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ABSTRACT. Inthe present paper we establish new nonlinear retarded integral inequalities which
can be used as tools in certain applications. Some applications are also given to illustrate the
usefulness of our results.
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1. INTRODUCTION

In [3] Lipovan obtained a useful upper bound on the following inequality:

a(t)
(1.1) u? (t) <+ /o [f (s)u” (s) + g (s)u(s)] ds,

and its variants, under some suitable conditions on the functions involvedjin (1.1). In fact, the
results given in[[3] are the retarded versions of the inequalities established by Pachpatte in [4]
(see also[5]). However, the bounds provided on such inequalitiés in [3] (see also [1, p. 142])
are not directly applicable in the study of certain retarded differential and integral equations.
It is desirable to find new inequalities of the above type, which will prove their importance in
achieving a diversity of desired goals. The main purpose of this paper is to establish explicit
bounds on the general versions pf {1.1) which can be used more effectively in the study of
certain classes of retarded differential and integral equations. The two independent variable
generalizations of the main results and some applications are also given.
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2 B.G. FACHPATTE

2. STATEMENT OF RESULTS

In what follows,R denotes the set of real numbeks; = [0,00), I = [to, ), [ = [x9, X),
I, = [yo,Y) are the given subsets &; A = I, x [, and’ denotes the derivative. The first
order partial derivatives of a functiariz, y) for x, y € R with respect tac andy are denoted by
D,z (z,y) and Dyz (x, y) respectively. Let' (M, N) denote the class of continuous functions
from the setV/ to the set\V.

Our main results are given in the following theorem.

Theorem 2.1.Letu, a;,b; € C (I,Ry) anda; € C* (I, ) be nondecreasing with; (t) < ¢ on

Ifori=1,...,n. Letp > 1 andc > 0 be constants.
(Cl) If
n a;(t)
(2.1) W) e [ a9 uls)ds
i=1 “ @i(to)

fort € I, then

1

n a;(t) p=1
(2.2) u(t) < {A(t) exp ((p - 1) Z/,(t . (o) da) }

fort € I, where

. n a;(t)
(2.3) A =7 + -1y [ G
i=1 7 ault
fort e I.
(cy) Letw € C' (R, R, ) be nondecreasing wittw(u) > 0 on (0,00). Iffor t € I,

" o (t)

(2.4) uP (t) < c+ pZ/ [a; (s)u(s)w (u(s))+b;(s)u(s)|ds,
i=1  @i(to)

then forty <t <t,,

1

n Oti(t) p—1
(25) u(t) < {G1 GuA®+r-0Y [ ) da] } ,
i=1 a;(to)
whereA(t) is defined by[ (2|3)7 ! is the inverse function of
(2.6) G(r):/ d—sl, r>0,
o W <8Pj>

ro > 0 is arbitrary and¢; € I is chosen so that

n a;(t)

GAMW)+((p-1) Z/,(t | a; (0)do € Dom (G—l) ’

for all ¢ lying in the intervalty <t < t;.

Remark 2.2. If we takep = 2, n = 1, oy = «, a1 = f, by = g in Theoren] 2.1, then we
recapture the inequalities given In [3] (see Corollary 2 and Theorem 1).

The following theorem deals with the two independent variable versions of the inequalities
established in Theorem 2.1 which can be used in certain applications.
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Theorem 2.3.Letu, a;,b; € C (A, Ry) andw; € C* (11, 1), B € C* (15, I) be nondecreas-
ing with a; () < zonly, B;(y) < yon Iyfori =1,...,n. Letp > 1 andc > 0 be
constants.

(d1) If

a; ()
(2.7) P(x,y) <c+pZ/ / [a; (s, t)uP (s,t) + b; (s,t) u(s,t)] dtds,

for (z,y) € A, then

n o () p%l
(2.8) u(z,y) < {B (x,y) exp ((p —1) Z/( / (o, 7 de0> } ;

for (z,y) € A, where

b1 n ()
(2.9) B(z,y)={c} * +(p—1) Z/ / (0,7)drdo,

i(zo0)

for (z,y) € A.
(d2) Letw be as in Theorefn 2.1, pa(rth). If for (z,y) € A,

n i)
(2.10) v? (z,y) < c —|—pZ/ / (s,t)w (u(s,t)) + b; (s,t)u(s,t)]dtds,

i(zo0)

then, forzg < x < x1,y0 <y <y,

G (B (z, p—1) Z/x / O'Tdeo']}pll’

whereB(z, y) is defined by{ (2]9)7, G~ are as in Theoreh 2.1, paft,) andx; € I,
y1 € Iy are chosen so that

G(B(m,y))—l—(p—l)Z/ / (0,7)drdo € Dom (G™),

forall z,y lying in the intervalry < x < 21,50 <y < y1.

(2.11) wu(z,y) < {G_l

Remark 2.4. We note that the inequalities established in Thedrerh 2.3 can be extended very
easily for functions involving more than two independent variables (sSee [5]). If weptake,
n=1a =« 0 =0, a = f, by = gin Theoren| 2.3, then we get the two independent
variable generalizations of the inequalities givenlin [3] (see Corollary 2 and Theorem 1). For
a slight variant of the inequality in Theorgm .3 givenlin [3] and its two independent variable
version, see€ [6].

3. PROOFS OF THEOREMS [Z.1AND 2.3

We give the details of the proofs f¢e,) and(d,) only; the proofs of(c;) and(d;) can be
completed by following the proofs of the above mentioned inequalities.

From the hypotheses we observe thatt) > 0fort € I, o) (z) > 0forxz € I, B; (y) > 0
fory € L.
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(c1) Letc > 0 and define a function(t) by the right hand side of (2.1). Therit) > 0
z (to) = ¢, z(t) is nondecreasing fare I, u (t) < {z (t)}% and
pz a; (o (1)) w? (e () + b (e () w (ai (£))] e (£)

n
1

<p), a (@i (1)) 2 (i () + bi (i (1)) {2 (i (t))}ﬂ a; (t)

{Z Z [az (0 (1)) {2 (e (0)}'T + b (e (t))}a; (t).

By takingt = s in (3.1) and integrating it with respect tdrom ¢, to t we get

(3.1)

(32 {()}7 <{d7
p—1) / Z i (0 (5)) £ (o (5))) 7+ b (04 (5))] o (5) .
Making the change of variables on the right hand sidg in (3.2)and rewriting we get
p—1 L ai(t) p—1
{z@)} 7 SA(t)+(p—1)Z/ a; (o) {z (o)} 7 do.

i=1 Y ei(to)

Clearly A(t) is a continuous, positive and nondecreasing functiort far /. Now by
following the idea used in the proof of Theorem 1[in [3] (see &l$o [6]) we get

b1 norait)
(3.3) {z()} 7 < A(t)exp <<p —1) Z/ a; (0) do) .

i=1 Y @i(to)

Using (3 .) inu (t) < {z (¢ }p we get the desired inequality |. (2.2).
If ¢ > 0we carry out the above procedure with- ¢ instead ofc, wheres > 0 is an

arbitrary small constant, and subsequently pass thedimit0 to obtain [(2.2).
(d2) Letc > 0 and define a function(z, y) by the right hand side of (2.1.0). Thefz, y) >
0, z(x0,y) = z(x,50) = ¢, z(x,y) is nondecreasing iiz,y) € A, u(x,y) <

{z(z,y)}? and
(3.4) DyDiyz (z,y)

= pz a; (i (z), B; () u (i (), Bi (y) w (u (e (z), B (y)))
+b; (i (z), B; (y)) u (i (), 65 (9))] B; (y) o (x)
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n

<pY o (i (@), 6 () {= (s (2) B ()} w0 ({2 (s () B ()}

s (i (2) B () 2 (0 (2) B (W)} | B, () o (@)
mem B w)w ({2 (0 (@), 8 )}

i (0 (2), B; ()] {= (2, 9)}7 B (y) o ().

From (3.4) we observe that

DyDyz (x,y) 1
——- < a; (i (7), B; (y))w ({2 (s (2), B P
{mmpp; 2), 8 ()w ({= (i (@) B ()} )

D) [z @)l
+bi (i (), Bi (v))] B (y) o () + 12 )
{2y ]
ie.
Dz (z,y) 1
(3.5) D, | /=2 y)w ({2 (i (), 6 (y)}7
<{Z (z,)}7 ) Z; ( ’ )

+bi (i (x), 0i ()] B; (y) o (),

for (z,y) € A. By keepingz fixed in (3.5), we sey = ¢ and then, by integrating with
respect ta from y, to y and using the fact thdd, z (z, yy) = 0, we have

@mﬁﬂi AZ%% Bt ({2 (@), 6: (1)}

{2 (2,9)}»
+bi (i (), 0 (1)) 55 (¢) o () dt.

Now by keepingy fixed in (3.6) and setting = s and integrating with respect tafrom
xo to z we have

(37) {z(@}7 <{}7T +(-1)

//Zal @i (5) B () w ({2 (o (), 6: (1)}

+bi (o (s), 8 (1))] B (1) ; (s) dtds.

By making the change of variables on the right hand side of (3.7) and rewriting we have

3.8) {z(z,9)}7 < B(z,y) / N /;(y) {z o, 7)) )dea.

(vo)

Now fix A\ € I, u € I, such thatvo <z <A<z,y <y <p<y.Thenfrom[3.8)
we observe that

3.9) {z(x, )} 7 <BOu) +(p—1) /a ;)/(y {z o,7)}r )drda,
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6 B.G. FACHPATTE

forzg < x < ANy < y < u. Define a functlonv(x y) by the right hand side of

(B.9). Thenu(z,y) > 0, v (zo,y) = v (z,y0) = B (A, u), v(z,y) is nondecreasing for
o<z < ANy <y <u{z(z, y)} » <wv(z,y)and

v(z,y) < B\ pu)+(p—1) Z/m /y i (o, T)w <{U(UT)}Pl)deU

forzg <z < A\ yo <y < p. Now by following the proof of Theorem 2.2, paiB;)
given in [/] (see alsa [6]) we get

ai(z)  rB(y)
G (B(\p))+ / / (o,7)drdo |,
i yO

forzg <ax < AN<zx,y <y <pu<uy. Slnce(A,u) is arbitrary, we get the desired
inequality in [2.11) from[(3.7]0) and the fact that

(3.10) v(z,y) <G

1

1 R 1
ule,y) < {2 @b <{ @1} = {v@yk.
The proof of the case when > 0 can be completed as mentioned in the proof of
Theorenj 2.1, parfc; ). The domainey < z < z1, yo < y < y; is obvious.
4. APPLICATIONS

In this section, we present some model applications which demonstrate the importance of our
results to the literature.
First consider the differential equation involving several retarded arguments

(41) :Ep_l (t) Qj/ (t) = f (ta z (t - hl (t)) gL (t - hn (t))) )
for t € 1, with the given initial condition
(4.2)  (to) = o

wherep > 1 andz, are constantsf € C' (I x R",R) and fori = 1,...,n, leth, € C (I,R,)

be nonincreasing and such that h; (t) > 0,t — h; (t) € C* (1,1), h;(t) < 1,h; (to) = 0.

For the theory and applications of differential equations with deviating arguments] see [2].
The following theorem deals with the estimate on the solution of the prolplein (4.1) - (4.2).

Theorem 4.1. Suppose that

n

(4.3) f (tu, )] <) 0 () fudl,

1=1
whereb; (t) are as in Theorerh 2.1. Let
1

(44) Q I?ealxl_—h/(), Zzl,...,n.
If z(¢) is any solution of the problern (4.1) F (#.2), then
1 n t—h;(t) _ p—1
(45) 2 (1) < {|xo|p— +o-0> [ b da} ,
i=1 v1to

fort € I, whereb; (0) = Q;b; (0 + h; (s)), 0,5 € I.
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Proof. The solutionz(t) of the problem[(4]1) { (4]2) can be written as

(4.6) 2P (t) = x8+p/ f(s,x(s=h1(s)),...,x(s—h,(s)))ds.
From [4.6), [(4.B),[(4]4) and making the change of variables we have
(4.7) e OF < looP +p [ 30l (s — b)) s

to =1

<LmW+p§j/’ (o)l do

for ¢ € I. Now a suitable application of the inequality in Theoten] 2.1, past(whena; = 0)
to (4.7) yields the required estimate in (4.5). O

Next, we obtain an explicit bound on the solution of a retarded partial differential equation
of the form

(4.8) D, (zp’l (z,y) D1z (a:',y))
:F(ZL‘,y,Z({L‘—hl(l’),y—gl(y)),...,Z(QT—hn(l‘),y—gn(y))),

for (z,y) € A, with the given initial boundary conditions

(4.9) z(z,yo) =e1(x), z(xo,y) =e€2(y), e1(xo)=-e2(yo) =0,

wherep > 1is a constantf' € C' (A x R*R), e; € C'(I,R), eo € C* (I, R), andh; €
C(I,Ry), g € C(I,R,) are nonincreasing and such that- h; () > 0, x — h; (z) €

CHI, L) y—gi(y) 20,y —gi (y) € C* (I, I2) , 1y (1) < 1, 7 (1) <1, hi (20) = g; (yo) = 0
fori =1,...,n; 2 € I,y € I,. For the study of special versions of equatipn4.8), we refer
interested readers to![8].

Theorem 4.2. Suppose that

(4.10) F (2, un, )| <0 (w,y)
i=1
(4.12) e} (x) + ¢ (y)] < e,

whereb, (z,y) andc are as in Theorerh 2.3. Let

1 1
4.12 My=max———, Ni=max———, i=1,....n.
(4.12) weh 1- b (2) weh1—_g(y "

If z(x, y) is any solution of the problerp (4.8) - (#.9), then

oi(x) pfil
(4.13) |z (z,y)| < {{c} s+ (p—1) Z/ / (0,7 dea} ,

(7o)

forx € I,y € I,,whereg; (z) = x — h; (z),x € I,,0; (y) =y — Vi (y) , y € Iy, bi (0,7) =
M, N;b; (0'+ h; (8) , T+ g (t)) for 0,8 € ]1, T,t € L.
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Proof. It is easy to see that the solutiefi, y) of the problem[(4.8) - (4]9) satisfies the equiva-
lent integral equation

(4.14) zP(say)=ef;(x)+e§<y>+p/z/yF<s,t,z<s—h1 ().t — g1 (1))

cey 2(8 = hy (s),t— g, (t)))dtds.
From (4.14),[(4.10)F(4.12) and making the change of variables we have

(4.15) |z (x,y)|" < ¢ —i—p/w /y Zbi (s,t) |z (s —hi(s),t—g;(t))|dtds

=1

n di(z) iy
< c—i—pZ/ / b; (o,7) |z (o, 7)|dTdo.
i=1 Y ¢

i(zo0) i(Yo)

Now a suitable application of the inequality given in Theofen 2.3, gdr} (whena; = 0) to
(@13) yields[(4.1B). O

Remark 4.3. From Theorerfi 411, itis easy to observe that the inequalities giveh in [3] cannot be
used to obtain an estimate on the solution of the prolflem (4 1)}- (4.2). Various other applications
of the inequalities given here is left to another work.
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