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Abstract

We study certain properties and conjuctures on the composition of the arith-
metic functions o, ¢, ¥, where ¢ is the sum of divisors function, ¢ is Euler's
totient, and ¢ is Dedekind’s function.
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Let o(n) denote the sum of divisors of the positive integeri.e. o(n) =

>_a4/n 4, Where by convention(1) = 1. Itis well-known thatr is calledperfect

if o(n) = 2n. Euclid and Euler ([(], [21]) have determined all even perfect
numbers, by showing that they are of the farm- 2% (25! —1), where2**+! — 1

is a prime ¢ > 1). The primes of the for2**! — 1 are the so-called Mersenne
primes, and at this moment there are known exactly 41 such primes (for the
recent discovery of thd1* Mersenne prime, see the silevw.ams.ory It On the Composition of Some
is possible that there are infinitely many Mersenne primes, but the proof of Arithmetic Functions, Il
this result seems unattackable at present. On the other hand, no odd perfect
number is known, and the existence of such numbers is one of the most difficult
open problems of Mathematics. D. Suryanarayaiihdefined the notion of a
superperfechumber, i.e. a number with the propertyr(c(n)) = 2n, and he

and H.J. Kanold{3], [11] have obtained the general form of even superperfect Contents
numbers. These are = 2F, where2**! — 1 is a prime. Numbers with
the propertyoc(n) = 2n — 1 have been calledlmost perfectwhile that of
o(n) = 2n + 1, quasi-perfect For many results and conjectures on this topic, < >
see P], and the author’s book’[!] (see Chapter 1).
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For an arithmetic functiorf, the numben is calledf-perfect if f(n) = 2n.
Thus, the superperfect numbers will be in fact theo-perfect numbers where Close
"o" denotes composition. Quit
The Euler totient function, resp. Dedekind’s arithmetic function are given by Page 3 of 37
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wherep runs through the distinct prime divisorsof Following convention we
let, o(1) = 1,9 (1) = 1. All these functions are multiplicative, i.e. they satisfy
the functional equatiorf(mn) = f(m)f(n) for (m,n) = 1. For results on
1 o Y-perfect,) o o-perfect,o o y-perfect, and) o p-perfect numbers, see the
first part of [LE]. Let o*(n) be the sum of unitary divisors of, given by

(1.2) o*(n) = [ @*+1),

p*||n

a . o atl On the Composition of Some
wherep®||n means that for the prime powgt one hag®|n, butp®* { n. By Arithmetic Functions, II

convention, let*(1) = 1. In [1¢] almost and quasi™* o o *-perfect numbers (i.e.
satisfyingo*(c*(n)) = 2n F 1) are studied, where it is shown that for> 3
there are no such numbers. This result has been rediscovered by V. Sitaramaiah

Jozsef Sandor

and M.V. Subbarao’’]. Title Page

In 1964, A. Makowski and A. Schinzel [] conjectured that Contents
(1.3) o(p(n)) > g foralln > 1. “ 44
< | 2

The first results after the Makowski and Schinzel paper were proved by J.

Sandor [ 6], [17]. He proved that1.3) holds if and only if Go Back
Close

(1.4) o(p(m)) > m, foralloddm > 1 .
Quit

and obtained a class of numbers satisfyibi@)and (L.4). But (1.4) holds iff Page 4 of 37
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[7], [8], F. Luca and C. Pomerance], K. Ford [6]. See alsof{], [19], [20].
Kevin Ford proved that

n
(1.5) a(p(n)) > 00 for all .

In 1988 J. Sandor![]], [ 16] conjectured that

(1.6) ¥(e(m)) > m, for all oddm.
He showed thatl(.6) is equivalent to On the Composition of Some
Arithmetic Functions, Il
n
(1-7) w(@(”)) > 5 Jozsef Sandor

for all n, and obtained a class of numbers satisfying these inequalities. In 1988

J. Sandor 5] conjectured also that e P
Contents
(1.8) w((n)) < n, foranyn > 2
- - - - “ >>
and V. Vitek [24] of Praha verified this conjecture far< 10%. p >

In 1990 P. Erés [>] expressed his opinion that this new conjecture could be
as difficult as the Makowski-Schinzel conjectufied). In 1992 K. Atanassov Go Back
[2] believed that he obtained a proof df.§), but his proof was valid only for

. . Close
certain special values af.
Nonetheless, as we will see, conjectures), (1.7) and (L.8) are not gen- Quit
erally true, and it will be interesting to study the classes of numbers for which Page 5 of 37
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o(n) = sum of divisors of,

o*(n) = sum of unitary divisors of,
©(n) = Euler’s totient function,

1 (n) = Dedekind’s arithmetic function,
[z] = integer part ofr,

w(n) = number of distinct divisors af,
a|b = a dividesb,

a t b= a does not divide,

pr{n} = set of distinct prime divisors of,

f o g = composition off andg.
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Lemma 2.1.

(2.1) o(ab) < ap(b), foranya,b > 2

with equality only ifpr{a} C pr{b}, wherepr{a} denotes the set of distinct

prime factors ofu.

Proof. We have

ab=11r 114 1]
pla,ptd qla,q|b r|b,rta
SO

sop(ab) < ap(b), with equality if "p does not exist", i.ep with the property
pla,p 1 b. Thus for allp|a one has alsp|b. ]

Lemma 2.2.If pr{a} ¢ pr{b}, then for anyu, b > 2 one has

(2.2) p(ab) < (a—1)p(d),

and

(2.3) P(ab) = (a + 1)¥(b).
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Proof. We give only the proof ofZ.2).

Leta = []p~-[I1¢% b =TI -[]¢%, where the; are the common prime
factors, and the € pr{a} are such thap ¢ pr{b}, i.e. suppose that > 1.
Clearly3, 3 ,~ > 0. Then

iéﬁ):a.n(pi) <a-1

H(“%)Sl‘é:l T T

1 1 1
1-— >l—=——2>1— —

11" = I~ Ip
by a > 1. The inequality

1 1
- — > 1—=
[Ip — 1 ( p)
is trivial, since by putting e.gp — 1 = u, one gets

H(u—i—l)Zl—l—Hu,

and this is clear, since > 0. There is equality only when there is a single
i.e. if the set ofp such thatpr{a} ¢ pr{b} has a single element, at the first
power, and ali = 0, i.e. whena = p { b. Indeed:

@(pb) = @(p)p(b) = (p — 1)p(b).

Now,
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Lemma?2.3.Forall a,b > 1,

(2.4) o(ab) > aa(b),

and

(2.5) (ab) > ap(b).

Proof. (2.4) is well-known, see e.g.1[], [18]. There is equality here, only for

a—=1. On the Composition of Some

Arithmetic Functions, Il

For (2.9), letu|v. Then

S0 = IO I () -

Jozsef Sandor

plu plv.plu qlv,qtu Ui PEge
. L . . Contents
with equallty if ¢ does not exist withy|v, ¢ 1 v. Putv = ab andu = b. Then
wlu) < #v) pecomes exactly?(5). There is equality if for each|a one also has “ >
plb.ie. pr{a} C pr{b}. O < >
Remark 1. Therefore, there is a similarity between the inequaliti2g)(and Go Back
(2.9 Close
Lemma 2.4.If pr{a} ¢ pr{b}, then for anyu, b > 2 one has Quit
(2.6) o(ab) > ¢(a) - o(b). Page 9 of 37
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Theorem 3.1. There are infinitely many such that

(3.1) b(p(n)) < ((n)) <n.

For infinitely manym one has

(3.2) p(Y(m)) < ¥(p(m)) <m.

There are infinitely many such that

(3.3) p((k)) = 51(e(k)).

Proof. We prove that§.1) is valid forn = 3 - 2¢ for anya > 1. This follows
from (3 -2%) = 29,1)(2%) = 3-2971, (3. 2%) = 3. 20F1, (3 - 20F1) = 2041,
SO
32> p(¥(3-27)) > ¥(p(3-2%)).

For the proof of 8.2), putm = 2¢-5° (b > 2). Then an easy computation
shows that)(p(m)) = 2¢t1 - 3% . 572 andp(y(m)) = 2¢72 . 3 - 572 and the
inequalities 8.2) will follow.

Forh = 3* remark thatp(y/(h)) = 5 - h andy(p(h)) = 3 - h, SO

(3.4) e((h)) < h <(p(h)),

which complete §.1) and @.2), in a certain sense.

On the Composition of Some
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Finally, fork = 2*- 7% (b > 2) one can deduce(¢(k)) = 35 - k, (v (k)) =
i—g - k, so 3.3 follows. We remark that since

(3.5) U(p(k)) <k,

by (3.3) and 3.5 one can say that

(36) PO (R) < 5,

for the above values df. Remark also that fok in (3.4) one has

37) P () = 3U(p(h).

For the valuesn given by (3.2) one has

338) P (m) = Su(p(m)).

Forn = 2-3° (b > 2) one can remark that(v(n)) = ¥ (p(n)). O

More generally, one can prove:

Theorem 3.2.Let1 < n = p{'p3*---p the prime factorization ofi and
suppose that the odd part afis squarefull, i.eq; > 2 for all i with p; > 3.
Theny(i(n)) = ¥ (p(n)) is true if and only if

3.9) pr{(pr—1) - (pr =1} Cpr{p,....p,} and
pri(pr+1)---(p, + 1)} Cprip1,....pr}-
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Proof. Since

and
win)=pitept T (pr 4+ 1) - (p + 1),
one can write

Y(e(n) =p e pl T (p=1) - (1) 11 Lt

S p2 T (pr 1) (pr—1))

and

() =pi - pt T (pr 1) - (pr + 1)

no 6

aq—1 ap—
Al PR (pr A1) (pr—1))

Sinceq; — 1 > 1 whenp; > 3, the equality)(p(n)) = ¢(¥(n)), by

(pl—l)"'(Pr—l)'(1+pi1>'“(1+p%)

1 1
=p+1)---(p+1 .(1__)...<1__)7
(1 ) ( ) D1 Dr
can also be written as

[ () I ()

tl(p1—1)-(pr—1) q|(p1+1)-(pr+1)
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Sincel + % > landl — % < 1, thisis impossible in general. It is possible only
if all prime factors of(p; + 1)--- (p, — 1) are amongy, ..., p,, and also the
same for the prime factors ¢f; + 1) - - - (p- + 1). O

Remark 2. For examplep = 2¢ - 3% - 5¢witha > 1, b > 2, ¢ > 2 satisfy @.9).
Indeed

pr{2-DB-1DGE-D}={2}pr{2+ DB+ 1)+ 1)} =1{2,3}.

Similar examples are = 2%-3%.5¢- 7% n =2%.3%.5¢. 114 n = 24.3%.7¢.13%,
n=2%3"5.7%.11¢- 13/, n =2%.3". 17, etc.

Theorem 3.3. Letn be squarefull. Then inequality. ) is true.
Proof. Letn = p{* - - - po with ; > 2 for all i = 1,7. Then
p(n) = @@ - p (o 1) (p + 1))
<(p+1)- (o +1) (e,

by Lemma2.1. But

o —1 X ar—1

epP Y =R (pr = 1) - (p — 1),

sincea > 2. Then

o)) < (P2 —=1)---(p2 —1) - pP2...por—2

e (o
! g p? p2)’

On the Composition of Some
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SO

(3.10) P(t(n)) < (1 - i) (1 - i) |

p? P}
There is equality ing.10) if
pr{lpr+ 1) (o + 1)} CT{p1,..., 0o}
Clearly, inequality 8.10) is best possible, and by

1 1
(o) (1) e
pl pr

it implies inequality (.9).

Theorem 3.4.For anyn > 2 one has

e (n[2) <

where[z]| denotes the integer part of
Proof. It is immediate that
p(n)i(n) 1
T = H 1-— ]? < 1,
pln

sop(n)y(n) < n?for anyn > 2. Now, by .1) one can write
0 (n [%”)D < [%”)] olm) < X0 o) <,

by the relation proved above.

On the Composition of Some
Arithmetic Functions, Il

Jozsef Sandor

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 14 of 37

J. Ineq. Pure and Appl. Math. 6(3) Art. 73, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:jsandor@math.ubbcluj.ro
http://jipam.vu.edu.au/

Remark 3. If ni(n), i.e., when[M} = ¥lo)
(1.9),i.e. p(¢(n)) < n. For the study of

relation (3.11) gives inequality
equation
(3.12) v(n)=k-n

we shall use a notion and a method of Ch. Wali][ We say that: is w-multiple
of m if m|n andpr{m} = pr{n}.

We need a simple result, stated as:
Lemma 3.5. If m andn are squarefree, and”2 = ¥ thenn =

Proof. Without loss of generality we may suppose

(mn)=1mn>L m=q--q(@n<-<g)

and
n=p-pp(P1 < <pr)
Then the assumed equality has the form

n(l+aq) - (1+q;) =m(l+pi)--(1+pg)
Sincepy|n, the relation
Pel(L+p1) - (14 pr—1)(1 + pr)

impliespy|(1 + py) for somei € {1,2,...,k}. Here

L+p < - <1+pp <1+4py,

On the Composition of Some
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so we must havey|(1 + pr_1). This may happen only wheh = 2, p; =
2, p2 =37 =2 q =2, g =3 (sincefork > 3, pp —pr1 > 2, SO
Pk 1 (14 pr—1)). In this casdn, m) = 6 > 1, a contradiction. Thus = j and
Px = gj- O

Theorem 3.6. Assume that the least solutiap of (3.12) is a squarefree num-
ber. Then all solutions of3(12) are given by thes-multiples ofn,,.

Proof. If n isw-multiple of ny, then clearly

vin) _vm) _

by (1.1).Conversely, ifn is a solution, setn = greatest squarefree divisor of

Then
) _dm) ()
n m ng
By Lemma3.5, m = ny, i.e.n is anw-multiple of n. O

Theorem 3.7.Letn > 3, and suppose that is v-deficient, i.e.i)(n) < 2n.
Then inequality 1.8) holds.

Proof. First remark that for any. > 3, ¢ (n) is an even number. Indeed, if
n = 2¢ theny(n) = 2°~1 . 3, which is odd only foru = 1, i.e.n = 2. If n has
at least one odd prime factpy then by (.1), )(n) will be even.

Now, applying Lemma&.1for b = 2, one obtaing(2a) < a, i.e. p(u) < §
for u = 2a (even). Here equality occurs only when= 2* (k > 1). Now,
o((n)) < @, Y (n) being even, and since is -deficient, the theorem
follows. N
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Remark 4. The inequality

(3.13) o (W) < A

is best possible, since we have equality:fion) = 2%. Letn = p{* - - - por; then
Pt per=l(py+1) - - (p+1) = 2Fis possible only ity = --- =, = 1,
andp; +1=2,...,p, +1=2%ie. whenp, =2{—1,...,p, =2 — 1 are
distinct Mersenne primes, and= p, - - - p,.. S0, there is equality ir3(13 iff n
is a product of distinct Mersenne primes. Since by The@@&une has)(n) =
2n iff n = 29.3° (a,b > 1), if one assumes(n) < 2n, then by 8.13), inequality
(1.8) follows again. Therefore, in TheoreBn/ one may assume(n) < 2n.

Let w(n) denote the number of distinct prime factorsrof Theorem3.7
and the above remark implies that wheis even, andv(n) < 2, (1.9) is true.
Indeed,l + 1 =3 <2,and(1+3) (1+ %) = 2. So e.g. whem = p{" - p32,

0 (102).(+2) () () -

On the other hand, if is odd, andv(n) < 4, then (L.8) is valid. Indeed,

e Y (e DY (e ) (e Ly o4 6 8 12 2304
3 5 7 11) 3 5 7 11 1155
Another remark is the following:

If 2 and 3 do not divide:, andn has at most six prime factors, thet)(n)) <
n. If 2, 3 and 5 do not divide:, andn has at most 12 prime factors, then the

On the Composition of Some
Arithmetic Functions, Il

Jozsef Sandor

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 17 of 37

J. Ineq. Pure and Appl. Math. 6(3) Art. 73, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:jsandor@math.ubbcluj.ro
http://jipam.vu.edu.au/

same result holds true. If 2, 3, 5 and 7 do not divideandn has at most 21
prime factors, then the inequality is true.

If 2 and 3 do not divide:, we prove that)(n) < 2n, and by the presented
method the results will follow. E.g., whenis not divisible by 2 and 3, then the
least prime factor of. could be 5, so

¥(n)

_0.8 12 1418 20 24 30 32
n 5 7 11 13 17 19 23 29 31
and the first result follows. The other affirmations can be proved in a similar
way.
In[1€] it is proved that

Y

3¢M . »(n), if nis even

3.14 :
(314) 2" . p(n), if nis odd

¥(n) < {

Thus, as a corollary of3(13 and (3.14) one can state that M <n
(or < n), for n even; and®“™~1 . x(n) (or < n) for n odd, then relation(.9)
is valid.

By (3.13, if n is a product of distinct Mersenne primes, thef(n)) =
“) e will prove that)(n) < 2n for suchn, thus obtaining:

Theorem 3.8.If n is a product of distinct Mersenne primes, then inequality
(1.8) is valid.

Proof. Letn = M --- M, whereM,; = 2Pi — 1 (p; primes,i = 1,2,...,5)
are distinct Mersenne primes. We have to prove tp&t— 1)--- (27> — 1) >

On the Composition of Some
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op1t-+ps—1 gor equivalently,(l - 2%1) T (1 - zis) > % Clearlyp, > 2, p >

3,...,ps > s+ 1, soitis sufficient to prove that

1 1 1
o159 (L) ()=

In the proof of B.15 we will use the classical Weierstrass inequality

s

(3.16) [T -a)> 1—iak,
k=1

k=1

wherea;, € (0,1) (see e.g. D.S. Mitrino: Analytic inequalities Springer-
Verlag, 1970).
Puta, = 5+ in (3.16). Since

ZS: L1 (b 1)L 1—5)  26—1
2k+1l T 4 2 k=1 ) 4 \1— 2k 417

1
k=1 2

i 2k 1 1 1 2k—1 k k
(3.19 becomes equivalent tb— 5= > 3, or 5 > 5=, i.e. 28 > 28 — 1,

which is true. Therefore 3(15 follows, and the theorem is proved. m

Remark 5. By TheorenB.15 (see relation 8.29), if n = M --- M?s (with
arbitrary a; > 1), the inequality {.8) holds true.

Related to the above theorems is the following result:

Theorem 3.9. Letn be even, and suppose that the greatest odd jaof » is
y-deficient, and thas 1 ¢/(m). Then (.8) is true.
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Proof. Letn = 2¥ - m, when

p(¥(n) = (271 39(m)) = 2- (2" - ¥ (m))
since(3,2%1 -4 (m)) = 1. But

p(2"1(m)) <2572 p(m) <2V om,

sop(1(n)) < 2F-m =n. O
On the Composition of Some

Remark 6. In [18] it is proved that for alln > 2 even, one has Arithmetic Functions, Il

Jbézsef Sandor
(3.17) p(o(n)) > 2n,
with equality only ifn = 2%, where2**! — 1 = prime. The proof is based on Title Page
Lemma2.3. Sinceo(m) > ¢(m), clearly this implies Contents
(3.18) o(o(n)) > 2n, << >

with the above equalities. So, the Surayanarayana-Kanved theorem is reob- < >

tained, in an improved form. Go Back

In[18] itis proved also that for all. > 2 even, one has Close

(3.19) o(y(n)) > 2n, Quit

: : Page 20 of 37
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Theorem 3.10.Letn = 2¥ . m be evenk > 1,m > 1 odd), and suppose that
m is not a product of distinct Fermat primes, and thatsatisfies {.6). Then

(3.20) a(p(n)) >n—m> g.

Proof. First remark that ifm is not a product of distinct Fermat primes, then
©(m) is not a power of 2. Indeed, i = pi* - - - p?~, then

_ a1—1 ar—1 __ 0S8
gp(m) =N © Dy (pl - 1) e (pr - 1) =2 On the Composition of Some
Arithmetic Functions, Il

iff (sincep; > 3),

Jozsef Sandor

ap—1=-=a.,—-1=0

and Title Page

p—1=2" ..., p.—1=2°",
] Contents
ie.

p=2+1,....p=2"+1 4« dd
are distinct Fermat primes. Thus there exists at least an odd prime divisor of < 4
©(m). Now, by Lemma2.4, Go Back
o(p(2°-m)) = o(27" - p(m)) = P(p(m))-o(2) 2 m- (2"~ 1) =n—m, Close

. . . . . Quit

by relation (L.6). The lastinequality off.20) is trivial, sincem < § = 2F=1.m,
wherek —1 > 0. o Page 21 of 37
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Theorem 3.11.Letp be an odd prime. Then

pti

(3:21) Pl(r) < P,

with equality only ifp is a Mersenne prime, and(p(p)) > =
equality only ifp is a Fermat prime.

- (p— 1), with

Proof. ¢(p) = p+ 1 andp + 1 being evenp(p + 1) < &, with equallty only
if p4+ 1 = 2%, i.e. whenp = 2¥ — 1 = Mersenne prime. Slnc% 1) > p,
this inequality is better tharl(6) for n = p. Similarly, ¢(p) = p — 1 = even,

soy(p—1)>3-(p—

Lemma 3.12.1f n > 2 is even, then

1), on base of the following: O

(3.22) b(n) =

l\DIC«O

with equality only ifn = 2¢ (power of 2).
Proof. If n =2¢- N, with NV odd,

ln) = $(2) - p(N) = 2973 (N) 2 29713 N =

MIOJ

Equality occurs only, wheV = 1, i.e. whenn = 2°. O

Sincep — 1 = 2% impliesp = 2* + 1 = Fermat prime, §.21) is completely
proved. Smcé — 1) > p, this inequality is better thari (6) for n = p.
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Remark 8. For p > 5 one has?t < p < 2. (p — 1), so B.21) implies, as a
corollary that

(3.23) e(h(p) <p < Y(e(p)),

for p > 5, prime.

This is related to relation3(4). If n is even, anch # 2% (power of 2), then
sincey(N) > N + 1, with equality only whenV is a prime, 8.22) can be
improved to

(3.24) W(n) > g : (n + %) ,

with equality only forn = 2¢ - N, whereN = prime.

Theorem 3.13.Leta,b > 1 and suppose that|b. Theny(y(a))|p(1(b)) and
Y(p(a))|(p(d)). In particular, if a|b, then

(3.25) p((a) < () Y(pla)) < P(p(b))-

Proof. The proof follows at once from the following:
Lemma 3.14.1f a|b, then

(3.26) p(a)lp(b),

and

(3.27) p(a)|(b),
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O
Proof. This follows by (L.1), see e.g.16], [19]. O

Now, if a|b, theny(a)[(b) by (3.27), so by 8.26), ¢((a))|e(¢(b)). Sim-
ilarly, alb implies ¢(a)|e(b) by (3.26), so by 8.27), ¥(¢(a))|v(p(b)). The
inequalities in 8.22) are trivial consequences.

Remark 9. Leta = p be a prime such that { k, and puth = kP~! — 1.

By Fermat’s little theorem one hasb, so all results of .25 are correct in
this case. For example)(o(a)) < ¥(p(b)) gives, in the case of3(25, and
Theorens.10

(3.28) Y(p(k™ = 1)) = d(ep) = 5 - (p - 1),

for any primep 1 k, and any positive integer > 1.

Let (n, k) = 1. Then by Euler’s divisibility theorem, one has similarly:

(3.29) P(p(k?™ = 1)) > 9(p(n)),

for any positive integers, £ > 1 such thatn, k) = 1.
Letn > 1 be a positive integer, having as distinct prime factars . . , p..
Then, using {.1) it is immediate that

(3.30) @(n)i(n)
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iff (pr—1)---(pr — D|(pr +1)--- (p, +1). For example, §.30) is true for
n=2"n=2".5(m,s > 1), etc. Now assuming3(30), by (3.26 one can
write the following inequalities:

B31)  »@W(p(n)) < e(¥(¥(n))) andi(p(p(n))) < (p¥(n))).

By studying the first 100 values afwith the property 8.30), the following
interesting example may be remarked15) = ¢(16) = 8, ¥(15) = (16) =
24 snd(g;()lﬁp)l@g()lf)). Similarly ¢(70) = p(72) = 24, ¢ (70) = ¥(72) = 144, o the Composition of Some
wit ¥ 0 0). Arithmetic Functions, Il

Are there infinitely many such examples? Are there infinitely marsych
that o(n) = ¢(n + 1) andy(n) = ¥(n + 1)? Orp(n) = ¢(n + 2) and
Y(n) = d(n +2)?

Jozsef Sandor

Leta = 8, b (8k; — 1). Thenal|b (see e.g. 19 for such relations), and Title Page
sincey (p(8)) = 6, p(1(8)) = 12, by (3.25 we obtain the divisibility relations Contents
(3.32) 6|Y(p(o(8k —1))) and12|p(v(o(8k — 1))) <« >
for k > 1. | 2

The second relation implies e.g. thapifi)(o(n))) = 2n, thenn Z —1 (mod 8) Go Back
and ifp(¢(o(n))) = 4n, thenn £ —1 (mod 24). p—
Theorem 3.15.Inequality (L.8) is true for ann > 2 if it is true for the square- Quit

free part ofn. > 2. Inequality (L.6) is true for an oddn > 3 if it is true for the

squarefree part ofn > 3. Page 25 of 37

Proof. As we have stated in the Introduction, such results were first proved by ; ineq pure and Appl. vath. 6@) Art. 73, 2005
the author. We give here the proof for the sake of completeness. http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:jsandor@math.ubbcluj.ro
http://jipam.vu.edu.au/

Letn' be the squarefree partaf i.e. if n = p{* - - - p%, thenn' = p; - - - p,..
Then

p(W(n) =@ pir T (pr+1) - (pr + 1)
<ppteepir Tt po((p+ 1) - (pr + 1)
= = e(¥()))

by inequality @.1).
Thus

Pm) _ o)

n n'

(3.33)

Therefore, ife) 1, thenw < 1. Similarly one can prove that

Plp(m) - vlelm))

m m/

(3.34)

9

so if (1.6) is true for the squarefree part’ of m, then (L.6) is true also fomn.

As a consequencel ) is true for alln if and only if it is true for all square-

freen.

As we have stated in the introduction,.©) is not generally true for alin.
Lete.g.m = 3 - F, whereF’ > 3 is a Fermat prime. Indeed, pft = 2F + 1.
Theny(m) = 281, so

Plp(m)) =28-3<3-(2"+1)=3-F=m,
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contradicting {.6). However, ifm has the formm = 5 - F, whereF' > 5 is
again a Fermat prime, thef.) is valid, since in this case

P(p(m)) =6-2">5- 2"+ 1) =m.

More generally, we will prove now:

Theorem 3.16.Let5 < F} < --- < F, be Fermat primes. Then inequality
(1.6) is valid (with strict inequality) forn = F"* - - - F2s, with arbitrary a; >
1(i=T1,s).

Proof. Let F; = 1 + 92" (¢ > 1) be Fermat primes, wherlg > 1. Since
by < by < -+ < b, Clearlyb;, > i foranyi = 1,2,...,s. By (3.39 it
is sufficient to prove the result fon’ = F; --- F,, when (L.6) becomes, after
some elementary computations:

1 1\ _3
. < Z
(3.35) <1+ 22b1) (1 + 221,8) <3

We will prove that 8.35 holds with strict inequality. By the classical Weier-
strass inequalities one has

f[(l—l—ak) < !

S )

whereq, € (0,1).
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Sinceb; > 1, itis sufficient to prove that

1 1 3
(3.36) (1+22)---(1+225) <3

Putay, = 22" (k > 1), so by the above inequality, it is sufficient to prove that

1 1 1 1
(3.37) Z:ﬁ+2?+---+§<§.
On th_e Corr)positior_l of Some
Clearly @.37) is true fors = 1,2, sincel < 1,1 + L =2 <1 |ets > 3. ATCHS S (]
Then, since® > s + 5 for s > 3, we can write Jozsef Sandor
1 1 1 1 1
Z Z_'_E—i_% 1+§+.“+F Title Page
5 1 Contents
e (58
16 128 <« >
- 5) N 1 41 1 < >
16 128 128 3’
. Go Back
and the assertion is proved. O orac
Close
Quit
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Remark 10. By Lemma2.2, relation (2.2) one can write successively

o((p1 + D(p2 + 1)) < pao(pr + 1) < pipa,
if prips + 1} & pri{p + 1}

o((pr +1)(p2 +1)(p3 + 1)) < p3p(pr +1)(p2 + 1) < p1paps,

(3.38) if in additionpr{ps + 1} ¢ pr{(p; + 1)(p2 + 1)}

o((pr+1) - (pror + D(pe + 1) < pro((pr 4+ 1) - (pr_y + 1))
<piDr,
if pri{p. + 1} Z pr{(p1 +1) - (pr—1 + 1)}

is satisfied, then by Theore®nl5 inequality (L.8) is valid.
Similarly, by using Lemma.2, (2.3), and Theoren3.15 we can state that if

pripe — 1} & priq — 1},
prigs — 1} Z pri(pr — 1)(p2 — 1)},

pr{e —1} £ pr{(p1 — 1) -+ (gr—1 — 1)},

, q- are the prime divisors of the

(3.39)

then inequality {.6) is valid. (Hereq,, ¢, . ..
odd numbern > 3.)

Remark 11. Inequality (L.8) is not generally true. Indeed, for = 39270,
n = 82110,orn =2-3-5-7-17-23 - M, whereM is a Mersenne prime,

greater or equal thars1, then (L.8) is not true. This has been communicated
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to the author by Professor L. Téth. Prof. Kovacs Lehel Istvan found recently
the counterexamples: 53130, 71610, 78540, 106260, 108570, 117810, 122430
143220, 157080, 159390, 164010, 164220, 212520, 214830, 217140, 235620
244860, 246330, 247170, 286440, 293370, 314160, 318780, 325710, 328440
353430 and 367290.

Now by using a method of L. Alaoglu and P. Bgi[1], we will prove that:
Theorem 3.17.For anyd > 0, the inequality

(3.40) o((n)) <d-n
is valid, excepting perhaps € S, whereS has asymptotic density zero.

Proof. We prove first that for any given prime the set of. such tha|v(n),
has density 1. This is similar to the proof given ir.[

On the other hand, since;, ., ¥(n) ~ % -2? asx — oo (see e.g. 14)),
we can say that excepting at most a numbes of integersn < z, one has
¥(n) < c(e) - n, wherec(e) > 0.

Let nowp be a prime such that

q) cle)
(this is possible, sincg], ., (1 — é) — 0 asp — o0).
Then, ifz is large, then for alh < x, excepting perhaps a numbenpf+¢-x
integers one has(n) < c¢(e). n andy(n) = 0(mod ¢) for anyq < p, (n > 0).

But for these exceptions one hag)(n)) < § - n, and this finishes the proof;
n, € > 0 being arbitrary. H
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Remark 12. It can be proved similarly that

(3.41) Y(p(n) > 8-,
excepting perhaps a set of density zero.
Theorens.17implies thatim inf £ = ¢, and so, one hdan sup ¥lpln)

= +o0. For other proof of these results see][ We cannot determine the foI-
lowing valuesilim inf 22" —2 Jim sup 20 —7

n—0oo n—oo

However, we can prove that:
Theorem 3.18.

(3.42) lim inf M <inf {w(gpk(k» : kis a multiple of4} <

n—00 n

DN | —

Proof. Let k be a multiple of 4, ang > %. Then
1 B k B k., p—1 p—1
¢ (§k‘p> = (2) p(p) = 20(5) - —5— = wlk) - ——,
since2|%. Now by (ab) < v (a)y(b) one can write

o (o (5t) ) < wietns (25).
Sincey (1;_7) <o(B2

—> = 1, from the above one can write:

_leh)

< 7 - lim plilgo

lim inf

1
lim inf i ((’01(2 k:p))
p—0o0 Ekp

S |~
|’U
SN

) _ blek)
< et

w|

On the Composition of Some
Arithmetic Functions, Il

Jozsef Sandor

) and by the known result of Makowski and Schinzel:

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 31 of 37

J. Ineq. Pure and Appl. Math. 6(3) Art. 73, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:jsandor@math.ubbcluj.ro
http://jipam.vu.edu.au/

and now relation3.42 follows, by takinginf afterk.
Since
22 _1=F,-F,-F,-Fy-F},

whereF, = 22" + 1, and allF; (0 < i < 4) are primes, it follows, that

90(232_1) :21 _22_24_28_216:231.

Thusp(4(232 — 1)) = 232, by p(4) = 2. Sincew(z?’?) = 2%1.3, by Ietting in
(3.4 k = 4-(2%2 — 1), we get thenf < 23231) < ( 7 wheref > .

In any case we get ir3(42 thatliminf < 2, and fact a value slightly greater
thany = 2. O

3 8

In [16] it is asked the value ofim inf M < 1. We now prove that this
value is 1:

Theorem 3.19.

(3.43) lim inf M =1.

n

Proof. Since 22 > 2 > 1 clearly this limit is> 1. By the above in-

equality, the result follows. However, we give here a new proof of this fact. We

remark that, since(N) < ¢(N) < o(N), and by the known result

i PWV@p) . o(N(a,p))

_ -1
p—oo  N(a,p) p—oo  N(a,p)

Y
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whereN (a,p) = =L, (a > 1, p prime) we easily get

p—1
N
(3.44) im $YV@P)
p—oo  N(a,p)
Now leta = ¢ an arbitrary prime in%.44). We remark thatV(q,p) = q;jll =
a(g’~1). Now, by
U(qpil) — qp —1 N q On the Composition of Some
qp1 (q—1)-qr1 qg—1 Arithmetic Functions, Il
asp — oo, from (3.44) we can write: Jozser Sandor
p—1 .
(3.45) lim w(U(pql ) _ 1 ; <1+e Title Page
poee 4 1= Contents
for ¢ > q(e), e > 0. Now by (3.45), (3.43 follows. O <« b
Remark 13. In[16]itis proved, by assuming the infinitude of Mersenne primes, < >
that
Go Back
(3.46) lim inf M = ; Close
n—oo n
Quit
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Theorem 3.20.We have

(3.47) lim inf M = §

n 2
Proof. Since(n) > 2n for all evenn, andy(n) > n for all n, clearly
Y(y(n)) > 2 - nfor all n, therefore it will be sufficient to find a sequence
with limit % By using deep theorems on primes in arithmetical progressions, it
can be proved, as in Makowski-Schinzet] that

p(a)

lim sup —= = liminf
a

On the Composition of Some
(CL) Arithmetic Functions, Il
=1

a Jozsef Sandor

asp tends to infinity, where = (p—;l) andp = 1 (mod 4).

Title P
Since®Y is odd, we get He rage
Contents
1 1
0(p+1):0(2-%):3-0(<p; )), «“ 3
< | 2
|mpIy|ng that lim inf ¢ pf = 2. Sincey(n) < o(n), we can write that Go Back
lim inf &EHD) < 3. By @) 3, this yieldslim inf w(pﬂ)) = 2, complet-
p p Close
ing the proof of the theorem. O
Quit
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