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Abstract

We study certain properties and conjuctures on the composition of the arith-
metic functions σ, ϕ, ψ, where σ is the sum of divisors function, ϕ is Euler’s
totient, and ψ is Dedekind’s function.
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1. Introduction
Let σ(n) denote the sum of divisors of the positive integern, i.e. σ(n) =∑

d/n d, where by conventionσ(1) = 1. It is well-known thatn is calledperfect
if σ(n) = 2n. Euclid and Euler ([10], [21]) have determined all even perfect
numbers, by showing that they are of the formn = 2k(2k+1−1), where2k+1−1
is a prime (k ≥ 1). The primes of the form2k+1− 1 are the so-called Mersenne
primes, and at this moment there are known exactly 41 such primes (for the
recent discovery of the41th Mersenne prime, see the sitewww.ams.org). It
is possible that there are infinitely many Mersenne primes, but the proof of
this result seems unattackable at present. On the other hand, no odd perfect
number is known, and the existence of such numbers is one of the most difficult
open problems of Mathematics. D. Suryanarayana [23] defined the notion of a
superperfectnumber, i.e. a numbern with the propertyσ(σ(n)) = 2n, and he
and H.J. Kanold [23], [11] have obtained the general form of even superperfect
numbers. These aren = 2k, where2k+1 − 1 is a prime. Numbersn with
the propertyσ(n) = 2n − 1 have been calledalmost perfect, while that of
σ(n) = 2n + 1, quasi-perfect. For many results and conjectures on this topic,
see [9], and the author’s book [21] (see Chapter 1).

For an arithmetic functionf , the numbern is calledf -perfect, if f(n) = 2n.
Thus, the superperfect numbers will be in fact theσ ◦ σ-perfect numbers where
"◦" denotes composition.

The Euler totient function, resp. Dedekind’s arithmetic function are given by

(1.1) ϕ(n) = n
∏
p|n

(
1− 1

p

)
, ψ(n) = n

∏
p|n

(
1 +

1

p

)
,
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wherep runs through the distinct prime divisors ofn. Following convention we
let,ϕ(1) = 1, ψ(1) = 1. All these functions are multiplicative, i.e. they satisfy
the functional equationf(mn) = f(m)f(n) for (m,n) = 1. For results on
ψ ◦ ψ-perfect,ψ ◦ σ-perfect,σ ◦ ψ-perfect, andψ ◦ ϕ-perfect numbers, see the
first part of [18]. Let σ∗(n) be the sum of unitary divisors ofn, given by

(1.2) σ∗(n) =
∏
pα||n

(pα + 1),

wherepα||n means that for the prime powerpα one haspα|n, butpα+1 - n. By
convention, letσ∗(1) = 1. In [18] almost and quasiσ∗◦σ∗-perfect numbers (i.e.
satisfyingσ∗(σ∗(n)) = 2n ∓ 1) are studied, where it is shown that forn > 3
there are no such numbers. This result has been rediscovered by V. Sitaramaiah
and M.V. Subbarao [22].

In 1964, A. Makowski and A. Schinzel [13] conjectured that

(1.3) σ(ϕ(n)) ≥ n

2
, for all n ≥ 1.

The first results after the Makowski and Schinzel paper were proved by J.
Sándor [16], [17]. He proved that (1.3) holds if and only if

(1.4) σ(ϕ(m)) ≥ m, for all oddm ≥ 1

and obtained a class of numbers satisfying (1.3) and (1.4). But (1.4) holds iff
is it true for squarefreen, see [17], [18]. This has been rediscovered by G.L.
Cohen and R. Gupta ([4]). Many other partial results have been discovered by
C. Pomerance [14], G.L. Cohen [4], A. Grytczuk, F. Luca and M. Wojtowicz
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[7], [8], F. Luca and C. Pomerance [12], K. Ford [6]. See also [2], [19], [20].
Kevin Ford proved that

(1.5) σ(ϕ(n)) ≥ n

39.4
, for all n.

In 1988 J. Sándor [15], [16] conjectured that

(1.6) ψ(ϕ(m)) ≥ m, for all oddm.

He showed that (1.6) is equivalent to

(1.7) ψ(ϕ(n)) ≥ n

2

for all n, and obtained a class of numbers satisfying these inequalities. In 1988
J. Sándor [15] conjectured also that

(1.8) ϕ(ψ(n)) ≤ n, for anyn ≥ 2

and V. Vitek [24] of Praha verified this conjecture forn ≤ 104.
In 1990 P. Erd̋os [5] expressed his opinion that this new conjecture could be

as difficult as the Makowski-Schinzel conjecture (1.3). In 1992 K. Atanassov
[3] believed that he obtained a proof of (1.8), but his proof was valid only for
certain special values ofn.

Nonetheless, as we will see, conjectures (1.6), (1.7) and (1.8) are not gen-
erally true, and it will be interesting to study the classes of numbers for which
this is valid.

The aim of this paper is to study this conjecture and certain new properties
of the above – and related – composite functions.
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1.1. Basic symbols and notations

• σ(n) = sum of divisors ofn,

• σ∗(n) = sum of unitary divisors ofn,

• ϕ(n) = Euler’s totient function,

• ψ(n) = Dedekind’s arithmetic function,

• [x] = integer part ofx,

• ω(n) = number of distinct divisors ofn,

• a|b = a dividesb,

• a - b = a does not divideb,

• pr{n} = set of distinct prime divisors ofn,

• f ◦ g = composition off andg.
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2. Basic Lemmas
Lemma 2.1.

(2.1) ϕ(ab) ≤ aϕ(b), for anya, b ≥ 2

with equality only ifpr{a} ⊂ pr{b}, wherepr{a} denotes the set of distinct
prime factors ofa.

Proof. We have
ab =

∏
p|a,p-b

pα ·
∏
q|a,q|b

qβ ·
∏
r|b,r-a

rγ,

so

ϕ(ab)

ab
=

∏(
1− 1

p

)
·
∏(

1− 1

q

)
·
∏(

1− 1

r

)
≤

∏(
1− 1

q

)
·
∏(

1− 1

r

)
=
ϕ(b)

b
,

soϕ(ab) ≤ aϕ(b), with equality if "p does not exist", i.e.p with the property
p|a, p - b. Thus for allp|a one has alsop|b.

Lemma 2.2. If pr{a} 6⊂ pr{b}, then for anya, b ≥ 2 one has

(2.2) ϕ(ab) ≤ (a− 1)ϕ(b),

and

(2.3) ψ(ab) ≥ (a+ 1)ψ(b).
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Proof. We give only the proof of (2.2).
Let a =

∏
pα ·

∏
qβ, b =

∏
rγ ·

∏
qβ

′
, where theq are the common prime

factors, and thep ∈ pr{a} are such thatp 6∈ pr{b}, i.e. suppose thatα ≥ 1.
Clearlyβ, β′, γ ≥ 0. Then

ϕ(ab)

ϕ(b)
= a ·

∏(
1− 1

p

)
≤ a− 1

iff ∏(
1− 1

p

)
≤ 1− 1

a
= 1− 1∏

pα ·
∏
qβ
.

Now,

1− 1∏
pα ·

∏
qβ
≥ 1− 1∏

pα
≥ 1− 1∏

p

by α ≥ 1. The inequality

1− 1∏
p
≥

∏(
1− 1

p

)
is trivial, since by putting e.g.p− 1 = u, one gets∏

(u+ 1) ≥ 1 +
∏

u,

and this is clear, sinceu > 0. There is equality only when there is a singleu,
i.e. if the set ofp such thatpr{a} 6⊂ pr{b} has a single element, at the first
power, and allβ = 0, i.e. whena = p - b. Indeed:

ϕ(pb) = ϕ(p)ϕ(b) = (p− 1)ϕ(b).
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Lemma 2.3. For all a, b ≥ 1,

(2.4) σ(ab) ≥ aσ(b),

and

(2.5) ψ(ab) ≥ aψ(b).

Proof. (2.4) is well-known, see e.g. [16], [18]. There is equality here, only for
a = 1.

For (2.5), letu|v. Then

ψ(u)

u
=

∏
p|u

(
1 +

1

p

)
≤

∏
p|v,p|u

(
1 +

1

p

)
·

∏
q|v,q-u

(
1 +

1

q

)
=
ψ(v)

v
,

with equality if q does not exist withq|v, q - v. Putv = ab andu = b. Then
ψ(u)
u
≤ ψ(v)

v
becomes exactly (2.5). There is equality if for eachp|a one also has

p|b, i.e. pr{a} ⊂ pr{b}.

Remark 1. Therefore, there is a similarity between the inequalities (2.1) and
(2.5).

Lemma 2.4. If pr{a} 6⊂ pr{b}, then for anya, b ≥ 2 one has

(2.6) σ(ab) ≥ ψ(a) · σ(b).

Proof. This is given in [16].
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3. Main Results
Theorem 3.1.There are infinitely manyn such that

(3.1) ψ(ϕ(n)) < ϕ(ψ(n)) < n.

For infinitely manym one has

(3.2) ϕ(ψ(m)) < ψ(ϕ(m)) < m.

There are infinitely manyk such that

(3.3) ϕ(ψ(k)) =
1

2
ψ(ϕ(k)).

Proof. We prove that (3.1) is valid for n = 3 · 2a for anya ≥ 1. This follows
fromϕ(3 · 2a) = 2a, ψ(2a) = 3 · 2a−1, ψ(3 · 2a) = 3 · 2a+1, ϕ(3 · 2a+1) = 2a+1,
so

3 · 2a > ϕ(ψ(3 · 2a)) > ψ(ϕ(3 · 2a)).

For the proof of (3.2), putm = 2a · 5b (b ≥ 2). Then an easy computation
shows thatψ(ϕ(m)) = 2a+1 · 32 · 5b−2, andϕ(ψ(m)) = 2a+2 · 3 · 5b−2 and the
inequalities (3.2) will follow.

Forh = 3s remark thatϕ(ψ(h)) = 4
9
· h andψ(ϕ(h)) = 4

3
· h, so

(3.4) ϕ(ψ(h)) < h < ψ(ϕ(h)),

which complete (3.1) and (3.2), in a certain sense.

http://jipam.vu.edu.au/
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Finally, fork = 2a · 7b (b ≥ 2) one can deduceψ(ϕ(k)) = 48
49
· k, ϕ(ψ(k)) =

24
49
· k, so (3.3) follows. We remark that since

(3.5) ψ(ϕ(k)) < k,

by (3.3) and (3.5) one can say that

(3.6) ϕ(ψ(k)) <
k

2
,

for the above values ofk. Remark also that forh in (3.4) one has

(3.7) ϕ(ψ(h)) =
1

3
ψ(ϕ(h)).

For the valuesm given by (3.2) one has

(3.8) ϕ(ψ(m)) =
2

3
ψ(ϕ(m)).

Forn = 2a · 3b (b ≥ 2) one can remark thatϕ(ψ(n)) = ψ(ϕ(n)).

More generally, one can prove:

Theorem 3.2. Let 1 < n = pα1
1 p

α2
2 · · · pαr

r the prime factorization ofn and
suppose that the odd part ofn is squarefull, i.e.αi ≥ 2 for all i with pi ≥ 3.

Thenϕ(ψ(n)) = ψ(ϕ(n)) is true if and only if

pr{(p1 − 1) · · · (pr − 1)} ⊂ pr{p1, . . . , pr} and(3.9)

pr{(p1 + 1) · · · (pr + 1)} ⊂ pr{p1, . . . , pr}.

http://jipam.vu.edu.au/
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Proof. Since

ϕ(n) = pα1−1
1 · · · pαr−1

r · (p1 − 1) · · · (pr − 1)

and
ψ(n) = pα1−1

1 · · · pαr−1
r · (p1 + 1) · · · (pr + 1),

one can write

ψ(ϕ(n)) = pα1−1
1 · · · pαr−1

r ·(p1−1) · · · (pr−1)·
∏

t|(pα1−1
1 ···pαr−1

r ·(p1−1)···(pr−1))

1 +
1

t

and

ϕ(ψ(n)) = pα1−1
1 · · · pαr−1

r · (p1 + 1) · · · (pr + 1)

·
∏

q|(pα1−1
1 ···pαr−1

r ·(p1+1)···(pr−1))

(
1− 1

q

)
.

Sinceαi − 1 ≥ 1 whenpi ≥ 3, the equalityψ(ϕ(n)) = ϕ(ψ(n)), by

(p1 − 1) · · · (pr − 1) ·
(

1 +
1

p1

)
· · ·

(
1 +

1

pr

)
= (p1 + 1) · · · (pr + 1) ·

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
,

can also be written as∏
t|(p1−1)···(pr−1)

(
1 +

1

t

)
=

∏
q|(p1+1)···(pr+1)

(
1− 1

q

)
.
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Since1 + 1
t
> 1 and1− 1

q
< 1, this is impossible in general. It is possible only

if all prime factors of(p1 + 1) · · · (pr − 1) are amongp1, . . . , pr, and also the
same for the prime factors of(p1 + 1) · · · (pr + 1).

Remark 2. For example,n = 2a · 3b · 5c with a ≥ 1, b ≥ 2, c ≥ 2 satisfy (3.9).
Indeed

pr{(2− 1)(3− 1)(5− 1)} = {2}, pr{(2 + 1)(3 + 1)(5 + 1)} = {2, 3}.

Similar examples aren = 2a ·3b ·5c ·7d, n = 2a ·3b ·5c ·11d, n = 2a ·3b ·7c ·13d,
n = 2a · 3b · 5c · 7d · 11e · 13f , n = 2a · 3b · 17c, etc.

Theorem 3.3.Letn be squarefull. Then inequality (1.8) is true.

Proof. Let n = pα1
1 · · · pαr

r with αi ≥ 2 for all i = 1, r. Then

ϕ(ψ(n)) = ϕ(pα1−1
1 · · · pαr−1

r · (p1 + 1) · · · (pr + 1))

≤ (p1 + 1) · · · (pr + 1) · ϕ(pα1−1
1 · · · pαr−1

r ),

by Lemma2.1. But

ϕ(pα1−1
1 · · · pαr−1

r ) = pα1−2
1 · · · pαr−2

r · (p1 − 1) · · · (pr − 1),

sinceα ≥ 2. Then

ϕ(ψ(n)) ≤ (p2
1 − 1) · · · (p2

r − 1) · pα1−2
1 · · · pαr−2

r

= pα1
1 · · · pαr

r ·
(

1− 1

p2
1

)
· · ·

(
1− 1

p2
r

)
,
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so

(3.10) ϕ(ψ(n)) ≤ n ·
(

1− 1

p2
1

)
· · ·

(
1− 1

p2
r

)
.

There is equality in (3.10) if

pr{(p1 + 1) · · · (pr + 1)} ⊂ {p1, . . . , pr}.

Clearly, inequality (3.10) is best possible, and by(
1− 1

p2
1

)
· · ·

(
1− 1

p2
r

)
< 1,

it implies inequality (1.8).

Theorem 3.4.For anyn ≥ 2 one has

(3.11) ϕ

(
n

[
ψ(n)

n

])
< n,

where[x] denotes the integer part ofx.

Proof. It is immediate that

ϕ(n)ψ(n)

n2
=

∏
p|n

(
1− 1

p2

)
< 1,

soϕ(n)ψ(n) < n2 for anyn ≥ 2. Now, by (2.1) one can write

ϕ

(
n

[
ψ(n)

n

])
≤

[
ψ(n)

n

]
ϕ(n) ≤ ψ(n)

n
· ϕ(n) < n,

by the relation proved above.
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Remark 3. If n|ψ(n), i.e., when
[
ψ(n)
n

]
= ψ(n)

n
, relation (3.11) gives inequality

(1.8), i.e.ϕ(ψ(n)) < n. For the study of an equation

(3.12) ψ(n) = k · n

we shall use a notion and a method of Ch. Wall [25]. We say thatn isω-multiple
ofm if m|n andpr{m} = pr{n}.

We need a simple result, stated as:

Lemma 3.5. If m andn are squarefree, andψ(n)
n

= ψ(m)
m

, thenn = m.

Proof. Without loss of generality we may suppose

(m,n) = 1; m,n > 1, m = q1 · · · qj (q1 < · · · < qj)

and
n = p1 · · · pk (p1 < · · · < pk).

Then the assumed equality has the form

n(1 + q1) · · · (1 + qj) = m(1 + p1) · · · (1 + pk).

Sincepk|n, the relation

pk|(1 + p1) · · · (1 + pk−1)(1 + pk)

impliespk|(1 + pk) for somei ∈ {1, 2, . . . , k}. Here

1 + p1 < · · · < 1 + pk−1 < 1 + pk,

http://jipam.vu.edu.au/
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so we must havepk|(1 + pk−1). This may happen only whenk = 2, p1 =
2, p2 = 3; j = 2, q1 = 2, q3 = 3 (since fork ≥ 3, pk − pk−1 ≥ 2, so
pk - (1 + pk−1)). In this case(n,m) = 6 > 1, a contradiction. Thusk = j and
pk = qj.

Theorem 3.6. Assume that the least solutionnk of (3.12) is a squarefree num-
ber. Then all solutions of (3.12) are given by theω-multiples ofnk.

Proof. If n is ω-multiple ofnk, then clearly

ψ(n)

n
=
ψ(nk)

nk
= k,

by (1.1).Conversely, ifn is a solution, setm = greatest squarefree divisor ofn.
Then

ψ(n)

n
=
ψ(m)

m
= k =

ψ(nk)

nk
.

By Lemma3.5,m = nk, i.e.n is anω-multiple ofnk.

Theorem 3.7. Let n ≥ 3, and suppose thatn is ψ-deficient, i.e.ψ(n) < 2n.
Then inequality (1.8) holds.

Proof. First remark that for anyn ≥ 3, ψ(n) is an even number. Indeed, if
n = 2a, thenψ(n) = 2a−1 · 3, which is odd only fora = 1, i.e. n = 2. If n has
at least one odd prime factorp, then by (1.1), ψ(n) will be even.

Now, applying Lemma2.1 for b = 2, one obtainsϕ(2a) ≤ a, i.e. ϕ(u) ≤ u
2

for u = 2a (even). Here equality occurs only whenu = 2k (k ≥ 1). Now,
ϕ(ψ(n)) ≤ ψ(n)

2
, ψ(n) being even, and sincen is ψ-deficient, the theorem

follows.
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Remark 4. The inequality

(3.13) ϕ (ψ(n)) ≤ ψ(n)

2

is best possible, since we have equality forψ(n) = 2k. Letn = pα1
1 · · · pαr

r ; then
pα1−1

1 · · · pαr−1
r ·(p1 +1) · · · (pr+1) = 2k is possible only ifα1 = · · · = αr = 1,

andp1 + 1 = 2a1, . . . , pr + 1 = 2ar ; i.e. whenp1 = 2a1 − 1, . . . , pr = 2ar − 1 are
distinct Mersenne primes, andn = p1 · · · pr. So, there is equality in (3.13) iff n
is a product of distinct Mersenne primes. Since by Theorem3.6one hasψ(n) =
2n iff n = 2a·3b (a, b ≥ 1), if one assumesψ(n) ≤ 2n, then by (3.13), inequality
(1.8) follows again. Therefore, in Theorem3.7one may assumeψ(n) ≤ 2n.

Let ω(n) denote the number of distinct prime factors ofn. Theorem3.7
and the above remark implies that whenn is even, andω(n) ≤ 2, (1.8) is true.
Indeed,1 + 1

2
= 3

2
< 2, and

(
1 + 1

2

) (
1 + 1

3

)
= 2. So e.g. whenn = pα1

1 · pα2
2 ,

then
ψ(n)

n
=

(
1 +

1

p1

)
·
(

1 +
1

p2

)
≤

(
1 +

1

2

) (
1 +

1

3

)
= 2.

On the other hand, ifn is odd, andω(n) ≤ 4, then (1.8) is valid. Indeed,(
1 +

1

3

) (
1 +

1

5

) (
1 +

1

7

) (
1 +

1

11

)
=

4

3
· 6

5
· 8

7
· 12

11
=

2304

1155
< 2.

Another remark is the following:
If 2 and 3 do not dividen, andn has at most six prime factors, thenϕ(ψ(n)) <

n. If 2, 3 and 5 do not dividen, andn has at most 12 prime factors, then the
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same result holds true. If 2, 3, 5 and 7 do not dividen, andn has at most 21
prime factors, then the inequality is true.

If 2 and 3 do not dividen, we prove thatψ(n) < 2n, and by the presented
method the results will follow. E.g., whenn is not divisible by 2 and 3, then the
least prime factor ofn could be 5, so

ψ(n)

n
<

6

5
· 8

7
· 12

11
· 14

13
· 18

17
· 20

19
· 24

23
· 30

29
· 32

31
< 2,

and the first result follows. The other affirmations can be proved in a similar
way.

In [16] it is proved that

(3.14) ψ(n) ≤
{

3ω(n) · ϕ(n), if n is even

2ω(n) · ϕ(n), if n is odd
.

Thus, as a corollary of (3.13) and (3.14) one can state that if3
ω(n)·ϕ(n)

2
< n

(or≤ n), for n even; and2ω(n)−1 · ϕ(n) (or≤ n) for n odd, then relation (1.8)
is valid.

By (3.13), if n is a product of distinct Mersenne primes, thenϕ(ψ(n)) =
ψ(n)

2
. We will prove thatψ(n) < 2n for suchn, thus obtaining:

Theorem 3.8. If n is a product of distinct Mersenne primes, then inequality
(1.8) is valid.

Proof. Let n = M1 · · ·Ms, whereMi = 2pi − 1 (pi primes,i = 1, 2, . . . , s)
are distinct Mersenne primes. We have to prove that(2p1 − 1) · · · (2ps − 1) >
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2p1+···+ps−1, or equivalently,
(
1− 1

2p1

)
· · ·

(
1− 1

2ps

)
> 1

2
. Clearlyp1 ≥ 2, p2 ≥

3, . . . , ps ≥ s+ 1, so it is sufficient to prove that

(3.15)

(
1− 1

22

)
· · ·

(
1− 1

2s+1

)
>

1

2
.

In the proof of (3.15) we will use the classical Weierstrass inequality

(3.16)
s∏

k=1

(1− ak) > 1−
s∑

k=1

ak,

whereak ∈ (0, 1) (see e.g. D.S. Mitrinović: Analytic inequalities, Springer-
Verlag, 1970).

Putak = 1
2k+1 in (3.16). Since

s∑
k=1

1

2k+1
=

1

4
·
(

1 +
1

2
+ · · ·+ 1

2k−1

)
=

1

4
·
(

1− 1
2k

1− 1
2

)
=

2k − 1

2k + 1
,

(3.15) becomes equivalent to1 − 2k−1
2k+1

> 1
2
, or 1

2
> 2k−1

2k+1
, i.e. 2k > 2k − 1,

which is true. Therefore, (3.15) follows, and the theorem is proved.

Remark 5. By Theorem3.15 (see relation (3.29)), if n = Ma1
1 · · ·M ss

s (with
arbitrary ai ≥ 1), the inequality (1.8) holds true.

Related to the above theorems is the following result:

Theorem 3.9. Letn be even, and suppose that the greatest odd partm of n is
ψ-deficient, and that3 - ψ(m). Then (1.8) is true.
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Proof. Let n = 2k ·m, when

ϕ(ψ(n)) = ϕ(2k−1 · 3ψ(m)) = 2 · ϕ(2k−1 · ψ(m))

since(3, 2k−1 · ψ(m)) = 1. But

ϕ(2k−1 · ψ(m)) ≤ 2k−2 · ψ(m) < 2k−1 ·m,

soϕ(ψ(n)) < 2k ·m = n.

Remark 6. In [18] it is proved that for alln ≥ 2 even, one has

(3.17) ϕ(σ(n)) ≥ 2n,

with equality only ifn = 2k, where2k+1 − 1 = prime. The proof is based on
Lemma2.3. Sinceσ(m) ≥ ψ(m), clearly this implies

(3.18) σ(σ(n)) ≥ 2n,

with the above equalities. So, the Surayanarayana-Kanved theorem is reob-
tained, in an improved form.

In [18] it is proved also that for alln ≥ 2 even, one has

(3.19) σ(ψ(n)) ≥ 2n,

with equality only forn = 2. What are the odd solutions ofσ(ψ(n)) = 2n?

We now prove:
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Theorem 3.10.Letn = 2k ·m be even (k ≥ 1,m > 1 odd), and suppose that
m is not a product of distinct Fermat primes, and thatm satisfies (1.6). Then

(3.20) σ(ϕ(n)) ≥ n−m ≥ n

2
.

Proof. First remark that ifm is not a product of distinct Fermat primes, then
ϕ(m) is not a power of 2. Indeed, ifm = pa1

1 · · · par
r , then

ϕ(m) = pa1−1
1 · · · par−1

r (p1 − 1) · · · (pr − 1) = 2s

iff (sincepi ≥ 3),
a1 − 1 = · · · = ar − 1 = 0

and
p1 − 1 = 2s1 , . . . , pr − 1 = 2sr ,

i.e.
p1 = 2s1 + 1, . . . , pr = 2sr + 1

are distinct Fermat primes. Thus there exists at least an odd prime divisor of
ϕ(m). Now, by Lemma2.4,

σ(ϕ(2k ·m)) = σ(2k−1 ·ϕ(m)) ≥ ψ(ϕ(m)) · σ(2k−1) ≥ m · (2k− 1) = n−m,

by relation (1.6). The last inequality of (3.20) is trivial, sincem ≤ n
2

= 2k−1 ·m,
wherek − 1 ≥ 0.

Remark 7. Relation (3.17) gives an improvement of (1.3) for certain values of
n.
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Theorem 3.11.Letp be an odd prime. Then

(3.21) ϕ(ψ(p)) ≤ p+ 1

2
,

with equality only ifp is a Mersenne prime, andψ(ϕ(p)) ≥ 3
2
· (p − 1), with

equality only ifp is a Fermat prime.

Proof. ψ(p) = p+ 1 andp+ 1 being even,ϕ(p+ 1) ≤ p+1
2

, with equality only
if p + 1 = 2k, i.e. whenp = 2k − 1 = Mersenne prime. Since3

2
· (p− 1) ≥ p,

this inequality is better than (1.6) for n = p. Similarly,ϕ(p) = p − 1 = even,
soψ(p− 1) ≥ 3

2
· (p− 1), on base of the following:

Lemma 3.12. If n ≥ 2 is even, then

(3.22) ψ(n) ≥ 3

2
· n,

with equality only ifn = 2a (power of 2).

Proof. If n = 2a ·N , withN odd,

ψ(n) = ψ(2a) · ψ(N) = 2a−1 · 3 · ψ(N) ≥ 2a−1 · 3 ·N =
3

2
· n.

Equality occurs only, whenN = 1, i.e. whenn = 2a.

Sincep − 1 = 2a impliesp = 2a + 1 = Fermat prime, (3.21) is completely
proved. Since3

2
· (p− 1) ≥ p, this inequality is better than (1.6) for n = p.
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Remark 8. For p ≥ 5 one hasp+1
2
< p < 3

2
· (p − 1), so (3.21) implies, as a

corollary that

(3.23) ϕ(ψ(p)) < p < ψ(ϕ(p)),

for p ≥ 5, prime.

This is related to relation (3.4). If n is even, andn 6= 2a (power of 2), then
sinceψ(N) ≥ N + 1, with equality only whenN is a prime, (3.22) can be
improved to

(3.24) ψ(n) ≥ 3

2
·
(
n+

n

N

)
,

with equality only forn = 2a ·N , whereN = prime.

Theorem 3.13.Let a, b ≥ 1 and suppose thata|b. Thenϕ(ψ(a))|ϕ(ψ(b)) and
ψ(ϕ(a))|ψ(ϕ(b)). In particular, if a|b, then

(3.25) ϕ(ψ(a)) ≤ ϕ(ψ(b)); ψ(ϕ(a)) ≤ ψ(ϕ(b)).

Proof. The proof follows at once from the following:

Lemma 3.14. If a|b, then

(3.26) ϕ(a)|ϕ(b),

and

(3.27) ψ(a)|ψ(b),
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Proof. This follows by (1.1), see e.g. [16], [18].

Now, if a|b, thenψ(a)|ψ(b) by (3.27), so by (3.26), ϕ(ψ(a))|ϕ(ψ(b)). Sim-
ilarly, a|b implies ϕ(a)|ϕ(b) by (3.26), so by (3.27), ψ(ϕ(a))|ψ(ϕ(b)). The
inequalities in (3.22) are trivial consequences.

Remark 9. Leta = p be a prime such thatp - k, and putb = kp−1 − 1.
By Fermat’s little theorem one hasa|b, so all results of (3.25) are correct in

this case. For example,ψ(ϕ(a)) ≤ ψ(ϕ(b)) gives, in the case of (3.25), and
Theorem3.10:

(3.28) ψ(ϕ(kp−1 − 1)) ≥ ψ(ϕ(p)) ≥ 3

2
· (p− 1),

for any primep - k, and any positive integerk > 1.

Let (n, k) = 1. Then by Euler’s divisibility theorem, one has similarly:

(3.29) ψ(ϕ(kϕ(n) − 1)) ≥ ψ(ϕ(n)),

for any positive integersn, k > 1 such that(n, k) = 1.
Let n > 1 be a positive integer, having as distinct prime factorsp1, . . . , pr.

Then, using (1.1) it is immediate that

(3.30) ϕ(n)|ψ(n)
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mailto:jsandor@math.ubbcluj.ro
http://jipam.vu.edu.au/


On the Composition of Some
Arithmetic Functions, II

József Sándor

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 25 of 37

J. Ineq. Pure and Appl. Math. 6(3) Art. 73, 2005

http://jipam.vu.edu.au

iff (p1 − 1) · · · (pr − 1)|(p1 + 1) · · · (pr + 1). For example, (3.30) is true for
n = 2m, n = 2m · 5s (m, s ≥ 1), etc. Now assuming (3.30), by (3.26) one can
write the following inequalities:

(3.31) ϕ(ψ(ϕ(n))) ≤ ϕ(ψ(ψ(n))) andψ(ϕ(ϕ(n))) ≤ ψ(ϕ(ψ(n))).

By studying the first 100 values ofn with the property (3.30), the following
interesting example may be remarked:ϕ(15) = ϕ(16) = 8, ψ(15) = ψ(16) =
24 andϕ(15)|ψ(15). Similarly ϕ(70) = ϕ(72) = 24, ψ(70) = ψ(72) = 144,
with ϕ(70)|ψ(70).

Are there infinitely many such examples? Are there infinitely manyn such
that ϕ(n) = ϕ(n + 1) andψ(n) = ψ(n + 1)? Or ϕ(n) = ϕ(n + 2) and
ψ(n) = ψ(n+ 2)?

Let a = 8, b = σ(8k − 1). Thena|b (see e.g. [18] for such relations), and
sinceψ(ϕ(8)) = 6, ϕ(ψ(8)) = 12, by (3.25) we obtain the divisibility relations

(3.32) 6|ψ(ϕ(σ(8k − 1))) and12|ϕ(ψ(σ(8k − 1)))

for k ≥ 1.
The second relation implies e.g. that ifϕ(ψ(σ(n))) = 2n, thenn 6≡ −1 (mod 8)

and ifϕ(ψ(σ(n))) = 4n, thenn 6≡ −1 (mod 24).

Theorem 3.15. Inequality (1.8) is true for ann ≥ 2 if it is true for the square-
free part ofn ≥ 2. Inequality (1.6) is true for an oddm ≥ 3 if it is true for the
squarefree part ofm ≥ 3.

Proof. As we have stated in the Introduction, such results were first proved by
the author. We give here the proof for the sake of completeness.
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Let n′ be the squarefree part ofn, i.e. if n = pa1
1 · · · par

r , thenn′ = p1 · · · pr.
Then

ϕ(ψ(n)) = ϕ(pa1−1
1 · · · par−1

r · (p1 + 1) · · · (pr + 1))

≤ pa1−1
1 · · · par−1

r · ϕ((p1 + 1) · · · (pr + 1))

=
n

n′
· ϕ(ψ(n′)))

by inequality (2.1).
Thus

(3.33)
ϕ(ψ(n))

n
≤ ϕ(ψ(n′))

n′
.

Therefore, ifϕ(ψ(n′))
n′

< 1, thenϕ(ψ(n))
n

< 1. Similarly one can prove that

(3.34)
ψ(ϕ(m))

m
≥ ψ(ϕ(m′))

m′ ,

so if (1.6) is true for the squarefree partm′ of m, then (1.6) is true also form.
As a consequence, (1.8) is true for alln if and only if it is true for all square-

freen.
As we have stated in the introduction, (1.6) is not generally true for allm.

Let e.g.m = 3 · F , whereF > 3 is a Fermat prime. Indeed, putF = 2k + 1.
Thenϕ(m) = 2k+1, so

ψ(ϕ(m)) = 2k · 3 < 3 · (2k + 1) = 3 · F = m,
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contradicting (1.6). However, ifm has the formm = 5 · F , whereF > 5 is
again a Fermat prime, then (1.6) is valid, since in this case

ψ(ϕ(m)) = 6 · 2k > 5 · (2k + 1) = m.

More generally, we will prove now:

Theorem 3.16.Let 5 ≤ F1 < · · · < Fs be Fermat primes. Then inequality
(1.6) is valid (with strict inequality) form = F a1

1 · · ·F as
s , with arbitrary ai ≥

1 (i = 1, s).

Proof. Let Fi = 1 + 22bi (i ≥ 1) be Fermat primes, whereb1 ≥ 1. Since
b1 < b2 < · · · < bs, clearly bi ≥ i for any i = 1, 2, . . . , s. By (3.34) it
is sufficient to prove the result form′ = F1 · · ·Fs, when (1.6) becomes, after
some elementary computations:

(3.35)

(
1 +

1

22b1

)
· · ·

(
1 +

1

22bs

)
≤ 3

2
.

We will prove that (3.35) holds with strict inequality. By the classical Weier-
strass inequalities one has

s∏
k=1

(1 + ak) <
1

1−
∑s

k=1 ak
,

whereak ∈ (0, 1).
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Sincebi ≥ 1, it is sufficient to prove that

(3.36)

(
1 +

1

22

)
· · ·

(
1 +

1

22s

)
≤ 3

2
.

Putak = 22k
(k ≥ 1), so by the above inequality, it is sufficient to prove that

(3.37)
∑

=
1

221 +
1

222 + · · ·+ 1

22s <
1

3
.

Clearly (3.37) is true fors = 1, 2, since1
4
< 1

3
, 1

4
+ 1

16
= 5

16
< 1

3
. Let s ≥ 3.

Then, since2s ≥ s+ 5 for s ≥ 3, we can write∑
≤ 1

4
+

1

16
+

1

28
·
(

1 +
1

2
+ · · ·+ 1

2s−3

)
=

5

16
+

1

128
·
(

1− 1

2s−2

)
<

5

16
+

1

128
=

41

128
<

1

3
,

and the assertion is proved.
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Remark 10. By Lemma2.2, relation (2.2) one can write successively

(3.38)

ϕ((p1 + 1)(p2 + 1)) ≤ p2ϕ(p1 + 1) < p1p2,

if pr{p2 + 1} 6⊂ pr{p1 + 1}

ϕ((p1 + 1)(p2 + 1)(p3 + 1)) ≤ p3ϕ(p1 + 1)(p2 + 1) < p1p2p3,

if in additionpr{p3 + 1} 6⊂ pr{(p1 + 1)(p2 + 1)}

· · ·

ϕ((p1 + 1) · · · (pr−1 + 1)(pr + 1)) ≤ prϕ((p1 + 1) · · · (pr−1 + 1))

< p1 · · · pr,
if pr{pr + 1} 6⊂ pr{(p1 + 1) · · · (pr−1 + 1)}

is satisfied, then by Theorem3.15, inequality (1.8) is valid.
Similarly, by using Lemma2.2, (2.3), and Theorem3.15, we can state that if

(3.39)

pr{p2 − 1} 6⊂ pr{q1 − 1},
pr{q3 − 1} 6⊂ pr{(p1 − 1)(p2 − 1)},

· · · ,
pr{qr − 1} 6⊂ pr{(p1 − 1) · · · (qr−1 − 1)},

then inequality (1.6) is valid. (Hereq1, q2, . . . , qr are the prime divisors of the
odd numberm ≥ 3.)

Remark 11. Inequality (1.8) is not generally true. Indeed, forn = 39270,
n = 82110, or n = 2 · 3 · 5 · 7 · 17 · 23 ·M , whereM is a Mersenne prime,
greater or equal than31, then (1.8) is not true. This has been communicated
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to the author by Professor L. Tóth. Prof. Kovács Lehel István found recently
the counterexamples: 53130, 71610, 78540, 106260, 108570, 117810, 122430,
143220, 157080, 159390, 164010, 164220, 212520, 214830, 217140, 235620,
244860, 246330, 247170, 286440, 293370, 314160, 318780, 325710, 328440,
353430 and 367290.

Now by using a method of L. Alaoglu and P. Erdős [1], we will prove that:

Theorem 3.17.For anyδ > 0, the inequality

(3.40) ϕ(ψ(n)) < δ · n

is valid, excepting perhapsn ∈ S, whereS has asymptotic density zero.

Proof. We prove first that for any given primep, the set ofn such thatp|ψ(n),
has density 1. This is similar to the proof given in [1].

On the other hand, since
∑

n≤x ψ(n) ≈ 15
2π2 · x2 asx → ∞ (see e.g. [16]),

we can say that excepting at most a number ofε · x integersn < x, one has
ψ(n) < c(ε) · n, wherec(ε) > 0.

Let nowp be a prime such that∏
q≤p

(
1− 1

q

)
<

δ

c(ε)

(this is possible, since
∏

q≤p

(
1− 1

q

)
→ 0 asp→∞).

Then, ifx is large, then for alln < x, excepting perhaps a number ofη·x+ε·x
integers one hasψ(n) < c(ε). n andψ(n) ≡ 0(mod q) for anyq ≤ p, (η > 0).

But for these exceptions one hasϕ(ψ(n)) < δ ·n, and this finishes the proof;
η, ε > 0 being arbitrary.
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Remark 12. It can be proved similarly that

(3.41) ψ(ϕ(n)) > δ · n,

excepting perhaps a set of density zero.

Theorem3.17implies thatlim inf
n→∞

ϕ(ψ(n))
n

= 0, and so, one haslim sup
n→∞

ψ(ϕ(n))
n

= +∞. For other proof of these results, see [16]. We cannot determine the fol-
lowing values:lim inf

n→∞
ψ(ϕ(n))

n
=?, lim sup

n→∞

ϕ(ψ(n))
n

=?

However, we can prove that:

Theorem 3.18.

(3.42) lim inf
n→∞

ψ(ϕ(n))

n
≤ inf

{
ψ(ϕ(k))

k
: k is a multiple of4

}
<

1

2
.

Proof. Let k be a multiple of 4, andp > k
2
. Then

ϕ

(
1

2
kp

)
= ϕ

(
k

2

)
ϕ(p) = 2ϕ(

k

2
) · p− 1

2
= ϕ(k) · p− 1

2
,

since2|k
2
. Now byψ(ab) ≤ ψ(a)ψ(b) one can write

ψ

(
ϕ

(
1

2
kp

))
≤ ψ(ϕ(k))ψ

(
p− 1

2

)
.

Sinceψ
(
p−1
2

)
≤ σ

(
p−1
2

)
, and by the known result of Makowski and Schinzel:

lim inf
σ( p−1

2 )
p−1
2

= 1, from the above one can write:

lim inf
p→∞

ψ
(
ϕ

(
1
2
kp

))
1
2
kp

≤ ψ(ϕ(k))

k
· lim inf

p→∞

ψ
(
p−1
2

)
p−1
2

≤ ψ(ϕ(k))

k
,
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and now relation (3.42) follows, by takinginf afterk.
Since

232 − 1 = F0 · F1 · F2 · F3 · F4,

whereFk = 22k
+ 1, and allFi (0 ≤ i ≤ 4) are primes, it follows, that

ϕ(232 − 1) = 21 · 22 · 24 · 28 · 216 = 231.

Thusϕ(4(232 − 1)) = 232, by ϕ(4) = 2. Sinceψ(232) = 231 · 3, by letting in
(3.42) k = 4 · (232 − 1), we get theinf ≤ 231·3

4·(232−1)
< 1

2·( 4
3
−θ) , whereθ > 1

3·230 .

In any case we get in (3.42) that lim inf < 1
2
, and fact a value slightly greater

than 1
2· 4

3

= 3
8
.

In [16] it is asked the value oflim inf ψ(σ(n))
n

≤ 1. We now prove that this
value is 1:

Theorem 3.19.

(3.43) lim inf
ψ(σ(n))

n
= 1.

Proof. Since ψ(σ(n))
n

≥ σ(n)
n

≥ 1, clearly this limit is≥ 1. By the above in-
equality, the result follows. However, we give here a new proof of this fact. We
remark that, sinceϕ(N) ≤ ψ(N) ≤ σ(N), and by the known result

lim
p→∞

ϕ(N(a, p))

N(a, p)
= lim

p→∞

σ(N(a, p))

N(a, p)
= 1,
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whereN(a, p) = ap−1
p−1

, (a > 1, p prime) we easily get

(3.44) lim
p→∞

ϕ(N(a, p))

N(a, p)
= 1.

Now let a = q an arbitrary prime in (3.44). We remark thatN(q, p) = qp−1
q−1

=

σ(qp−1). Now, by

σ(qp−1)

qp−1
=

qp − 1

(q − 1) · qp−1
→ q

q − 1
,

asp→∞, from (3.44) we can write:

(3.45) lim
p→∞

ψ(σ(qp−1))

qp−1
=

q

q − 1
< 1 + ε,

for q ≥ q(ε), ε > 0. Now by (3.45), (3.43) follows.

Remark 13. In [16] it is proved, by assuming the infinitude of Mersenne primes,
that

(3.46) lim inf
n→∞

ψ(ψ(n))

n
=

3

2
.

Can we prove (3.46) without any assumption?

We have conjectured in [16] that the following limit is true, but in the proof
we have used the fact that there are infinitely many Mersenne primes. Now we
prove this result without any assumptions:
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Theorem 3.20.We have

(3.47) lim inf
ψ(ψ(n))

n
=

3

2
.

Proof. Sinceψ(n) ≥ 3
2
n for all evenn, andψ(n) ≥ n for all n, clearly

ψ(ψ(n)) ≥ 3
2
· n for all n, therefore it will be sufficient to find a sequence

with limit 3
2
. By using deep theorems on primes in arithmetical progressions, it

can be proved, as in Makowski-Schinzel [13] that

lim sup
ϕ(a)

a
= lim inf

σ(a)

a
= 1

asp tends to infinity, wherea = (p+1)
2

, andp ≡ 1 (mod 4).

Since(p+1)
2

is odd, we get

σ(p+ 1) = σ

(
2 · (p+ 1)

2

)
= 3 · σ

(
(p+ 1)

2

)
,

implying that lim inf (σ(p+1))
p

= 3
2
. Sinceψ(n) ≤ σ(n), we can write that

lim inf (ψ(p+1))
p

≤ 3
2
. By (ψ(p+1))

p
> 3

2
, this yieldslim inf (ψ(p+1))

p
= 3

2
, complet-

ing the proof of the theorem.
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