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ABSTRACT. In this paper, we study a second order differential operator with mixed nonlocal
boundary conditions combined weighting integral boundary condition with another two point
boundary condition. Under certain conditions on the weighting functions and on the coefficients
in the boundary conditions, called non regular boundary conditions, we prove that the resolvent
decreases with respect to the spectral parametg? (0, 1), but there is no maximal decreasing

at infinity for p > 1. Furthermore, the studied operator generate&Fi0, 1) an analytic semi
group with singularities fop > 1. The obtained results are then used to show the correct
solvability of a mixed problem for a parabolic partial differential equation with non regular
boundary conditions.
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1. INTRODUCTION
In the spacd.*(0, 1) we consider the boundary value problem

L(u):u":f(x), ) )
(1.1) By (u) = apu (0) + bou (0) + cou (1) 4+ dou (1) =0,
By (u) = [} R(t)u(t)dt+ [} S(t)u (t)dt =0,

where the functions?, S € C([0,1],C). We associate to problerh (1.1) in spac&0, 1) the
operator:

Lp (u) = u”?
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2 M. DENCHE AND A. KOURTA

with domainD(L,) = {u € W??(0,1) : B;(u) =0,i =1,2}.

Many papers and books give the full spectral theory of Birkhoff regular differential operators
with two point linearly independent boundary conditions, in terms of coefficients of boundary
conditions. The reader should refer to [7] 10, [20,[21,[22] 28, 31, 33] and references therein.
Few works have been devoted to the study of a non regular situation. The case of separated
non regular boundary conditions was studied by W. Eberhard, J.W. Hopkins, D. Jakson, M.V.
Keldysh, A.P. Khromov, G. Seifert, M.H. Stone, L.E. Ward (see S. Yakubov and Y. Yakubov
[33] for exact references). A situation of non regular non-separated boundary conditions was
considered by H. E. Benzinger![2], M. Denche [4], W. Eberhard and G. Frelling [8], M.G.
Gasumov and A.M. Magerramoy [12,113], A.P. Khromov![18], Yu. A. Mamedov [19], A.A.
Shkalikov [24], Yu. T. Silchenka [26], C. Tretter [29], A.l. Vagabav [30], S. Yakubov [32] and
Y. Yakubov [34].

A mathematical model with integral boundary conditions was derived by [9, 23] in the con-
text of optical physics. The importance of this kind of problem has been also pointed out by
Samarskiil[27].

In this paper, we study a problem for second order ordinary differential equations with mixed
nonlocal boundary conditions combined with weighted integral boundary conditions and an-
other two point boundary condition. Following the techniquelin [11,/20], 21, 22], we should
bound the resolvent in the spate (0, 1) by means of a suitable formula for Green'’s function.
Under certain conditions on the weighting functions and on the coefficients in the boundary
conditions, called non regular boundary conditions, we prove that the resolvent decreases with
respect to the spectral parameterin(0, 1), but there is no maximal decreasing at infinity for
p > 1. In contrast to the regular case this decreasing is maximalfod as shown in[11]. Fur-
thermore, the studied operator generateg#if0, 1) an analytic semi group with singularities
for p > 1. The obtained results are then used to show the correct solvability of a mixed problem
for a parabolic partial differential equation with non regular non local boundary conditions.

2. GREEN’'S FUNCTION

Let A € C, uy(z) = uy(z, A ) andus(x) = uz(x, A ) be a fundamental system of solutions to
the equation

L(u)— A u=0.
Following [20], the Green’s function of problein (1.1) is given by
N(x,s; A
@) Glasin) = Y

whereA()) it the characteristic determinant of the considered problem defined by
_ | Bi(u1) Bi(uz)

(2.2) A(N) = Bolu) Bolus)
and

U1($> UQ(‘T) g(:L“, S, /\)
(2.3) N(z,s;\) = | Bi(u1) Bi(u2) Bi(9)s

By(u1) Ba(uz)  Ba(9)a
for z, s € [0, 1].The functiong(z, s, A) is defined as follows

lul(x)UQ(s) — uq(8)uz(x)
2 uj(s)ua(s) —ui(s)us(s)’

where it takes the plus sign far> s and the minus sign far < s.

(2.4) glx,s;0) = £
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Given an arbitrary € (g, 7r), we consider the sector
Ys={AeC, |argA| < d,A#0}.

For\ € ), definep as the square root ofwith positive real part. Fok # 0, we can consider
a fundamental system of solutions of the equatién= \u = p?u given byu,(t) = e** and
ug(t) = e,

In the following we are going to deduce an adequate formulag&fon andG(z, s; A). First
of all, for j = 1,2, we have

Bi(u;) = ag + (—1)7bop + coe ™7 + (—1) dype 17,

Ba(uy) :/0 R(t)e(_l)thdt+(—1)Jp/0 S(t)e(_l)]mdt.

so we obtain from[(2]2)
(2.5) A(N) = (ao — bop + coe™” — dope™) (/ (R(t) + pS(t))e” dt)
0

1
— (ao + bop + coe’ + dope?) </ (R(t) — pS(t))e " dt> :
0
andg(z, s; ) has the form
_(ep($—8) — ep(s—l‘)) |f €T > 57

g(z, ;) =
1 )
4—(6"(5_’”) — @)y if 1 < s,
p
Thus we have
ers

Bi(g) = (ao — bop — coe™” + dope™?) 1

—ps

+ (—ag — bop + coe” + dope?)

4p’
ps s 1
Bato) = 5 ([ re = psonean s [+ psionear)
0 s
—ps S 1
+ < I (— / (R(t) + pS(t))edt + / (R(t) + pS(t))e”tdt> :
0 s
After a long calculation, formuld (2.3) can be written as
(2.6) N(z,s:0) = p(z, 87A) + @iz, 53 M),
where

2.7) plw,5:0) = zip K/Ol (ao + pbo) (R (t) + pS (t)) e dt
— €’ (co + pdo) /0 s (R(t) + pS (t)) eptdt) e~PlEts)
+ ( / 1 (ao — pbo) (R (t) — pS (t)) e *dt
— e (co — pdy) /O R = pS (1) e—Ptdt) €p<x+s>}
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and the functiorp;(z, s; ) is given by

o1(z,s;A\) if x> s,
(2.8) iz 5:3) =

wa(x,5;N) if & <s,

with
p(s—x) s
(2.9) pi(z,5:0) =" 2 (/0 (ao + pbo + coe” + pe’dy) (R (t) — pS (t)) e~ dt
1
~ [ (o= o) (R0 + 5 () et
ep(33—5) S
+ 2 (/ (a0 — pbo + coe™ — pe~Pdy) (R (t) + pS (t)) e”dt
0

= [ ot ) (RO - g5 () at)

and
(2.10) pq(z,5;) = 1 {(— /1 (ag + pbo + coe” + pe’dy) (R (t) — pS (t)) e P'dt
2p s
+/ (co — pdy) e ? (R (t) + pS (1)) e”tdt) ePs=2)
0
- (/ (a0 — pbo + coe™ — pePdy) (R (t) + pS (t)) e”dt

- /0 1 (co + pdo) e’ (R (t) — pS (1)) e_ptdt) eW—S)] :

3. BOUNDS ON THE RESOLVENT

Every A € C such thatA(\) # 0 belongs top(L,), and the associated resolvent operator
R(\, L,) can be expressed as a Hilbert Schmidt operator

B1) (A —L,)' f=R(\L,) /G,S,)\ s, feLr(0,1).

Then, for everyf € L7 (0,1) we estimate[(3]1)

102l = (0 [ 166050 ) 171y

<s<1

and so we need to bound

1 % 1 1 ;
sup G(z,s; )\ pdx) :—<sup N(z,s; A pdx)
(s, [ 1650 =0 N, 5:)

0<s<1J0 0<s<1J0

3.1. Estimation of N (z, s; \). We will denote byj|-|| the supremum norm which is defined by
|R|| = sup |R(s)|. Since
0<s<1
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@ (2,5 0) + 1 (2,8 \) ifx>s
N (z,s;)) =

I

o(x,s50) + o (T, 80 ifx<s

then

(3.2) IN (@, 8 Ml o < llop (2,85 Mo+ llops (2585 M) ]

from (2.8), we have

(3.3) ||90,(:1:s)\)||Lp§21/p{{/ |02 :L‘S)\|pd$:| {/ |1 xs)\|pdm} }

From [2.7) we have

e_($+8)Rep 1 .
lo (z,50)] < W {(HRH + |p| IS]]) (lao] + |pl ’b0|)/ ot Rep gy
+(IRI+ 161 1S1) (ol + 1] doly %2 [ etReva
P 0 Pl 1o ;
e(w-l-s)Rep L .
S ORI+ 1181 anl + ol ) [ e Pera
+ e R2 (| Rl + Il IS]) (Jeol + |p] |d0|)/0 etRepdt:|
then

6—(.1‘+8)Rep . “Re
[ (2,85 0)] < SplRep [(IRI+ o] 1S1) (laol + 1] bo]) (e7¢” — e*Te?)

+ (IRl + ol 11S1) (lco| + 1l 1dol) (T ReP — eRer)]

e(x+s) Rep . 5 . e .
+m[(H 1+ ol 1S]) (o] + o] [bol) (e8P — e~ Ber)

+ (RN + 1ol 1SN (ol + |pl Ido|) (e FeP — e~ (s Rer)]

and

1
/ |0 (z, 85 \)|P dx
0

op fl e—PrRep .. .
(TP| Re p)? [(HRH + [p| ||SH)p (lao| + |p] ‘b0|)7’ (e(l JRep __ 1)?

+ (IRl + 1ol IISID” % (leo| + [pldo] )" (e"* — 6(1‘S)Re”)p}

op 1€pa:Repdx )
(f‘op‘ Re p)? [(UIRI] + [l HS”)p X (lao| + |p| |bo‘)p (1 — els 1)Rep>P

+(IBI -+ 1ol 1S1)? (ol + ol [dol)” (et~ 2 e? — 6_1Rep)p} :
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after calculation we obtain

(/ o (25, A)\pdx)’l’

2
21+;€Rep

" |p| (Rep) 't pliv
X (L= e?Meo)i 4 (1= e?Meo)F (1= V)] (]| + o] S1)
(

[(IR] -+ 1ol 1S11) (laol + [ol [bo]) [(e7*F¢7 — e7H<)

x (|co| + |p] |do]) [(1_e—pRep); | emRen)

+ (1 _ e—pRep)% (e(s—l)Rep i 6—Rep)i|i|

asRep > 0so

1 :
(3.4) sup ( / \go(x,s;de)
0<s<1 0

- 2w eRer (||R|| + |pl 1511 [(laol + |col) + o] (bo] + |do])]
N ol (Re p)' 7 pi/p

From (2.9) we have

(s—z)Rep
o1 (7, 5:A)] < T [ [(lao| + [p] o) + €? (|co| + || |do])]
< (1R + ol 151 / e tRengy
1
+ (laol + |pl [bo]) (IR + |o] IISH)/0 6tRepdt]
e(z—s)Rep
N W{UU‘?H + 1ol HSH)[[(Iao! + 1p] bo)
4 (o] + ol do])] [ et Mera
0
1
+ (laol + |pl [bo]) (IR + o] |1S1]) /0 B_tRepdt}
then
(s—z)Rep . .
lo1 (2,85 0)] < W [(’a0| + |pl1bo]) (IRII + o] 1S]]) (e ep _ o ep)
+ (lcol + lpl1dol) (IR]| + [0l 1S]]) (eRe? — el =) Rer)]
e(z—s)Rep R 5 ) e, .
* S Rep [(IRI + o] 11SI1) (Jao| + [o] [bol) (€°Re? — e~ Rer)

+ (eol + lol Ido]) (IR] + ol [SI]) (et~ PP — e Fer)]
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and

1
/ 1 (2,5, da

op fl e~PrRep
" (Re p)”
+ (ol + Lol [P (IRY + | [S])? (c0:+9Re0 — cRer)?]

op fsl ebT Re pdx ) .
ey Lol + Lol 1l (LRI + 1 IS1)7 (1 — e mer)”

+ (ol + Il Ido)” (IRI + ol [1S])7 (¢ ReP — e~ (I Rer)?,

[(|6Lo| + |pl1oo)? (I|R]| + || IS1)7 (e(l—l-s)Rep _ 1)19

this yields
P+1 pRep
[ o s e < B Gl + I R+ 517
% (1 —e (1+S)Rep)p (1 . ep(sfl)Rep)
+ (Jeol + ol 1do)? (IRIF+ [pl |SI)F (1 — e7*7eP)” (1 — erlemDRer) ]

asRe p > 0 we obtain

1 :
(35) sup ( / |<,01(x,s;)\)|pdx)
0<s<1 s

_ 2% 3eRr (IR] + 1l 151 [(laol + leol) + Lol (ol + o]
ol (Rep)*+o pl/r

From (2.10) we have

(z—s)Rep

1
¢ - e
a5 0] < S5 R+ o111 el + ol o [ et=0%rd

1
+ (1] + 161 1S1) (ool + 1ol o) + e~ (] + ol D] | etaepdt]

6(57:):) Rep

1
TP [(lcol + |pl |dol) (2] + (o] ||5||)/0 =1 Rep gy

1
+ [(laol + Ip] [bol) + €™ (leol + Il Ido)] (IR + o] ||5||)/ e‘tRepdt}

then
oo 0501 < e (RN + ] 151 (ol + ol ol (07 — =)
ST 20 Rep 0 0
+(aol + 1ol ol) (LR -+ 1 1) (=972 — 1)
e—xRe
= = d Rep _ _(s—1)Rep
3 ey R+ 1oL 1S (el + Il ) (677 = -0

+ (laol + ol [bo]) (IR] + ol S]] (1 — e Rer)]
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So
2p+1epRep

plpl” (Rep)’ ™
X (1 — €_pSRep) + (|aol + |p [bo])”

x (R[] + |p] IS])* (1 _ e—pSRep) (1 _ 6(5—1)Rep)p:|

/0 |2 (2, 5, M) do < [(HRH + 1oL IS (eol + o] [do])7 (1 — els=2 )"

asRep > 0 we obtain

o) s ([ leatesinras)’
0<s<1 0

_ 25 r (J[R]| + ol IS [(lao] + leol) + lpl (1bo] + Idol)]
>~ 1
[l (Re p) 7 pt/e

From (3.4),[(3.p) and (3.6), we obtain

2w eRer (|| R|| + (o] 1S1) [(lao] + |eol) + |p] (|bol + |dol)] (21+§ n 1)
A (V)] |p| (Rep)' "o pi/p

BN Lyl <

forpe s ={peC:largp| < §.p# 0}, we have(Re p) " < m then

2745 (25 4 1) eRer (|R| -+ 1ol I1S1) [(laol + leol) + ] (Jbo] + Ido])]

Aol (1617 ) (cos 37 pi/r

1R\ Lyl <

Finally, we obtain for\ = p? € ¥;

Rep R
@D 1AL <~ (VAL 1) Waal 4 Jeo + 1o o + e,

A (V)] o] o]

where
gl+2 (21+% 4 1)

i (cost) T

C =

3.2. Estimation of the Characteristic Determinant. The next step is to determine the cases
for which |A())| remains bounded below. It will then be necessary to bgix{d)| appropri-
ately. However, formulg (2]5) is not useful for this purpose. It will be then necessary to make
some additional regularity hypotheses on the functi@nand S, and so we assume that the
functionsk andS are inC? ([0,1], C).

Integrating twice by parts i (2.5), we obtain

(3.8) A()) = e [p(dOS(O) — byS(1)) + (doS’ (0) + bpS’ (1) + aoS (1)

bR (1) — doR (0) + oS (0)) + %(aoR (1) — R (0) + bR (1)

—%Sawwdmm+%5m»+§¢mﬂwm—%Rm»+wm,
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where

@9) 2(p) = [fan—ph)e + o= p)e ) [ (0L g

p? p
+ [(ao + pbo)e™ + (co + pdo)] /0 <R;§t) — S’;ft)) e Ptdt
er E (—bOR’(O) +doR' (1) — oS (1) + aoS'(0) + coR(1) — aOR(O)>

+ p(boS(0) = doS(1)] + 2¢7* [(ao + pbo) (R(1) — pS(1))

—<co—pdo><R<o>+ps<o>>+§<ao+pbo>< (1) - pS'(1)

1
2\

+5(en— pdo) (0 +ps’<o>>} |

After a straightforward calculation, we obtain the following inequality valid o€ Eg,with
|p| sufficiently large,

3 B R//H HS//H eRep -1
d < |(lag| + bol) e~ R + (leo| + dy|) e 2Rer (H +
[B(p)] < [(lao] + 1l o] (ol +lol ldol) 7] (575 + T8 ) e

—Re R S 1 — ¢~ Rep
(ol + el e~ + ful + I ] (1550 + 1203 ( )

] /] Rep

1 / / ! !
| 9e—Rep [H ‘—boR (0) + doR (1) — oS (1) + apS (0) + coR(1) — aoR(O)‘

+ [pl [00S(0) = doS(1)[] + 7P { (laol + |p[ 1bo]) CIE] + [l IS1])

T (lcol + |pl [dol) ([IR] + 1o! 1S]]) + (Jaol + |p] bol) |7 5
ol ]

R/ /
+ (Jeol + [p! |dol) <|| P )

Then
) < i | L o (1571
ar Clos_ [ L bR (0) + doR (1) — coS' (1) + a0 (0) + coR(1) — aDR(O)‘
# S(0) ~ SO+ (el ) (B2 gs)
+ (1) (Tt st) + <||ap0||+'b0')<H z ‘%)

R |5

(3.10) + (||C°|‘ + |do |) <||p—l2 + W)] .
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Where we have used th&e(p) > |p| cos(), (1 — e Rer) < 1,

2 1
eRer < = gnde?Rer <

—Rep
< — <= eRer .
T (cos 2)? 2[P (cos 2)?

There are several cases to analyze depending on the funétiand 5.
e Case 1.
Suppose thab # 0, dy # 0, by # 0, dpS (0) — byS (1) = 0 and

k1 = doS" (0) +boS (1) +apS (1) — byR (1) — doR (0) + ¢S (0) # 0.
From (3.8), we have fojp| sufficiently large
A (A)] > efer Hdos’ (0) + boS' (1) + aoS (1) — bR (1) — doR (0) + oS (0)‘
1

= 1 [0B (1)~ @R (0) + bR (1) — apS' (1) — doR' (0) + oS (0)‘

]_ / U
- el () + ol 0] = 00)].
From ) we deduce fore s, [p| > ro > 0.

c(ro)
ol

|D(p)| <
Then, we have

A (A)] > efer Hdos’ (0) + boS’ (1) + aoS (1) — bR (1) — do R (0) + ¢4 (0)‘
- |—;| a0 R (1) ~ R (0) + by (1)~ agS (1) ~ doR (0) + o’ (0)
1

s

awR (1) + coR (0)) - %] .

we can now choose, > 0, such that

L aoR (1) = coR (0) + bR (1) — apS’ (1) — do ' (0) + coS' ()

c(ro)
]
< % ‘doSl (0) + boS/ (1) +aoS (1) —boR (1) — doR (0) + ¢0S (0)|,

1
7

aR (1) + coR (0)‘ +

then, forp € Eg, lp| > ro > 0, we get
Rep

2
From (3.7), we deduce the following bound, valid for evemg p| < 2, p # 0

2c apl + |c R
IROL)| < — (C“"“)+uw+wm)(ﬂﬂ+wm)
p|7 |1 1P| |

(&

(AN =

LR

then .
1

R\ L)l < —,

RYRZ
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as|\| — +oo, where

_ 2¢ |18 ([bo] + ldo)
|a
e Case 2.
If by = doy = 0, S 7é 0 and(los (1) + oS (0) =0, with
ks = agR (1) — coR (0) — aoS (1) + oS’ (0) # 0,
we have the following bound, valid for € 35 and|\| big enough,

2¢ (Jao| + |c Rl
1RO L)) < 2eUeol + ool ("| |‘ +||S||),
FHEERNE

then
(&1
IR L)l < —
| A2
as|\| — o0, where
_ 2¢ (laol + [eo]) [IS]
C1 =
| o

e Case 3.
If S=0,0b0#0,dy+#0andbyR(1) + dyR (0) = 0, with

ks = aoR (1) — coR (0) + boR (1) — do R (0) # 0.
Similarly, we get

1d

IR L)) < —2IE ‘ (“‘“" Tleol) | g, + |do|>) |

— 1
|p|1+P \k?3
then, we have
(&1
IR\ L)l < —,

E
as|\| — o0, where

__ 2¢||RIl (Jbo] + |do])
' | s '

e Case 4.
If bp =do=0,5=0andayR (1) — coR (0) = 0 with
ky = agR (1) — coR (0) # 0.
Again in this case, we have
2¢ (Jao| + |col) [| R
ol [kl

IR (X Lyl < :
then
C
IR LI <
as|\| — o0, where
_ < IRl (lao| + |co])
| Fea
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Definition 3.1. The boundary value conditions in (IL.1) are called non regular if the functions
R, S € C*([0,1],C) and if and only if one of the following conditions holds
1'd05 (0) - bo (1) == 0, bo 75 O,do 7é 0, S 7é O and
doS" (0) + oS (1) 4 apS (1) — bR (1) — do R (0) 4 ¢oS (0) # 0
2-byg =dy = 0, HSH 7£ 0, a05(1> + Cos (O) = 0 with

aoR (1) — coR (0) — apS (1) + oS (0) #0
3-SIO,bO7EO,d07§O boR (1) ()#OWIth

aoR(1>—coR( ) +boR (1) — do R (0) # 0
4'bgzd0:O,SZO,G()R(]_)—C()R< )—OWlth

aoR (1) - C()R ( ) 7A 0.
This proves the following theorem

Theorem 3.1. If the boundary value conditions i.1) are non regular, th&nc p(L,,) for
sufficiently largg A| and there exists > 0 such that

1R, L)l <

A \QP

Remark 3.2. From Theorenj 3]1 it follows that the operatby, for p # oo, generates an
analytic semigroup with singularitie’s [25] of type(2p — 1, 4p — 1).

3.3. Application. In the following, we apply the above obtained results to the study of a class
of a mixed problem for a parabolic equation with an weighted integral boundary condition
combined with another two point boundary condition of the form

( OJu(t, ) Pult,x)
Yoz T f(t,x)
(3.11) Ly (u) = agu (0, 1) + bou' (0,) + cou (1,) + dou (1,£) = 0,
= [V R(E) ult, &) dE + [} S(€) u'(t,€) dE =0,
\ U(O,ZE) = Uo(ﬂﬁ),

where(t,€) € [0,7] x [0,1]. Boundary value problems for parabolic equations with integral
boundary conditions are studied by [1) 3| 5 6,14, 15/ 15[ 17, 35] using various methods. For
instance, the potential method in [3] and/[17], Fourier methodlin [1l, 14, 15, 16] and the energy
inequalities method has been used in |5, 6, 35]. In our case, we apply the method of operator
differential equation. The study of the problem is then reduced to a cauchy problem for a
parabolic abstract differential equation, where the operator coefficients has been previously
studied. For this purpose, |&t, £, andE; be Banach spaces. Introduce two Banach spaces

C. (0,71, E) = {f/f e C((0, T, E), |Ifl = up [ @l < OO}, =0,

¢ ((0,T],E) = {f/f cC(0,T],E), fll= sup [[t"f(t)]]

te(0,77]

©osup (4R - FO R < oo}, 100,y € (0,1,
0<t<t+h<T
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and a linear space
CH((0,T],Ey, Eo) ={f/f€C((0,T],E)NC"((0,T],E5)}, E1 C Es,
whereC ((0,7],E) andC' ((0,77], E) are spaces of continuous and continuously differen-
tiable, respectively, vector-function froffi, 7’| into £. We denote, for a linear operatdrin a
Banach spacé’, by
B(4) = {ufu € D(A), [[ull g, = (1Aul + lul*)*
and
CH (0,71, B(A), B) = { f/f € C (0, ], B(A)), f € C((0,T],E))}.

Let us derive a theorem which was proved by various methods in [25] and [31, 33]. Consider,
in a Banach spacg, the Cauchy problem

{ u'(t) = Au(t) + f(t), t €[0,T],
u(0) = uy,

where A is, generally speaking, unbounded linear operataf jny, is a given element of,
f(t) is a given vector-function and(t) is an unknown vector-function if'.

(3.12)

Theorem 3.3. Let the following conditions be satisfied:
(1) Ais a closed linear operator in a Banach spaEeand for some? € (0,1], « > 0

RO SO, Jarg Al < 5 +a, Al = oo
(2) f € C;((0,T), E) for somey € (1 5,1, i € [0,5):
Then the Cauchy problern (3]12) has a unique solution
we C([0,T],E)NC" ((0,T), E(A), E)
and for the solution: the following estimates hold

el < € (IlAuoll + ol + ey 01 - £ € (0,71,

As a result of this we get the following theorem

o/ (]| + 4wl < € (7 (lAuoll + o) + 7 If g o) » ¢ € (0,71,

Theorem 3.4. Let the following conditions be satisfied

(1) a #0,
(2) the functionsk(¢), S(t) € C? ([0, 1], C) and one of the following conditions is satisfied
doS (0) — bpS (1) =0, b9 # 0, dy # 0, and.S # 0

dpS" (0) + boS (1) 4 apS (1) — by R (1) — dy R (0) 4 ¢S (0) # 0,
OerIO, ngO,S#O,aOS(l)—i—cOS(O) = 0 with

m
argal < BL

/

aoR (1) — coR (0) — apS (1) 4 ¢S (0) # 0,
or by 7§ 0, dy 7& 0,5 =0, boR(l) + doR (0) = 0 with
aoR (1) — coR (0) + by R (1) — doR (0) # 0,
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or bo = do =0,5=0, a0R<1) — R (0) = 0 with
aoR (1) — coR (0) # 0.
(3) f € C)((0,T],L%0,1)) for somey € (1 — 30 1] and someu € [0, 2—1q) :
(4) up € W2((0,1), Liu=0,i=1,2).
Then the problenj (3.11) has a unique solution
ue C((0,7],L90,1)) N C* ((0,T], WZ(0,1), L7(0,1))
and for this solution we have the estimates:

(3.13) Jut M ey < ¢ (HUOHW{f(O,l) + HfHCM((O,t],Lq(O,l))) , te(0,17,

(3.14) |[lu"(t, ')HLq(o,l) + [l (¢, ')||Lq(o,1)
1 1 _q_
e (5 uolwgon + 557 I logoazeony ) - £ € 011,
Proof. We consider in the spade?(0,1) 1 < ¢ < oo, the operatord defined by
A(u) = au"(z), D(A) = {u € W2(0,1), Li(u) =0,i=1,2}.

Then problem[(3.11) can be written as

u'(t) = Au(t) + f (1),

u(0) = wy,
whereu(t) = u(t,-), f(t) = f(t,-), andug = up(-) are functions with values in the Banach
spacel.?(0,1). From Theore 1 we conclude thiat(\, A)|| < c|)\|_ﬁ ,for larg A| < g—i-oz,

as|\| — oo.
Then, from Theorern 33 the problem (3.11) has a unique solution

we C((0,7],L9(0,1)) N C* ((0, 7], W2(0,1), L*(0, 1))
and we have the following estimates

(3.15) [Ju(t, -)HLq(o,1) <c <||Au0||Lq(o,1) + HUOHL‘I(O,I) + HfHCM((O,t],Lq(O,l))> ’

@1@]@@)

+ ([ Au(t, )l

L9(0,1) Lao.n

1 9 1 _q_
c (th [ Auol| oo 1) + ||U0||Lq(o,1)> it ||f||cg((o,t},Lq(o,1))> ;
wheret € [0, T, from (3.1%) we get

Ju(t, - ||Lq(0 )= <c (HUgHLq(o,n + ||U0HLq(0,1) + Hf”CH((O,t},Lq(O,l)))

< ¢ (lwolwzn + I loy oo ) » t€0.T].
and from [3.1p) we get

| X! I OB P
a1 —1-
<c (t2 (HAUOHLq 01) T HUOHLq 0 1)) + t2a ! HfHC"’ ((0,¢],L4(0, 1)))

1 _ 1 _q_
=c (th ||u0||Wq?(o,1) ez Hchg((o,t],Lq(oJ))) , tel0,1].
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which gives the desired result. O
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