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ABSTRACT. In this paper, we give a complete answer to Problem 1 and a partial answer to
Problem 2 posed by F. Qi in][2] and we propose an open problem.
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1. INTRODUCTION

Before, we state our results, for our own convenience, we introduce the following notations:

(1.1) [0,00)" = [0,50) x [0,00) x ... x [0, 00)
and ’
(1.2) (0,00)" 2 (0, 00) x (0,00) X ... x (0, 00)

nt?rrnes
for n € N, whereN denotes the set of all positive integers.
In [2], F. Qi proved the following:

Theorem A. For (z1, s, ...,2,) € [0,00)" andn > 2, inequality
2 n n
€ 2
(1.3) i ; x; < exp ZZ:; x;

is valid. Equality in(1.3) holds if z; = 2 for some giverl < ¢ < n andz; = 0 for all
1 < j < nwithj # i. Thus, the constarff in (1.3) is the best possible.

The authors would like to thank the referees for their helpful remarks and suggestions to improve the paper.
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Theorem B. Let{z;}.°, be a nonnegative sequence such thgt | z; < co. Then

(1.4) — Z x; < exp (Z 1’1> )
Equality in (1.4) holds ifz; = 2 for some given € N andz; = 0 for all j € N with j # i.
Thus, the constaﬁf— in is the best possible.

In the same paper, F. Qi posed the following two open problems:

Problem 1.1. For (1, zs, ..., 2,) € [0,00)" andn > 2, determine the best possible constants
an, A, € Randg, > 0, u, < oo such that

(1.5) Bn ixf‘” < exp (i Iz) < pn imﬁ"-
=1 =1 =1

Problem 1.2. What is the integral analogue of the double inequalityp) ?

Recently, Huan-Nan Shi gave a partial answerrin [3] to Proplem 1.1. The main purpose of this
paper is to give a complete answer to this problem. Also, we give a partial answer to Problem
[1.7. The method used in this paper will be quite different from that in the proofs of Theorem
1.1 of [2] and Theorem 1 of [3]. For some related results, we refer the reader to [1]. We will
prove the following results.

Theorem 1.1.Letp > 1 be a real number. Fofzy,zs,...,2,) € [0,00)" andn > 2, the
inequality

ep
(1.6) < exp T

3 Z
is valid. Equahtyln. 1.6 holds ifz; = p for some gived < i < nandz; =0foralll <j<n
with j # . Thus, the constarf in ( . ) is the best p055|ble
Theorem 1.2.Let0 < p < 1 be areal number. Fofxy, zs, ..., x,) € [0,00)" andn > 2, the
inequality
a.7) nP~ 1 Za: exp (Z xz>

_ —1eP ;

is valid. Equality m. 1.7) holds ifz; = £ forall 1 < < n. Thus, the constant’~" <7 in (1.7)

is the best possible.

Theorem 1.3.Let{x;};-, be a nonnegative sequence such thgt, z; < coandp > 1 be a
real number. Then

(1.8) — Zx exp (Z g;> .

Equality in (1.8) holds ifxz = p for some given € Nandz; = 0 forall j € N with j # 4.
Thus, the constarf in (1.5 is the best possible.

Remark 1. In general, we cannot findl < i, < oo and),, € R such that

n n
exp (Z %) < pn Y )"
=1 =1
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Proof. We suppose that there exi$ts< i, < oo and\,, € R such that

exp (Zn: a:l> < Un Zn: xj’
=1 =1
Then for(xy, 1, ..., 1), we obtain asg; — +o0,
1< el’",un (n — 1+ xln) et — 0.
This is a contradiction. OJ

Theorem 1.4.Let p > 0 be a real numberzy, zs,...,z,) € [0,00)" andn > 2 such that
0 < z; < pforall 1 <i < n. Then the inequality

(1.9) exp (i x) v S
=1 =1

is valid. Equality in(1.9) holds ifz; = p for all 1 < i < n. Thus, the constar{ e is the best
possible.

Remark 2. Let p > 0 be a real numberz;,zs,...,2,) € [0,00)" andn > 2 such that
0<ax; <pforalll <i<n. Then

(i) if 0 <p<1,we have

n

(1.10) w1 Z;c < exp (Zm) < —e zn:x;”;
i=1

(17) if p > 1, we have
D n n
(1.11) e_p ¥ < exp ( xl> e"P Z x; P
L i=1

Remark 3. Takingp = 2 in Theorems 1]1 and 1.3 easily leads to Theorefns A and B respec-
tively.

Remark 4. Inequality((1.6)) can be rewritten as either

ep n n
(1.12) — N <[] e
pp =1 =1
or
ep
(1.13) p 7]} < exp |zl

wherer = (1, 23, ..., ¥,) and||-||, denotes the-norm.

Remark 5. Inequality((1.8)) can be rewritten as

P

(1.14) =Y al <[]
pp =1 =1

[e.9]

which is equivalent to inequalitil.12)) for z = (z1, 22, ...) € [0, 00)
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Remark 6. Takingz; = 1 for i € Nin (1.6) and rearranging gives

n

1 1
(1.15) p—plnp+1In (Zﬁ) gzz
i=1

=1
Takingz; = Zi fori € Nands > 1in and rearranging gives
(1.16) p—plnp+1In (i 1) =p—plnp+Ing(ps) N l:
=1 e v
wheres denotes the well-known Riemann Zéta function.
In the following, we give a partial answer to Problpm|1.2.

Theorem 1.5.Let0 < p < 1 be a real number, and let be a continuous function ofa, b] .
Then the mequallty

(1.17) — p1/|f de<am(/|f um)

is valid. Equality in(1.17)) holds if f(z) = . Thus, the constarfé b—a)’ “Lin (1.17) is
the best possible.

Theorem 1.6.Letz > 0. Then
2x+1 x—1
(1.18) M) < ———

GI
is valid, wherel” denotes the well-known Gamma function.

2. LEMMAS

Lemma 2.1. For z € [0, 00) andp > 0, the inequality
p

(2.1) %ﬂ<e
p

is valid. Equality in ) holds if: = p. Thus, the constar in ) is the best possible.

Proof. Letting f (x) = plnx — = on the se{0, c0) , it is easy to obtain that the functighhas
a maximal point atr = p and the maximal value equafs(p) = plnp — p. Then, we obtain
(2.1)). Itis clear that the inequalit{2.1)) also holds at: = 0. O

Lemma 2.2. Letp > 0 be a real number. Fofz, zs, ..., x,) € [0,00)" andn > 2, we have:
() If p > 1, then the inequality

(2.2) }:x (2})

is valid.
(i) If 0 < p < 1, then inequality

(2.3) Mlzﬁ (:)J

is valid.
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Proof. (i) For the proof, we use mathematical induction. First, we pr@vg) for n = 2. We

have for any(xy, z5) # (0,0)
(2.4) <1 and <

1+ 22 T+ X2

Then, byp > 1 we get

p p
(2.5) o <-4 and L <
{L‘l‘l‘l’g 1'1+ZL'2 £L‘1+ZE2 $1+[E2

By addition from({2.5)), we obtain
T P 1 T2 b g T i T2 .
Ty + X9 Ty + X9 Ty + X9 Ty + X9

(2.6) 2h + 3y < (21 +22)".

So,

It is clear that inequality|2.6)) holds also at the poir{0, 0) .
Now we suppose that

(2.7) Zaz (Z a:)

and we prove that
n+1 n+l p
(2.8) Z AR (Z :cl> :
We have by(2.6)
n+1 p n p n 4
(2.9) (Z %) = <Z x; + $n+1> Z (Z %) + T

and by(2.7) and(2.9), we obtain

n+1 n p n+1 p
(2.10) Za: = Zx +ab . < (Zwl> +ab ., < (Za:l) :
i=1 i=1

Then for alln > 2, (2.2) holds.

(i) For (z1,z9,...,2,) € [0,00)",0 < p < 1 andn > 2, we have
p p

(2.11) (Z x) ( ) .
By using the concavity of the function+— >0, 0<p<1),we obtain from(2.11])

n n ) n p p n
(2.12) (Z :c> = ( nx—> >N R oty

=1 =1 n =1 n =1
Hence(2.3) holds. O
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3. PROOFS OF THE THEOREMS
We are now in a position to prove our theorems.

Proof of Theorerh T]1For (1, 29, ..., 2,) € [0,00)" andp > 1, we putz = > "  x;. Then
by (2.1]), we have

(3.1) ;—Z (lil xz> < exp (lil xz>

and by(2.2)) we obtain(1.6)). O

Proof of Theorerh T]2For (x4, 29, ..., 2,) € [0,00)" and0 < p < 1, we putz = > " | z;.
Then by(2.1)), we have

(3.2) ;—Z (Z a:z> < exp (Z a:z>

and by(22.3)) we obtain(L.7)). O
Proof of Theorer 1|3This can be concluded by letting— +oco in Theorenj 1]L. O

Proof of Theorer 1}4By the condition of Theorein 1.4, we hate< z; < pforall 1 <i < n.

Then,z;” > pPforalll <i < n. ltfollowsthat) " =, > np~?. Then we obtaln

n n 1
R P _ —P) — _
(3.3) Z x; — In (Z x; ) <np—1In (np ) np + In - +plnp.

=1 =1
It follows that

exp <Z xl) < p—pe"” Zx;p.
n
i=1 =1
The proof of Theorerp 114 is completed. O
Proof of Theorer I|5Let0 < p < 1. By Holder’s inequality, we have

(3.9) / < ( / \f(x)|dx) b a).

It follows that

35) o-ar [1nwpar< ([ 1) dx)p.

On the other hand, by Lemma .1, we have

(3.6) (/ fa |dx) <exp</ fx |dx>.

By (3.5) and(3.6)), we get- O

Proof of Theorem I]6Letz > 0 andt > 0. Then by Lemma 2|1, we have

.Z’

(3.7) e’ —tx
xﬂf
So,
(3.8) et > € pre2t
xl‘
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It is clear that

xT xT

€ > x —2t o €
The proof of Theorerp 116 is completed. O

4. OPEN PROBLEM

Problem 4.1. For p > 1 a real number, determine the best possible constaatR such that
P b b

o [1@rae e ( [ 1))

P a
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