mp—1 M;—

Topf i=sup ) Z nBif (1, ) X

=0 4=0

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 110, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SUNOUCHI OPERATOR 5

be defined at least obh?. )
Moreover, leto; := le‘l (leN,j=M,,...,M4, —1)andp, := kM;* (t € Nk =
My, ..., My, — 1) then

2\ 2

Z Z MlMtAl+l,t+1(Ta,ﬁf)

n=0 s=0 | =0 t=0

8
8
3

In this paper we assume the sequeneesm are bounded. In the investigations of some
operators defined on Hardy spaces, the conceptghtam is very useful. The functiom is
called ag-atom if eithera is identically equal to 1 or there exist intervdlg7) C G,,, I.(y) C
Gw (N, LeN, 1 € Gy, 7 € G) such that

i) a(r,y) =0if (v,y) € G\(In(7) x I(7)),
i) lally < p(In(r) x Ip(7))2 "7
141 /m a(t,y)dt = /Gm a(x,u)du =01if x € G, y € Gy,

[N

Lemma 2.1([1]). LetT be an operator defined at least @ and assume that is L, bounded.
If there exists) > 0 such that for allg-atomsa with support/y(7) x I.(y) and for allr € N,

we have
/ Talr < 2,
G\INfr(T)XILfr('Y)
thenT is bounded front{, to L, forall 0 < ¢ < 1.

Lemma 2.2. Let% < ¢ < 1. Then there exist > 0 and a constant’, depending only or
such that forV, L,r € N

n+1_1 — 2 %
_a k t
2 Z / / Z Xk(2) X (1) dt dx§0q2—67“‘
n=N~+1"Gm\IN—r \ VIN | k=p1, M,
Proof. Forn € N,n > N, we have
M, —2 M,—1
MoKy, () = Y xi(z)xa(t) > 1
=0 k=i+1

=0
My—1
= (M = 1)Dag, 1, 8) = Y ixa(z)xa(t)
=0
This follows

Mpgp1—1 . _

S WD Dy (0,0) — Ko 1)

i=M, n

. DMn+1( ) DMn(:U t)
M,
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If v € G,\IN_, t € Iy, then there exists (0 < u < N —r — 1) such thate € 1,\I,1.
Sincex —t € I,\1,41, we haveD,,, (z,t) = 0 for all (k > u + 1). Suppose that > «. From
the definitions of the function,, and the Fejér kernel, we havejife I,,(t)\ 1,11 (%),

n+M,—1 fu—1
Ko (@,t) = > (Z k:ij> X (2) X ()

n() +M—1 My —1
S MY e a@n
k:n(g) p:mu*ku

where

ks—1=0 ku+1=0 ky—1=0
[e%s} my—1
Ky My N =kD .
T = tef N @aft (@) Y k@ —1)
l=u+1 ku=0
Moy —1
=Y i@ =)oz, 1),
ky=0

and the functiory does not depend of. Consequentlyz1 = 0 (seel[12]).
Since the sequen(m Is bounded, we have

J,

2

Z

My —1 Msl

dt < CM2 Z Xn(S)Jrk(t))_(n(S)Jrl(t)ycn(s)+k(x)Xn(5)+l<I>dt

IN g 1= Oku —mu=p

1
< OM?—M,M,.
< OMy 7
Recall thatt“+1) £ [+ implies
| @ (o =

In

If s <, then|K, ) . (z,t)] < CM,M,. Then

Mn+1*1 kX (l’)x (t) 2 %
1 q/2 / / DARVT) X dt dx
n= ;—1 m\IN—r IN kZMn Mn
< ]\41 q/2 Z / (/ (|DMn+1($,t) - KMn+1($7t)|2
n= N+1 'm\IN ™

DMn+1( )_DMn(xvt)
M,

+ [|DMn(ZL‘,t> — K, (z,0)] + '

s

n=N-+17Gm\IN-r

2 3
} dt) dx
%

</ (|KM,L+1($,25)|2+IKMn(x,t)|2)dt> dr
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00 N—-r—1 n
<C My Y

n=N+1 u=0 n+1 s=

+

1ns—1

q
2
/Iv \I ( | ’Kn(s+1)+jM57 M (:E,t)’%it) dl‘
=0 u \lu+1 N

> 3
Z /I \I ( |Kn(5+l>+jM§.7 M, ($’ t)|2dt) d.T
0 ] 0 u\u+1

O
K)

r—1 n

oo N-—
oMy Y

’fl

n=N+1 u=0 s=
oo N-r—1 n+ln
M3M
1—q/2
oMyt Y S Yy [ (e )dx
n=N+1 u=0 +s‘ I \Iut1

oo N-—-r—-1

|
Loy Y ey

q
2
n=N+1 u=0 s=0 j=0 7 Tu\lut1

oo N-—r—1
< CqM}V*Q/Q Z Z ng/Zianiqu]\;q/Q
n=N+1 u=0

< CoMy PMEP MG = Cylmy—y - -my_y) G920 < 0,27 (5§ =3¢/2—1>0).
U

Theorem 2.3.Let2 < ¢ < 1. Then there exists a constafij such that

1UFllg < Collfllma (Vf € HI (G X G))-

Proof. Let a be ag-atom. It can be assumed that the supportisf/y x I, for someN, L € N,
that is

[

|alls < (MNPL)% Za nd/ a(x,t)dt:/ a(u,y)du =0 forall z € G,,,y € G.

IL IN
This last property implies that

a(i,j) =0ifi=0,..., My —1o0rj=0,..., M, — 1.
Let o andj as above. Then from the Cauchy inequality we have

Taﬂa(‘ra y)
Mpy1—1

Z Z //|atu 2 Minxk(xm(t) 2 MLsz(y)Xl(u)ldtdu

n=N+1 j= L+11N Jr I=M;
) 1
Mn+1 1 Mj1—1 I 2
@3 <l Y Y / / TR Y Se)u)| did
n=N+1j=L+1 k=M,, I=M; Y

First we will showT, s is g-quasi local. Let- € N and define the set¥; (i = 1,2,3,4) as
follows:

X1 = (Gm\IN—T) X IL, X2 = (Gm\IN—r) X (Gm\]L),
X3 = IN X (Gm\[L_T), X4 = (Gm\[N) X (Grh\IL—r)-

4
(Topa)? < / (T ga)"
/(G\INTXILr) ; Xi

It is clear that
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To estimate the integral ove¥;, we have

/ (Topa)!(x, y)dxdy
X3

< |12 Z /m\]N ) (/ (fz

n=N+1

Mpy1—1

Z Mim(l’))—(k(t)

k=M, n

q
2 2
Mjp1—1

Xsup/ (t,u) Z Z —Xl Yxi(w)|duldt | dy | dx

j=L+1 1=M;

< |1 Z / ’ /I
m N—r N

n=N-+1

<( ¥ |a<t,y>\2dydt)

From the definition of;-atoms and Lemn{a 2.2, we have

n+1 1 2 2

3 o)

=M, M,

/ (Ta,ﬁa)q(xv y)dfdy
X1

<t S [ ([
Gm\IN—r

n=N+1

_g
2 Z /(;m\INr /IN

n=N+1

(2.4) <0270

N

Mpy1—1 _ 2
k t
Z Xe(2) Xk (1) dt de

M,

k:Mn

N

Mpi1—1 2

kkx_kt
3 Xk () Xk (1)

YA dt dz

k=My

In a similar way, we have
(2.5) /X (T pa)(x,y)dxdy < C,27°".
On the setX,, by inequality (2.B) we have

| @sayite.gydady

<t > [

n=N+lj= L+1G \IN_r G \I1
2 3

// M- 1]ng ) k(1) Z ﬁXl(y))_a(u) dtdu | dxdy

gy | =M I=M;—1

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 110, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SUNOUCHI OPERATOR 9

o 55 [

N—+1 L+1
n=N+lj=L+lg, , \In—r G \I;

n+1 1 Mj1=1
k l
/ / Xk (@ )Xk() xi)xi(w)| dtdu | dudy

[\
N

k=M, =M, J
: e b
-3 Xe\T) Xk dt d
> / [ = .

Mjp1—1

< G2 (M) 8 Z / / Z —Xl (w)[*du)? dy

j= L+1G \JrL .
<C27
An analogous estimate withi, instead ofX, can be obtained using a similar argument and

these prove that the operaty, 5 is g-quasi local. By Parseval’'s equality, it is clear that the
operatorT,, 5 is L? bounded. Since
2\ 3
oo oo |Mniy1— 1Ms+1 1

=122 > Z £ )X < CQ(Tusf),

n=0 s=0 j=1 ”+1M5+1
where the operatap is a two-dimensional quadratic variation fBy Lemm& 2.1, we have

1UFllg < CollQTap g < Col Tapfllm, < Coll Fl,-
0

Applying known theorems on the interpolation of operators and a duality argument gives the
following:

Theorem 2.4.The operatoil/ is L* — L* bounded and of weak typéf®, L'), i.e., there exists
a constantC such that for alls > 0 and f € H* we have

p{(z,y) € G |Uf(x,y)| > 0o} <C

[RAl7E
5
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