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Abstract

In this paper, we study a second order differential operator with mixed nonlocal
boundary conditions combined weighting integral boundary condition with an-
other two point boundary condition. Under certain conditions on the weighting
functions and on the coefficients in the boundary conditions, called non regular
boundary conditions, we prove that the resolvent decreases with respect to the
spectral parameter in Lp (0, 1), but there is no maximal decreasing at infinity
for p ≥ 1. Furthermore, the studied operator generates in Lp (0, 1) an analytic
semi group with singularities for p ≥ 1. The obtained results are then used to
show the correct solvability of a mixed problem for a parabolic partial differential
equation with non regular boundary conditions.
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1. Introduction
In the spaceLp(0, 1) we consider the boundary value problem

(1.1)


L (u) = u

′′
= f (x) ,

B1 (u) = a0u (0) + b0u
′
(0) + c0u (1) + d0u

′
(1) = 0,

B2 (u) =
∫ 1

0
R (t) u (t) dt +

∫ 1

0
S (t) u

′
(t) dt = 0,

where the functionsR,S ∈ C([0, 1] , C). We associate to problem (1.1) in space
Lp(0, 1) the operator:

Lp(u) = u′′,

with domainD(Lp) = {u ∈ W 2,p(0, 1) : Bi(u) = 0, i = 1, 2} .

Many papers and books give the full spectral theory of Birkhoff regular dif-
ferential operators with two point linearly independent boundary conditions,
in terms of coefficients of boundary conditions. The reader should refer to
[7, 10, 20, 21, 22, 28, 31, 33] and references therein. Few works have been
devoted to the study of a non regular situation. The case of separated non reg-
ular boundary conditions was studied by W. Eberhard, J.W. Hopkins, D. Jak-
son, M.V. Keldysh, A.P. Khromov, G. Seifert, M.H. Stone, L.E. Ward (see S.
Yakubov and Y. Yakubov [33] for exact references). A situation of non regular
non-separated boundary conditions was considered by H. E. Benzinger [2], M.
Denche [4], W. Eberhard and G. Freiling [8], M.G. Gasumov and A.M. Mager-
ramov [12, 13], A.P. Khromov [18], Yu. A. Mamedov [19], A.A. Shkalikov
[24], Yu. T. Silchenko [26], C. Tretter [29], A.I. Vagabov [30], S. Yakubov [32]
and Y. Yakubov [34].
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A mathematical model with integral boundary conditions was derived by
[9, 23] in the context of optical physics. The importance of this kind of problem
has been also pointed out by Samarskii [27].

In this paper, we study a problem for second order ordinary differential equa-
tions with mixed nonlocal boundary conditions combined with weighted inte-
gral boundary conditions and another two point boundary condition. Following
the technique in [11, 20, 21, 22], we should bound the resolvent in the space
Lp (0, 1) by means of a suitable formula for Green’s function. Under certain
conditions on the weighting functions and on the coefficients in the boundary
conditions, called non regular boundary conditions, we prove that the resolvent
decreases with respect to the spectral parameter inLp (0, 1), but there is no
maximal decreasing at infinity forp ≥ 1. In contrast to the regular case this
decreasing is maximal forp = 1 as shown in [11]. Furthermore, the studied op-
erator generates inLp (0, 1) an analytic semi group with singularities forp ≥ 1.
The obtained results are then used to show the correct solvability of a mixed
problem for a parabolic partial differential equation with non regular non local
boundary conditions.
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2. Green’s Function
Let λ ∈ C, u1(x) = u1(x, λ ) andu2(x) = u2(x, λ ) be a fundamental system
of solutions to the equation

L (u)− λu = 0.

Following [20], the Green’s function of problem (1.1) is given by

(2.1) G(x, s; λ) =
N(x, s; λ)

∆(λ)
,

where∆(λ) it the characteristic determinant of the considered problem defined
by

(2.2) ∆(λ) =

∣∣∣∣ B1(u1) B1(u2)
B2(u1) B2(u2)

∣∣∣∣
and

(2.3) N(x, s; λ) =

∣∣∣∣∣∣
u1(x) u2(x) g(x, s, λ)
B1(u1) B1(u2) B1(g)x

B2(u1) B2(u2) B2(g)x

∣∣∣∣∣∣
for x, s ∈ [0, 1].The functiong(x, s, λ) is defined as follows

(2.4) g(x, s; λ) = ±1

2

u1(x)u2(s)− u1(s)u2(x)

u′1(s)u2(s)− u1(s)u′2(s)
,

where it takes the plus sign forx > s and the minus sign forx < s.
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Given an arbitraryδ ∈
(

π
2
, π
)
, we consider the sector

Σδ = {λ ∈ C, |arg λ| ≤ δ, λ 6= 0} .

Forλ ∈
∑

δ, defineρ as the square root ofλ with positive real part. Forλ 6= 0,
we can consider a fundamental system of solutions of the equationu′′ = λu =
ρ2u given byu1(t) = e−ρt andu2(t) = eρt.

In the following we are going to deduce an adequate formulae for∆(λ) and
G(x, s; λ). First of all, forj = 1, 2, we have

B1(uj) = a0 + (−1)jb0ρ + c0e
(−1)jρ + (−1)jd0ρe(−1)jρ,

B2(uj) =

∫ 1

0

R(t)e(−1)jρtdt + (−1)jρ

∫ 1

0

S(t)e(−1)jρtdt.

so we obtain from (2.2)

(2.5) ∆(λ) =
(
a0 − b0ρ + c0e

−ρ − d0ρe−ρ
)(∫ 1

0

(R(t) + ρS(t))eρt dt

)
− (a0 + b0ρ + c0e

ρ + d0ρeρ)

(∫ 1

0

(R(t)− ρS(t))e−ρt dt

)
,

andg(x, s; λ) has the form

g(x, s; λ) =


1

4ρ
(eρ(x−s) − eρ(s−x)) if x > s,

1

4ρ
(eρ(s−x) − eρ(x−s)) if x < s.
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Thus we have

B1(g) =
(
a0 − b0ρ− c0e

−ρ + d0ρe−ρ
) eρs

4ρ

+ (−a0 − b0ρ + c0e
ρ + d0ρeρ)

e−ρs

4ρ
,

B2(g) =
eρs

4ρ

(∫ s

0

(R(t)− ρS(t))e−ρtdt +

∫ 1

s

(−R(t) + ρS(t))e−ρtdt

)
+

e−ρs

4ρ

(
−
∫ s

0

(R(t) + ρS(t))eρtdt +

∫ 1

s

(R(t) + ρS(t))eρtdt

)
.

After a long calculation, formula (2.3) can be written as

(2.6) N(x, s; λ) = ϕ(x, s; λ) + ϕi(x, s; λ),

where

(2.7) ϕ(x, s; λ) =
1

2ρ

[(∫ 1

0

(a0 + ρb0) (R (t) + ρS (t)) eρtdt

− eρ (c0 + ρd0)

∫ s

0

(R (t) + ρS (t)) eρtdt

)
e−ρ(x+s)

+

(∫ 1

s

(a0 − ρb0) (R (t)− ρS (t)) e−ρtdt

− eρ (c0 − ρd0)

∫ s

0

(R (t)− ρS (t)) e−ρtdt

)
eρ(x+s)

]
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and the functionϕi(x, s; λ) is given by

(2.8) ϕi(x, s; λ) =


ϕ1(x, s; λ) if x > s,

ϕ2(x, s; λ) if x < s,

with

(2.9) ϕ1(x, s; λ)

=
eρ(s−x)

2ρ

(∫ s

0

(a0 + ρb0 + c0e
ρ + ρeρd0) (R (t)− ρS (t)) e−ρtdt

−
∫ 1

s

(a0 − ρb0) (R (t) + ρS (t)) eρtdt

)
+

eρ(x−s)

2ρ

(∫ s

0

(
a0 − ρb0 + c0e

−ρ − ρe−ρd0

)
(R (t) + ρS (t)) eρtdt

−
∫ 1

0

(a0 + ρb0) (R (t)− ρS (t)) e−ρtdt

)
,

and

(2.10) ϕ2 (x, s; λ)

=
1

2ρ

[(
−
∫ 1

s

(a0 + ρb0 + c0e
ρ + ρeρd0) (R (t)− ρS (t)) e−ρtdt

+

∫ 1

0

(c0 − ρd0) e−ρ (R (t) + ρS (t)) eρtdt

)
eρ(s−x)
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−
(∫ 1

s

(
a0 − ρb0 + c0e

−ρ − ρe−ρd0

)
(R (t) + ρS (t)) eρtdt

−
∫ 1

0

(c0 + ρd0) eρ (R (t)− ρS (t)) e−ρtdt

)
eρ(x−s)

]
.
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3. Bounds on the Resolvent
Everyλ ∈ C such that∆(λ) 6= 0 belongs toρ(Lp), and the associated resolvent
operatorR(λ, Lp) can be expressed as a Hilbert Schmidt operator

(3.1) (λI − Lp)
−1 f = R(λ, Lp)f = −

∫ 1

0

G(·, s; λ)f(s)ds, f ∈ Lp(0, 1).

Then, for everyf ∈ Lp (0, 1) we estimate (3.1)

‖R(λ; Lp)f‖Lp(0,1) ≤
(

sup
0≤s≤1

∫ 1

0

|G(x, s; λ)|p dx

) 1
p

‖f‖Lp(0,1) ,

and so we need to bound(
sup

0≤s≤1

∫ 1

0

|G(x, s; λ)|p dx

) 1
p

=
1

|∆(λ)|

(
sup

0≤s≤1

∫ 1

0

|N(x, s; λ)|p dx

) 1
p

.

3.1. Estimation of N (x, s; λ)

We will denote by‖·‖ the supremum norm which is defined by‖R‖ = sup
0≤s≤1

|R (s)|.

Since

N (x, s; λ) =

{
ϕ (x, s; λ) + ϕ1 (x, s; λ) if x > s

ϕ (x, s; λ) + ϕ2 (x, s; λ) if x < s
;

then

(3.2) ‖N (x, s; λ)‖Lp ≤ ‖ϕ (x, s; λ)‖Lp + ‖ϕi (x, s; λ)‖Lp ,

http://jipam.vu.edu.au/
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from (2.8), we have

(3.3) ‖ϕi (x, s; λ)‖Lp

≤ 21/p

{[∫ s

0

|ϕ2 (x, s; λ)|p dx

] 1
p

+

[∫ 1

s

|ϕ1 (x, s; λ)|p dx

] 1
p

}
.

From (2.7) we have

|ϕ (x, s; λ)| ≤ e−(x+s)Re ρ

2 |ρ|

[
(‖R‖+ |ρ| ‖S‖) (|a0|+ |ρ| |b0|)

∫ 1

s

et Re ρdt

+ (‖R‖+ |ρ| ‖S‖) (|c0|+ |ρ| |d0|) eRe ρ

∫ s

0

et Re ρdt

]
+

e(x+s)Re ρ

2 |ρ|

[
(‖R‖+ |ρ| ‖S‖) (|a0|+ |ρ| |b0|)

∫ 1

s

e−t Re ρdt

+ e−Re ρ (‖R‖+ |ρ| ‖S‖) (|c0|+ |ρ| |d0|)
∫ s

0

e−t Re ρdt

]
then

|ϕ (x, s; λ)| ≤ e−(x+s)Re ρ

2 |ρ|Re ρ

[
(‖R‖+ |ρ| ‖S‖) (|a0|+ |ρ| |b0|)

(
eRe ρ − es Re ρ

)
+ (‖R‖+ |ρ| ‖S‖) (|c0|+ |ρ| |d0|)

(
e(s+1)Re ρ − eRe ρ

)]
+

e(x+s)Re ρ

2 |ρ|Re ρ

[
(‖R‖+ |ρ| ‖S‖) (|a0|+ |ρ| |b0|)

(
e−s Re ρ − e−Re ρ

)
+ (‖R‖+ |ρ| ‖S‖) (|c0|+ |ρ| |d0|)

(
e−Re ρ − e−(s+1)Re ρ

)]
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and∫ 1

0

|ϕ (x, s; λ)|p dx

≤
2p
∫ 1

0
e−px Re ρdx

(|ρ|Re ρ)p

[
(‖R‖+ |ρ| ‖S‖)p (|a0|+ |ρ| |b0|)p (e(1−s)Re ρ − 1

)p
+ (‖R‖+ |ρ| ‖S‖)p× (|c0|+ |ρ| |d0|)p (eRe ρ − e(1−s) Re ρ

)p]
+

2p
∫ 1

0
epx Re ρdx

(|ρ|Re ρ)p [(‖R‖+ |ρ| ‖S‖)p (|a0|+ |ρ| |b0|)p (1− e(s−1) Re ρ
)p

+ (‖R‖+ |ρ| ‖S‖)p (|c0|+ |ρ| |d0|)p (e(s−1) Re ρ − e−1Re ρ
)p]

,

after calculation we obtain(∫ 1

0

|ϕ (x, s; λ)|p dx

) 1
p

≤ 21+ 2
p eRe ρ

|ρ| (Re ρ)1+ 1
p p1/p

[
(‖R‖+ |ρ| ‖S‖) (|a0|+ |ρ| |b0|)

[(
e−s Re ρ − e−Re ρ

)
×
(
1− e−p Re ρ

) 1
p +

(
1− e−p Re ρ

) 1
p
(
1− e(s−1) Re ρ

)]
+(‖R‖+ |ρ| ‖S‖)

× (|c0|+ |ρ| |d0|)
[(

1− e−p Re ρ
) 1

p
(
1− e−s Re ρ

)
+
(
1− e−p Re ρ

) 1
p
(
e(s−1) Re ρ − e−Re ρ

)]]
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asRe ρ > 0 so

(3.4) sup
0≤s≤1

(∫ 1

0

|ϕ (x, s; λ)|p dx

) 1
p

≤ 21+ 2
p eRe ρ (‖R‖+ |ρ| ‖S‖) [(|a0|+ |c0|) + |ρ| (|b0|+ |d0|)]

|ρ| (Re ρ)1+ 1
p p1/p

.

From (2.9) we have

|ϕ1 (x, s; λ)| ≤ e(s−x)Re ρ

2 |ρ|

[ [
(|a0|+ |ρ| |b0|) + eRe ρ (|c0|+ |ρ| |d0|)

]
× (‖R‖+ |ρ| ‖S‖)

∫ s

0

e−t Re ρdt

+ (|a0|+ |ρ| |b0|) (‖R‖+ |ρ| ‖S‖)
∫ 1

0

et Re ρdt

]
+

e(x−s)Re ρ

2 |ρ|

[
(‖R‖+ |ρ| ‖S‖)

[
[(|a0|+ |ρ| |b0|)

+ eRe ρ (|c0|+ |ρ| |d0|)]
∫ s

0

et Re ρdt

+ (|a0|+ |ρ| |b0|) (‖R‖+ |ρ| ‖S‖)
∫ 1

0

e−t Re ρdt

]
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then

|ϕ1 (x, s; λ)| ≤ e(s−x)Re ρ

2 |ρ|Re ρ

[
(|a0|+ |ρ| |b0|) (‖R‖+ |ρ| ‖S‖)

(
eRe ρ − e−s Re ρ

)
+ (|c0|+ |ρ| |d0|) (‖R‖+ |ρ| ‖S‖)

(
eRe ρ − e(1−s) Re ρ

)]
+

e(x−s)Re ρ

2 |ρ|Re ρ

[
(‖R‖+ |ρ| ‖S‖) (|a0|+ |ρ| |b0|)

(
es Re ρ − e−Re ρ

)
+ (|c0|+ |ρ| |d0|) (‖R‖+ |ρ| ‖S‖)

(
e(s−1) Re ρ − e−Re ρ

)]
and∫ 1

s

|ϕ1 (x, s; λ)|p dx

≤
2p
∫ 1

s
e−px Re ρdx

|ρ|p (Re ρ)p

[
(|a0|+ |ρ| |b0|)p (‖R‖+ |ρ| ‖S‖)p (e(1+s) Re ρ − 1

)p
+ (|c0|+ |ρ| |d0|)p (‖R‖+ |ρ| ‖S‖)p (e(1+s) Re ρ − eRe ρ

)p]
+

2p
∫ 1

s
epx Re ρdx

|ρ|p (Re ρ)p

[
(|a0|+ |ρ| |b0|)p (‖R‖+ |ρ| ‖S‖)p (1− e−(1+s)Re ρ

)p
+ (|c0|+ |ρ| |d0|)p (‖R‖+ |ρ| ‖S‖)p (e−Re ρ − e−(1+s)Re ρ

)p
,

this yields∫ 1

s

|ϕ1 (x, s; λ)|p dx ≤ 2p+1ep Re ρ

|ρ|p (Re ρ)p+1 [(|a0|+ |ρ| |b0|)p (‖R‖+ |ρ| ‖S‖)p

×
(
1− e−(1+s) Re ρ

)p (
1− ep(s−1) Re ρ

)
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+ (|c0|+ |ρ| |d0|)p (‖R‖+ |ρ| ‖S‖)p (1− e−s Re ρ
)p (

1− ep(s−1) Re ρ
)]

asRe ρ > 0 we obtain

(3.5) sup
0≤s≤1

(∫ 1

s

|ϕ1 (x, s; λ)|p dx

) 1
p

≤ 21+ 2
p eRe ρ (‖R‖+ |ρ| ‖S‖) [(|a0|+ |c0|) + |ρ| (|b0|+ |d0|)]

|ρ| (Re ρ)1+ 1
p p1/p

.

From (2.10) we have

|ϕ2 (x, s; λ)|

≤ e(x−s)Re ρ

2 |ρ|

[
(‖R‖+ |ρ| ‖S‖) (|c0|+ |ρ| |d0|)

∫ 1

0

e(1−t) Re ρdt

+ (‖R‖+ |ρ| ‖S‖)
[
(|a0|+ |ρ| |b0|) + e−Re ρ (|c0|+ |ρ| |d0|)

] ∫ 1

0

et Re ρdt

]
+

e(s−x)Re ρ

2 |ρ|
[(|c0|+ |ρ| |d0|) (‖R‖+ |ρ| ‖S‖)

∫ 1

0

e(t−1) Re ρdt

+
[
(|a0|+ |ρ| |b0|) + eRe ρ (|c0|+ |ρ| |d0|)

]
(‖R‖+ |ρ| ‖S‖)

∫ 1

s

e−t Re ρdt

]
then

|ϕ2 (x, s; λ)| ≤ ex Re ρ

2 |ρ|Re ρ

[
(‖R‖+ |ρ| ‖S‖) (|c0|+ |ρ| |d0|)

(
e(1−s) Re ρ − e−Re ρ

)
+ (|a0|+ |ρ| |b0|) (‖R‖+ |ρ| ‖S‖)

(
e(1−s)Re ρ − 1

)]
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+
e−x Re ρ

2 |ρ|Re ρ

[
(‖R‖+ |ρ| ‖S‖) (|c0|+ |ρ| |d0|)

(
eRe ρ − e(s−1) Re ρ

)
+ (|a0|+ |ρ| |b0|) (‖R‖+ |ρ| ‖S‖)

(
1− e(s−1) Re ρ

)]
.

So∫ s

0

|ϕ2 (x, s; λ)|p dx

≤ 2p+1ep Re ρ

p |ρ|p (Re ρ)p+1

[
(‖R‖+ |ρ| ‖S‖)p (|c0|+ |ρ| |d0|)p (1− e(s−2) Re ρ

)p
×
(
1− e−ps Re ρ

)
+ (|a0|+ |ρ| |b0|)p

× (‖R‖+ |ρ| ‖S‖)p (1− e−ps Re ρ
) (

1− e(s−1) Re ρ
)p]

asRe ρ > 0 we obtain

(3.6) sup
0≤s≤1

(∫ s

0

|ϕ2 (x, s; λ)|p dx

) 1
p

≤ 21+ 2
p eRe ρ (‖R‖+ |ρ| ‖S‖) [(|a0|+ |c0|) + |ρ| (|b0|+ |d0|)]

|ρ| (Re ρ)1+ 1
p p1/p

.

From (3.4), (3.5) and (3.6), we obtain

‖R (λ, Lp)‖

≤ 21+ 2
p eRe ρ (‖R‖+ |ρ| ‖S‖) [(|a0|+ |c0|) + |ρ| (|b0|+ |d0|)]

|4 (λ)| |ρ| (Re ρ)1+ 1
p p1/p

(
21+ 2

p + 1
)

,
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for ρ ∈ Σ δ
2

=
{
ρ ∈ C : |arg ρ| ≤ δ

2
, ρ 6= 0

}
, we have(Re ρ)−1 < 1

|ρ| cos( δ
2)

, then

‖R (λ, Lp)‖

≤
21+ 2

p

(
21+ 2

p + 1
)

eRe ρ (‖R‖+ |ρ| ‖S‖) [(|a0|+ |c0|) + |ρ| (|b0|+ |d0|)]

|4 (λ)| |ρ|
(
|ρ|1+ 1

p

) (
cos δ

2

)1+ 1
p p1/p

.

Finally, we obtain forλ = ρ2 ∈ Σδ

(3.7) ‖R (λ, Lp)‖Lp

≤ c eRe ρ

|4 (λ)| |ρ|1+ 1
p

(
‖R‖
|ρ|

+ ‖S‖
)

[(|a0|+ |c0|) + |ρ| (|b0|+ |d0|)] ,

where

c =
21+ 2

p

(
21+ 2

p + 1
)

p1/p
(
cos δ

2

)1+ 1
p

.

3.2. Estimation of the Characteristic Determinant

The next step is to determine the cases for which|∆(λ)| remains bounded be-
low. It will then be necessary to bound|∆(λ)| appropriately. However, formula
(2.5) is not useful for this purpose. It will be then necessary to make some ad-
ditional regularity hypotheses on the functionsR andS, and so we assume that
the functionsR andS are inC2 ([0, 1] , C).
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Integrating twice by parts in (2.5), we obtain

(3.8) ∆(λ) = eρ
[
ρ(d0S(0)− b0S(1)) + (d0S

′
(0) + b0S

′
(1) + a0S (1)

−b0R (1)− d0R (0) + c0S (0)) +
1

ρ
(a0R (1)− c0R (0) + b0R

′
(1)

−a0S
′
(1)− d0R

′
(0) + c0S

′
(0)) +

1

ρ2
(−a0R

′
(1)− c0R

′
(0)) + Φ(ρ)

]
,

where

(3.9) Φ(ρ) =
[
(a0 − ρb0)e

−ρ + (c0 − ρd0)e
−2ρ
] ∫ 1

0

(
R′′(t)

ρ2
− S ′′(t)

ρ

)
eρtdt

+
[
(a0 + ρb0)e

−ρ + (c0 + ρd0)
] ∫ 1

0

(
R′′(t)

ρ2
− S ′′(t)

ρ

)
e−ρtdt

+ e−ρ

[
1

ρ

(
−b0R

′(0) + d0R
′(1)− c0S

′(1) + a0S
′
(0) + c0R(1)− a0R(0)

)
+ ρ(b0S(0)− d0S(1))] + 2e−2ρ [(a0 + ρb0)(R(1)− ρS(1))

− (c0 − ρd0)(R(0) + ρS(0)) +
1

ρ2
(a0 + ρb0)(R

′
(1)− ρS

′
(1))

+
1

ρ2
(c0 − ρd0)(R

′
(0) + ρS

′
(0))

]
.

After a straightforward calculation, we obtain the following inequality valid for
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ρ ∈ Σ δ
2
,with |ρ| sufficiently large,

|Φ(ρ)|
≤
[
(|a0|+ |ρ| |b0|) e−Re ρ + (|c0|+ |ρ| |d0|) e−2Re ρ

]
×
(
‖R′′‖
|ρ|2

+
‖S ′′‖
|ρ|

)(
eRe ρ − 1

Re ρ

)
+
[
(|a0|+ |ρ| |b0|) e−Re ρ + (|c0|+ |ρ| |d0|)

]
×
(
‖R′′‖
|ρ|2

+
‖S ′′‖
|ρ|

)(
1− e−Re ρ

Re ρ

)
+ 2e−Re ρ

[
1

|ρ|

∣∣∣−b0R
′
(0) + d0R

′
(1)− c0S

′
(1) + a0S

′
(0) + c0R(1)− a0R(0)

∣∣∣
+ |ρ| |b0S(0)− d0S(1)|] + e−2 Re ρ

[
1

|ρ|
(|a0|+ |ρ| |b0|) (‖R‖+ |ρ| ‖S‖)

+
1

|ρ|
(|c0|+ |ρ| |d0|) (‖R‖+ |ρ| ‖S‖) + (|a0|+ |ρ| |b0|)

(∥∥R′∥∥+ |ρ|
∥∥S ′∥∥

|ρ|2

)

+ (|c0|+ |ρ| |d0|)

(∥∥R′∥∥+ |ρ|
∥∥S ′∥∥

|ρ|2

)]
.

Then

|Φ(ρ)| ≤ 2

|ρ| cos δ
2

[
(|a0|+ |c0|)

|ρ|
+ (|b0|+ |d0|)

(
‖R′′‖
|ρ|

+ ‖S ′′‖
)]
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+
1

|ρ| cos δ
2

[
1

|ρ|2
∣∣∣−b0R

′
(0) + d0R

′
(1)− c0S

′
(1)

+ +a0S
′
(0) + c0R(1)− a0R(0)

∣∣∣ |b0S(0)− d0S(1)|
]

+
1

|ρ| (cos δ
2
)2

[(
|a0|
|ρ|

+ |b0|
)(

‖R‖
|ρ|

+ ‖S‖
)

+

(
|c0|
|ρ|

+ |d0|
)(

‖R‖
|ρ|

+ ‖S‖
)

+

(
|a0|
|ρ|

+ |b0|
)(∥∥R′∥∥

|ρ|2
+

∥∥S ′∥∥
|ρ|

)

+

(
|c0|
|ρ|

+ |d0|
)(∥∥R′∥∥

|ρ|2
+

∥∥S ′∥∥
|ρ|

)]
.(3.10)

Where we have used thatRe(ρ) ≥ |ρ| cos( δ
2
), (1− e−Re ρ) < 1,

e−Re ρ ≤ 2

|ρ|2 (cos δ
2
)2

ande−2Re ρ ≤ 1

2 |ρ|2 (cos δ
2
)2

, e−Re ρ < 1.

There are several cases to analyze depending on the functionsR andS.

• Case 1.

Suppose thatS 6= 0, d0 6= 0, b0 6= 0, d0S (0)− b0S (1) = 0 and

k1 = d0S
′
(0) + b0S

′
(1) + a0S (1)− b0R (1)− d0R (0) + c0S (0) 6= 0.
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From (3.8), we have for|ρ| sufficiently large

|4 (λ)|

≥ eRe ρ
[∣∣∣d0S

′
(0) + b0S

′
(1) + a0S (1)− b0R (1)− d0R (0) + c0S (0)

∣∣∣
− 1

|ρ|

∣∣∣a0R (1)− c0R (0) + b0R
′
(1)− a0S

′
(1)− d0R

′
(0) + c0S

′
(0)
∣∣∣

− 1

|ρ|2
∣∣∣a0R

′
(1) + c0R

′
(0)
∣∣∣− |Φ(ρ)|

]
.

From (3.10) we deduce forρ ∈ Σ δ
2
, |ρ| ≥ r0 > 0.

|Φ(ρ)| ≤ c(r0)

|ρ|
.

Then, we have

|4 (λ)|

≥ eRe ρ
[∣∣∣d0S

′
(0) + b0S

′
(1) + a0S (1)− b0R (1)− d0R (0) + c0S (0)

∣∣∣
− 1

|ρ|

∣∣∣a0R (1)− c0R (0) + b0R
′
(1)− a0S

′
(1)− d0R

′
(0) + c0S

′
(0)
∣∣∣

− 1

|ρ|2
∣∣∣a0R

′
(1) + c0R

′
(0)
∣∣∣− c(r0)

|ρ|

]
.
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we can now chooser0 > 0, such that

1

r0

∣∣∣a0R (1)− c0R (0) + b0R
′
(1)− a0S

′
(1)− d0R

′
(0) + c0S

′
(0)
∣∣∣

+
1

r2
0

∣∣∣a0R
′
(1) + c0R

′
(0)
∣∣∣+ c(r0)

|ρ|

≤ 1

2

∣∣∣d0S
′
(0) + b0S

′
(1) + a0S (1)− b0R (1)− d0R (0) + c0S (0)

∣∣∣ ,
then, forρ ∈ Σ δ

2
, |ρ| ≥ r0 > 0, we get

|4 (λ)| ≥ eRe ρ

2
|k1| .

From (3.7), we deduce the following bound, valid for every|arg ρ| ≤ δ
2
, ρ 6= 0

‖R (λ, Lp)‖ ≤
2c

|ρ|
1
p |k1|

((
|a0|+ |c0|

|ρ|

)
+ (|b0|+ |d0|)

)(
‖R‖
|ρ|

+ ‖S‖
)

,

then
‖R (λ, Lp)‖ ≤

c1

|λ|
1
2p

,

as|λ| −→ +∞, where

c1 =
2c ‖S‖ (|b0|+ |d0|)

|k1|
.

• Case 2.
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If b0 = d0 = 0, S 6= 0 anda0S (1) + c0S (0) = 0, with

k2 = a0R (1)− c0R (0)− a0S
′
(1) + c0S

′
(0) 6= 0,

we have the following bound, valid forλ ∈ Σδ and|λ| big enough,

‖R (λ, Lp)‖ ≤
2c (|a0|+ |c0|)
|ρ|

1
p |k2|

(
‖R‖
|ρ|

+ ‖S‖
)

,

then
‖R (λ, Lp)‖ ≤

c1

|λ|
1
2p

,

as|λ| −→ +∞, where

c1 =
2c (|a0|+ |c0|) ‖S‖

|k2|
.

• Case 3.

If S = 0, b0 6= 0, d0 6= 0 andb0R(1) + d0R (0) = 0, with

k3 = a0R (1)− c0R (0) + b0R
′
(1)− d0R

′
(0) 6= 0.

Similarly, we get

‖R (λ, Lp)‖ ≤
2c ‖R‖
|ρ|1+ 1

p |k3|

(
(|a0|+ |c0|)

|ρ|
+ (|b0|+ |d0|)

)
,
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then, we have
‖R (λ, Lp)‖ ≤

c1

|λ|
1
2p

,

as|λ| −→ +∞, where

c1 =
2c ‖R‖ (|b0|+ |d0|)

|k3|
.

• Case 4.

If b0 = d0 = 0, S = 0 anda0R (1)− c0R (0) = 0 with

k4 = a0R
′
(1)− c0R

′
(0) 6= 0.

Again in this case, we have

‖R (λ, Lp)‖ ≤
2c (|a0|+ |c0|) ‖R‖

|ρ|
1
p |k4|

,

then
‖R (λ, Lp)‖ ≤

c1

|λ|
1
2p

,

as|λ| −→ +∞, where

c1 =
c ‖R‖ (|a0|+ |c0|)

|k4|
.
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Definition 3.1. The boundary value conditions in (1.1) are called non regular
if the functionsR, S ∈ C2 ([0, 1] , C) and if and only if one of the following
conditions holds
1-d0S (0)− b0 (1) = 0, b0 6= 0, d0 6= 0, S 6= 0 and

d0S
′
(0) + b0S

′
(1) + a0S (1)− b0R (1)− d0R (0) + c0S (0) 6= 0

2- b0 = d0 = 0, ‖S‖ 6= 0, a0S (1) + c0S (0) = 0 with

a0R (1)− c0R (0)− a0S
′
(1) + c0S

′
(0) 6= 0

3-S = 0, b0 6= 0, d0 6= 0, b0R(1) +0 R (0) 6= 0 with

a0R (1)− c0R (0) + b0R
′
(1)− d0R

′
(0) 6= 0

4-b0 = d0 = 0, S = 0, a0R (1)− c0R (0) = 0 with

a0R
′
(1)− c0R

′
(0) 6= 0.

This proves the following theorem

Theorem 3.1. If the boundary value conditions in (1.1) are non regular, then
Σδ ⊂ ρ(Lp) for sufficiently large|λ| and there existsc > 0 such that

‖R (λ, Lp)‖ ≤
c

|λ|
1
2p

.

Remark 3.1. From Theorem3.1it follows that the operatorLp, for p 6= ∞, gen-
erates an analytic semigroup with singularities [25] of typeA (2p− 1, 4p− 1).
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3.3. Application

In the following, we apply the above obtained results to the study of a class of
a mixed problem for a parabolic equation with an weighted integral boundary
condition combined with another two point boundary condition of the form

(3.11)



∂u(t, x)

∂t
− a

∂2u(t, x)

∂x2
= f(t, x)

L1(u) = a0u (0, t) + b0u
′
(0, t) + c0u (1, t) + d0u

′
(1, t) = 0,

L2(u) =
∫ 1

0
R(ξ) u(t, ξ) dξ +

∫ 1

0
S(ξ) u

′
(t, ξ) dξ = 0,

u(0, x) = u0(x),

where(t, ξ) ∈ [0, T ]× [0, 1]. Boundary value problems for parabolic equations
with integral boundary conditions are studied by [1, 3, 5, 6, 14, 15, 16, 17,
35] using various methods. For instance, the potential method in [3] and [17],
Fourier method in [1, 14, 15, 16] and the energy inequalities method has been
used in [5, 6, 35]. In our case, we apply the method of operator differential
equation. The study of the problem is then reduced to a cauchy problem for
a parabolic abstract differential equation, where the operator coefficients has
been previously studied. For this purpose, letE, E1, andE2 be Banach spaces.
Introduce two Banach spaces

Cµ ((0, T ] , E)

=

{
f/f ∈ C ((0, T ] , E) , ‖f‖ = sup

t∈(0,T ]

‖tµf(t)‖ < ∞

}
, µ ≥ 0,
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Cγ
µ ((0, T ] , E) =

{
f/f ∈ C ((0, T ] , E) , ‖f‖ = sup

t∈(0,T ]

‖tµf(t)‖

+ sup
0<t<t+h≤T

‖f(t + h)− f(t)‖h−γtµ < ∞
}

,

µ ≥ 0, γ ∈ (0, 1] ,

and a linear space

C1 ((0, T ] , E1, E2) =
{
f/f ∈ C ((0, T ] , E1) ∩ C1 ((0, T ] , E2)

}
, E1 ⊂ E2,

whereC ((0, T ] , E) andC1 ((0, T ] , E) are spaces of continuous and continu-
ously differentiable, respectively, vector-function from(0, T ] into E. We de-
note, for a linear operatorA in a Banach spaceE, by

E(A) =
{

u/u ∈ D(A), ‖u‖E(A) =
(
‖Au‖2 + ‖u‖2) 1

2

}
,

and

C1 ((0, T ] , E(A), E) =
{

f/f ∈ C ((0, T ] , E(A)) , f
′ ∈ C ((0, T ] , E))

}
.

Let us derive a theorem which was proved by various methods in [25] and [31,
33]. Consider, in a Banach spaceE, the Cauchy problem

(3.12)

{
u

′
(t) = Au(t) + f(t), t ∈ [0, T ] ,

u(0) = u0,
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whereA is, generally speaking, unbounded linear operator inE, u0 is a given
element ofE, f(t) is a given vector-function andu(t) is an unknown vector-
function inE.

Theorem 3.2.Let the following conditions be satisfied:

1. A is a closed linear operator in a Banach spaceE and for someβ ∈ (0, 1] ,
α > 0

‖R (λ, A)‖ ≤ C |λ|−β , |arg λ| ≤ π

2
+ α, |λ| → ∞;

2. f ∈ Cγ
µ ((0, T ] , E) for someγ ∈ (1− β, 1] , µ ∈ [0, β) ;

3. u0 ∈ D(A).

Then the Cauchy problem (3.12) has a unique solution

u ∈ C ([0, T ] , E) ∩ C1 ((0, T ] , E(A), E)

and for the solutionu the following estimates hold

‖u(t)‖ ≤ C
(
‖Au0‖+ ‖u0‖+ ‖f‖Cµ((0,t],E)

)
, t ∈ (0, T ] ,

∥∥∥u′
(t)
∥∥∥+ ‖Au(t)‖

≤ C
(
tβ−1 (‖Au0‖+ ‖u0‖) + tβ−µ−1 ‖f‖Cγ

µ ((0,t],E)

)
, t ∈ (0, T ] .
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As a result of this we get the following theorem

Theorem 3.3.Let the following conditions be satisfied

1. a 6= 0, |arg a| < π

2
,

2. the functionsR(t), S(t) ∈ C2 ([0, 1] , C) and one of the following condi-
tions is satisfied
d0S (0)− b0S (1) = 0, b0 6= 0, d0 6= 0, andS 6= 0

d0S
′
(0) + b0S

′
(1) + a0S (1)− b0R (1)− d0R (0) + c0S (0) 6= 0,

or b0 = 0, d0 = 0, S 6= 0 , a0S (1) + c0S (0) = 0 with

a0R (1)− c0R (0)− a0S
′
(1) + c0S

′
(0) 6= 0,

or b0 6= 0, d0 6= 0, S = 0, b0R(1) + d0R (0) = 0 with

a0R (1)− c0R (0) + b0R
′
(1)− d0R

′
(0) 6= 0,

or b0 = d0 = 0, S = 0, a0R (1)− c0R (0) = 0 with

a0R
′
(1)− c0R

′
(0) 6= 0.

3. f ∈ Cγ
µ ((0, T ] , Lq(0, 1)) for someγ ∈

(
1− 1

2q
, 1
]

and someµ ∈
[
0, 1

2q

)
,

4. u0 ∈ W 2
q

(
(0, 1) , Liu = 0, i = 1, 2

)
.
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Then the problem (3.11) has a unique solution

u ∈ C ((0, T ] , Lq(0, 1)) ∩ C1
(
(0, T ] , W 2

q (0, 1), Lq(0, 1)
)

and for this solution we have the estimates:

(3.13) ‖u(t, ·)‖Lq(0,1) ≤ c
(
‖u0‖W 2

q (0,1) + ‖f‖Cµ((0,t],Lq(0,1))

)
, t ∈ (0, T ] ,

(3.14) ‖u′′(t, ·)‖Lq(0,1) + ‖u′(t, ·)‖Lq(0,1)

≤ c
(
t

1
2q
−1 ‖u0‖W 2

q (0,1) + t
1
2q
−1−µ ‖f‖Cγ

µ((0,t],Lq(0,1))

)
, t ∈ (0, T ] .

Proof. We consider in the spaceLq(0, 1) 1 ≤ q < ∞, the operatorA defined by

A(u) = au′′(x), D(A) =
{
u ∈ W 2

q (0, 1), Li(u) = 0, i = 1, 2
}

.

Then problem (3.11) can be written as{
u

′
(t) = Au(t) + f(t),

u(0) = u0,

whereu(t) = u(t, ·), f(t) = f(t, ·), andu0 = u0(·) are functions with values in
the Banach spaceLq(0, 1). From Theorem3.1 we conclude that‖R(λ, A)‖ ≤
c |λ|−

1
2q , for |arg λ| ≤ π

2
+ α, as|λ| → ∞.

Then, from Theorem3.2the problem (3.11) has a unique solution

u ∈ C ((0, T ] , Lq(0, 1)) ∩ C1
(
(0, T ] , W 2

q (0, 1), Lq(0, 1)
)
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and we have the following estimates

(3.15) ‖u(t, .)‖Lq(0,1) ≤ c
(
‖Au0‖Lq(0,1) + ‖u0‖Lq(0,1) + ‖f‖Cµ((0,t],Lq(0,1))

)
,

(3.16)
∥∥∥u′

(t)
∥∥∥

Lq(0,1)

+ ‖Au(t, ·)‖
Lq(0,1)

≤ c
(
t

1
2q
−1
(
‖Au0‖Lq(0,1) + ‖u0‖Lq(0,1)

)
+ t

1
2q
−1−µ ‖f‖Cγ

µ((0,t],Lq(0,1))

)
,

wheret ∈ [0, T ], from (3.15) we get

‖u(t, ·)‖Lq(0,1) ≤ c
(
‖u′′0‖Lq(0,1) + ‖u0‖Lq(0,1) + ‖f‖Cµ((0,t],Lq(0,1))

)
≤ c

(
‖u0‖W 2

q (0,1) + ‖f‖Cµ((0,t],Lq(0,1))

)
, t ∈ [0, T ] .

and from (3.16) we get∥∥∥u′
(t)
∥∥∥

Lq(0,1)
+ ‖u′′(t, ·)‖Lq(0,1)

≤ c
(
t

1
2q
−1
(
‖Au0‖Lq(0,1) + ‖u0‖Lq(0,1)

)
+ t

1
2q
−1−µ ‖f‖Cγ

µ((0,t],Lq(0,1))

)
≤ c

(
t

1
2q
−1 ‖u0‖W 2

q (0,1) + t
1
2q
−1−µ ‖f‖Cγ

µ((0,t],Lq(0,1))

)
, t ∈ [0, T ] .

which gives the desired result.
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