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ABSTRACT. The Khatri-Rao and Tracy-Singh products for partitioned matrices are viewed as
generalized Hadamard and generalized Kronecker products, respectively. We define the Khatri-
Rao and Tracy-Singh sums for partitioned matrices as generalized Hadamard and generalized
Kronecker sums and derive some results including matrix equalities and inequalities involving
the two sums. Based on the connection between the Khatri-Rao and Tracy-Singh products (sums)
and use mainly Liu's, Mond and Baric's methods to establish new inequalities involving the
Khatri-Rao product (sum). The results lead to inequalities involving Hadamard and Kronecker
products (sums), as a special case.
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uct (sum), Positive (semi)definite matrix, Unitarily invariant norm, Spectral norm, P-norm, Moore-
Penrose inverse.
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1. INTRODUCTION

The Hadamard and Kronecker products are studied and applied widely in matrix theory,
statistics, econometrics and many other subjects. Partitioned matrices are often encountered in
statistical applications.

For partitioned matrices, The Khatri-Rao product viewed as a generalized Hadamard product,
is discussed and used in [7,[6,] 14] and the Tracy-Singh product, as a generalized Kronecker
product, is discussed and appliedin[[7, 5, 12]. Most results provided are equalities associated
with the products. Rao, Kleffe and Liu in [13, 8] presented several matrix inequalities involving
the Khatri-Rao product, which seem to be most existing results/|In [7], Liu established the
connection between Khatri-Rao and Tracy-Singh products based on two selection niatrices
andZ,. This connection play an important role to give inequalities involving the two products
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2 ZEYAD AL ZHOUR AND ADEM KILICMAN

with statistical applications. In [10], Mond and &eic presented matrix versions, with matrix
weights. In[2, (2004)], Hiai and Zhan proved the following inequalities:

[AB]  _ |4+ B]

*) < ,

[A[F-1BI = 1A+ 1 Bll

[Ae Bl _ A+ B

LA 1Bl Al -+ 1Bl
for any invariant norm with|diag(1,0,...,0)|| > 1 and A, B are nonzero positive definite
matrices.

In the present paper, we make a further study of the Khatri-Rao and Tracy-Singh products.
We define the Khatri-Rao and Tracy-Singh sums for partitioned matrices and use mainly Liu’s,
Mond and Péaric’s methods to obtain new inequalities involving these products (sums).We col-
lect several known inequalities which are derived as a special cases of some results obtained. We
generalize the inequalities in Hq (*) involving the Hadamard product (sum) and the Kronecker
product (sum).

2. BAsic DEFINITIONS AND RESULTS

2.1. Basic Definitions on Matrix Products. We introduce the definitions of five known matrix
products for non-partitioned and partitioned matrices. These matrix products are defined as
follows:

Definition 2.1. Consider matricest = (a;;) andC = (¢;;) of orderm x n andB = (by,) of
orderp x ¢. The Kronecker and Hadamard products are defined as follows:
(1) Kronecker product:

ij
wherea;; B is the ij™* submatrix of ordep x ¢ andA ® B of ordermp x ngq.
(2) Hadamard product:

(2.2) Ao C = (ajjci)

ij >
wherea;;c;; is theij™ scalar element and o C'is of orderm x n.

Definition 2.2. Consider matricesl = (a;;) andB = (by,) of orderm x m andn x n respec-
tively. TheKronecker sunis defined as follows:

(2.3) A®B=A®I,+1,®B,

wherel,, and],, are identity matrices of order x n andm x m respectively, andi & B of
ordermn x mn.

Definition 2.3. Consider matricedl andC of orderm x n, andB of orderp x q. Let A = (A;;)

be partitioned withA,; of orderm; x n; as theij*" submatrixC' = (C;;) be partitioned with
C;; of orderm; x n; as theij'" submatrix, and3 = (By;) be partitioned withB,, of order

pr X q as thekl™ submatrix, wherep = >~/ m;, n = ijl nj,p = Z',;:lpk, q= Zlh:l q
are partitions of positive integers, n, p, andq. The Tracy-Singh and Khatri-Rao products are
defined as follows:

(1) Tracy-Singh product:
(2.4) AllB = (AinB)ij - ((Aij ® Bkl)kl)ij’
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whereA;; is theij*™ submatrix of ordefn; x n;, By, is thekl™ submatrix of ordep; x ¢,
A;;11B is theij™ submatrix of ordern;p x n;q, A;; ® By, is thekl™ submatrix of order
mipr, X n;q and AILB of ordermp x nq.
Note that
(i) For anon partitioned matrid, their AIIB is A ® B, i.e., forA = (a;;), wherea;;
is scalar, we have,

e ((aij ® Bkl)kl)ij
= ((aijBkl)kl) = (aijB)ij = A® B.

(]
(i) For column wise partitioned! and B, their AIIB is A ® B.
(2) Khatri-Rao product:

(2.5) Ax B = (Aj; ® By)

Y
where 4;; is theij*™® submatrix of ordem,; x n;j, B;; is the ij*" submatrix of order
pi X qj, Ai; @ By is theij™ submatrix of ordern;p; x n;q; andA x B of orderM x N
<M =Y mipi, N = 2;21 njqa’)-
Note that
(i) For anon partitioned matrid, theirA « Bis A® B, i.e., forA = (a;;),whereq;;
Is scalar, we have,

A*BI(CI,Z]@BU) :(CLUB) :A@B

iJ 1J
(if) For non partitioned matriced andB, theirA« Bis Ao B, i.e., forA = (a;;) and
B = (b;;), whereqa;; andb;; are scalars, we have,

Ax B = (aij ® bij),; = (aibi),; = Ao B.

v

2.2. Basic Connections and Results on Matrix ProductsWe introduce the connection be-
tween the Katri-Rao and Tracy-Singh products and the connection between the Kronecker and
Hadamard products, as a special case, which are important in creating inequalities involving
these products. We writd > B in the Loéwner ordering sense thdt— B > 0 is positive
semi-definite, for symmetric matrices and B of the same order and* and A* indicate the
Moore-Penrose inverse and the conjugate of the matroespectively.

Lemma 2.1. Let A = (a;;) and B = (b;;) be two scalar matrices of orden x n. Then (see
[15])

(2.6) Ao B =K!(A® B)K,

where K; and K, are two selection matrices of ordef x n andm? x m, respectively, such
that K1 Ky = I, and K, Ky = I,.
In particular, form = n, we havek’; = K, = K and

(2.7) AoB=K'(A® B)K
Lemma 2.2. Let A and B be compatibly partitioned. Then (sf& p. 177-178and[7), p. 272)

(2.8) Ax B = Z| (AlIB) Zs,

whereZ; and Z, are two selection matrices of zeros and ones suchihat = I, and 72,7, =
15, wherel; and [, are identity matrices.
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In particular, whemd and B are square compatibly partitioned matrices, then we bgve
Zy = ZsuchthatZ’Z = I and

(2.9) Ax B=_Z7'(AlB)Z.

Note that, for non-partitioned matrices B, Z; andZ,, Lemmd 2.P leads to Lemma 2.1, as a
special case.

Lemma 2.3. Let A, B, C, D and F' be compatibly partitioned matrices. Then

(2.10) (AIIB)(CTID) = (AC)II(BD)

(2.11) (ATIB)* = A*TIB*

(2.12) (A+ O)II(B+ D) = AllB + AlID + CIIB + CIID

(2.13) (AIlB)* = A*1IB*

(2.14) AllB # BITA in general

(2.15) AxB# Bx A in general

(2.16) BxF=FxB where F=(f;) and f; isascalar
(2.17) (A B)" = A" % B”

(2.18) (A+C)*x(B+D)=AxB+AxD+Cx«B+CxD

(2.19) (Ax B)II(C x D) = (AIIC) = (BIID)

Proof. Straightforward. O

Lemma 2.4. Let A and B be compatibly partitioned matrices. Then

(2.20) (ATIB)" = A"TIB",

for any positive integer.

Proof. The proof is by induction on and using Eq.[(Z2.10). 0J
Theorem 2.5.Let A > 0 and B > 0 be compatibly partitioned matrices. Then

(2.21) (AIIB)® = A*TIB®

for any positive reak.

Proof. By using Eq|(2.20), we havdllB = (AY"I1BY/™)", for any positive integen. So
it follows that (ATIB)Y™ = AY"IBY". Now (AIIB)™/™ = A™/"TIB™™, for any positive

integersn, m. The Eq[(2.2]L) now follows by a continuity argument. OJ
Corollary 2.6. Let A and B be compatibly partitioned matrices. Then

(2.22) |ATIB| = |A|TT|B|, where |A|= (A*A)'/?

Proof. Applying Eq [2.10) and Eq (2.21), we get the result. O

Theorem 2.7.Let A = (A;;) and B = (By,) be partitioned matrices of orden x m, andn x n
respectively, wherer = >0 m;, n=3,_, ny.Then

(2.23) (a) tr(AIIB) =tr(A) - tr(B)
(2.24) (b) [|AOBI, = |All,[BIl,, where [|A], = [tr |APP)Y? forall 1 < p < oo.

Proof. (a) Straightforward.
(b) Applying Eq [2.22) and Eq (2.23), we get the result. O
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Theorem 2.8.Let A, B and I be compatibly partitioned matrices. Then

(2.25) (AILI)(ITIB) = (ITIB)(AILI) = AIIB.
If f(A) is an analytic function on a region containing the eigenvalued,ahen
(2.26) f(ITIA) = ITIf(A) and f(AII) = f(A)III

Proof. The proof of Equatior (2.25) is straightforward on applying [Eq (2.10).
Equation|[(2.26) can be proved as follows:
Since f(A)is an analytic function, thefi(A) = "% a,A*. Applying Eq [2.1D) we get:

fUTIA) = i o (ITIA)F = i oy, (ITIAR) = IT1 f: ap AR = ITIf(A).

k=0 k=0

Corollary 2.9. Let A, B and I be compatibly partitioned matrices. Then
(2.27) M = ATIT and e = TIe?.

Lemma 2.10.Let H > 0 be an x n matrix with nonzero eigenvalues > --- > A\ (k < n)
and X be am x m matrix such thatX = H°X whereH" = HH™*. Then (se6|, Section 2.

()\1 + )\k)z
(AX1 \)

Theorem 2.11.Let A > 0 and B > 0 be compatibly partitioned matrices such thit = AA*

and B = BB*. Then (se¢8, Section 3]

(229) (AxB°+ A" +«B)(AxB)"(AxB°+ A+ B) < A+« B* 4+ A"« B +2A% x B

Theorem 2.12.LetA > 0 andB > 0 ben xn compatibly partitioned matrices with eigenvalues

contained in the interval between and M (M > m). Let be a compatible identity matrix.
Then (se¢8, Section 3].

(2.28) (X'HX)* < XTHTX'* < (X'HX)*.

2 2 2 2
+ M m-+ M
2.30 AxB 14+ A1 B<m—I d AsA'< —
( ) ¥ + = mM an * - 2mM

3. MAIN RESULTS
3.1. On the Tracy-Singh Sum.

Definition 3.1. Consider matriced andB of orderm xm andn xn respectively. Lel = (A,;)
be partitioned with4;; of orderm,; x m, as the ii" submatrix, and leB = (B;;) be partitioned
with B;; of ordern; x ny as the ift submatrix(m = >7_, m;, n= 3", _ ny).

The Tracy-Singh sum is defined as follows:

(3.1) AVEB = Alll, + IL,11B,
wherel, = I, in,+..+n, = blockdiag(l,,, I,,,...,I,,) IS ann x n identity matrix, [,, =
Ly 4mottm, = blockdiag(Lp,, Im,, - - -, I, ) IS @anm x m identity matrix, I, is ann; x ny

identity matrix(k = 1,...,t), I,,, iS anm; x m; identity matrix(i = 1,...,r) andAV B is of
ordermn x mn.

Note that for non-partitioned matricesand B, their AVB is A & B.

Theorem 3.1.LetA > 0, B > 0,C > 0andD > 0 be compatibly partitioned matrices. Then
(3.2) (AVB)(CVD) > ACVBD.
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Proof. Applying Eq (3.1) and Ed (2.10), we have
(AVB)(CVD) = (AIlI + ITIB)(CIII + ITID)
— (AILI)(CTII) + (AILI)(ITID) 4 (ITIB)(CTILI) + (IT1B)(I11D)
= ACTII + AllD + CIIB + ITIBD
= ACVBD + AllD + CIIB > ACVBD.

In special cases of Ef (3.2),dt = A*, D = B*, we have

(3.3) (AVB)(AVB)* > AA*VBB”*
andifC = A, D = B, we have
(3.4) (AVB)? > A’V B2,

More generally, it is easy by induction anwe can show that# > 0 andB > 0 are compatibly
partitioned matrices. Then

w—1
w
3.5 AVB)Y = A*VB" + AV~FIIBR);
35) (AVB) > (e m
(3.6) (AVB)* > A*VBY
for any positive integetw. O

Theorem 3.2.Let A and B be partitioned matrices of orden. x m andn x n, respectively,
(m = 2221 m;, N = Zzzl nk) Then

(3.7) tr(AVB) =n - tr(A) +m - tr(B),
(3.8) IAV B, < /n|lA]l, + &/m Bl
where|| A, = [tr [A]"]'/7,1 < p < oo, and

(3.9) eVB = ATleB.

Proof. For the first part, on applying Efj (2]23), we obtain
tr(AVB) = tr [(AlLL,) + (I,,I1B)]
= tr(AlIll,) + tr(1,11B)
= tr(A) tr(l,) + tr(l,) tr(B)
=n-tr(A) +m-tr(B).
To prove [3.8), we apply Eq (2.R4), to get
[AVB|, = [I(Alll,) + (I,11B)]],
< [JAILL ||, + (|1 11B]],
= [[All, [Hall, + 1wl I BIL,
= InllAll, + ¥m| B,
For the last part, applying Efj (2]25), Eq (2.27) and[Eq (2.10), we have

oAVB _ (ALL)+(In11B)

_ (AL (I TIB)

= (eMI1,)(I,,11eB) = eT1eP.
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O

Theorem 3.3. Let A and Bbe non singular partitioned matrices of order x m andn x n
respectively,ip = >0 mi, n = >, _, n).Then
(3.10) (@) l=AT'VB Y (AT TIB T
(3.11) (i) = (ATL)(AT'VB YN, IB ™)
(3.12) (i)  (AVB)™' = (,JIB ) (A'VB ) (A L,)
Proof. (i) Applying Eq (2.10), we have

(AVB)™! = [L,]IB + AIlL,] ™"
(I,10B)(I,,I11,,) + (I, JIB)(ATIB~1)]*
(I, 0B)(I,,I11,, + ATIB™)] ™!
(1,111, + ATIB~H)]7Y[1,,]1B] !
(AILL,) (AL, + (AILL,) (1, 0B~ Y] I, I1B 7]
(ATLL){AL, + L, JIB~ Y, JIB ]
(AILL) (A VBT 1, I1B7]
AT'WB Y N (AL, (1, 11B7Y)

= (A7'vBHH(AT'IB™).

Similarly, we obtain(ii) and (ziz). O
Theorem 3.4.Let A > 0 and I be compatibly partitioned matrices such th&t 17 = [TIA™.
Then
(3.13) AVAT > 2AATIL.

Proof. We know thatAVI = AIII + I11I > AIll. DenoteH = MIII > 0. By virtue of
H+ H* > 2HH" and Eq[2.1D), we have

AT + (AILI)* > 2(AILT)(AILL) T = 2AATIT
Since, ATIII = ITIA*, we get the result. O
3.2. On the Khatri-Rao Sum.

Definition 3.2. Let A, B, I, andI,, be partitioned as in Definition 3.1. Then tKéatri-Rao
sumis defined as follows:

(3.14) AccB=Ax1,+ 1, *B

Note that, for non-partitioned matricelsand B, their Aco B is A @& B, and for non-partitioned
matricesA, B, I, andl,,, their AcoB is A e B (Hadamard sum, see Definitipn 4.1, Eq(4.1),
Section .

Theorem 3.5. Let A and B be compatibly partitioned matrices. Then

(3.15) AoccB = Z'(AVB)Z,

whereZ is a selection matrix as in LemrhaR.2.

Proof. Applying Eq (2.9), we havel « [ = Z'(AIll)Z, I « B = Z'(I11B)Z and
AcoB=AxI+1xB=27(Alll)Z+ 7' (IIB)Z = Z'(AVB)Z.

AVB) A
AVB) A

[
[
[
[
[
[
=
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Corollary 3.6. Let A > 0 and I be compatibly partitioned matrices such th&itT17 = ITIA™.
Then

(3.16) AccAT > 2AAT « T
Proof. Applying Eq[3.13) and Eq (3.15), we get the result. O

Corollary 3.7. Let A > 0 be compatibly partitioned with eigenvalues contained in the interval
betweenm and M (M > m). LetI be a compatible identity matrix such thdt ool =
IooA™t. Then

2 2
(3.17) AcoA~t <M M7,
mM
Proof. Applying Eq (2.30) and taking? = I, we get the result. O

Corollary 3.8. Let A > 0 andI be compatibly partitioned, whert® = AA™ such thatd’+1 =
I % A% Then

(3.18) (Ao A”) (A% )T (AccA®) < Ax T+ AT % T +2A%% [

andif AT x I =1 x A", we have

(3.19) (AccA%)(A* )T (AccA’) < AcoAT +2A4° % 1.

Proof. Applying Eq [2.29) and taking? = I, we get the results. O

Mond and Péaric (seel[10]) proved the following result:
If X, (j =1,2,...,k)are positive definite Hermitian matrices of ordern with eigenvalues

in the intervalm, M] andU; (j = 1,2,....k) arer x n matrices such that_"_, U;Ur = I.
Then

() Forp < 0orp > 1, we have

k k p
(3.20) > UXPUT <A (Z UijU;>
j=1 j=1
where,

Py p(y—=2") 7" M
(3:21) A‘<p—1><v—1>{a—p)(w—l)}’ T=m

While, for0 < p < 1, we have the reverse inequality in Eq (3.20).
(b) Forp < 0orp > 1, we have

k k 4
(3.22) (Z UijU;‘> — (Z UijU;> <al,
j=1 Jj=1

where,

o wmw ) () ]

While, for0 < p < 1, we have the reverse inequality in Eq (3.22).
We have an application to the Khatri-Rao product and Khatri-Rao sum.

Theorem 3.9.Let A and B be positive definite Hermitian compatibly partitioned matrices and
letm and M be, respectively, the smallest and the largest eigenvaluds$i@éf. Then
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(a) For p a nonzero integer, we have
(3.24) AP« BP < \(A* B)?

where,\ is given by Eq[(3.31).
While, for0 < p < 1, we have the reverse inequality in £q (3.24).
(b) For p a nonzero integer, we have

(3.25) (AP« BP) — (A% B)P < al,

wherex is given by Eq[(3.23).
While, for0 < p < 1, we have the reverse inequality in Eq (3.25).

Proof. In Eq (3.20) and Eq (3.22), take = 1 and instead ot/*, useZ, the selection matrix
which satisfy the following property:

AxB=Z(AUBZ, Z'Z=1I.
Making use of the fact in Eq (2.21) that for any realpositive or negative), we have
(AIIB)" = A"IIB",
then, withZ’, AIIB, Z substituted fol/, X, U*, we have from E( (3.20)
AP s BP = Z'(AP « BP)Z

= Z'(Ax BY"Z

< M Z'(ANIB)Z}’ = A(A * B)?,
where,\ is given by Eq[(3.21)

Similarly, from Eq [3.2R), we obtain for
(AP % BP) — (Ax B)Y < al

where,« is given by Eq|[(3.23).
Special cases include from Hq (3.24):
(2.7) Forp = 2, we have

2
(3.26) A B < % (A BY?
(2.3) Forp = —1, we have

2
(3.27) At Bt < % {Ax B}

Similarly, special cases include from Eq (3.25):
(2.1) Forp = 2, we have

(3.28) (A% B*) — (A% B)* < E(M —m)?I

(2.2) Forp = —1, we have

(3.29) (A"« B~ (AxB)™' < w {1},

where results in Eq (3.26), Efy (3]27), and Eq (B.28) are given in [7]. O

Theorem 3.10.Let A and B be positive definite Hermitian compatibly partitioned matrices.
Letm; and M, be, respectively, the smallest and the largest eigenvalugdléfand m, and
M,, respectively, the smallest and the largest eigenvaluésiéf. Then
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(a) For p a nonzero integer, we have

(3.30) APooB? < max {\i, A2} (AcoB)?
where,
i) pi—n) " M
B3 M=o nm o) {[u e m} Mo
I O ke, =) 17" _ M,
(3.32) = G 0 D) {[u o 1)]} T Rt

While, for0 < p < 1, we have the reverse inequality in Eq (3.30).
(b) For p a nonzero integer, we have

(3.33) (AP0oBP) — (AocoB)? < max {ay,as} [

where,

p 1
MP —mb YrP T  MP—mb MP —mb )71
3.34 ap=m) — 4 ——1 } Slp— 1 { 1 1 } —-m
( ) ! ! {p(Ml —my) M, —my p(M; —my) !

P 1
MY —mb YT MY —mb MY —mb )71
3.35 ay = mb — #} + 2 2 { 2 2 } -m
( ) 2 2 {p(MQ — mg) M2 — My p(MQ — m2) 2

While, for0 < p < 1, we have the reverse inequality in Eq (3.33).

Proof. Applying Eq [3.24), we have
AP s [ = AP x I[P < N\ (Ax )P
I+ BP =17 % B < \y(I * B)?

Now,
APooBP = AP x [ + I x B
< M(AxI)P 4+ (I % B)P
<max {A;, o} [Ax [+ I % B =max {A\, A2} (AccB)?

where,\; and )\, are given in Eq[(3.31) and Ef (3]32).
Similarly, from Eq [3.2b), we obtain for

(APooB?) — (AocoB)P < max{ay,as} [
where,«; anda, are given in Eq(3.34) and EQ (3]35).

Special cases include from Hq (3.30):
(2.7) Forp = 2, we have

(My +mq)? (My 4 my)?
4M1m1 ’ 4M2m2

(3.36) A’0B? < max{ } {AcoB}” .

(2.2) Forp = —1, we have

(M +my)* (Ms +ms)?
4M1m1 ’ 4M2m2
Similarly, special cases include from Eq (3.33):

(3.37) A 'coB7 ! < max{ } {AcoB} .
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(2.7) Forp = 2, we have
(3.38) (A%?00B?) — (AcoB)? < max {%(Ml —my)?, %(Mg - m2)2} I

(2.3) Forp = —1, we have

(3.39) (A 'ooB™!) — (AcoB) ™ < max { VAL = /i VAL — \/m_Q} I.

4M1m1 ’ 4M2m2

Theorem 3.11.Let A and B be positive definite Hermitian compatibly partitioned matrices.
Letm and M be, respectively, the smallest and the largest eigenvalud&/@®. Then

(a) For p a nonzero integer, we have
(3.40) APooBP < A\(AcoB)?,

where) is given by Eq[(3.21).
While, for0 < p < 1, we have the reverse inequality in £q (3.40).
(b) For p a nonzero integer, we have

(3.41) (APooB?) — (AocoB)P < al
where,« is given by Eq[(3.23).
While, for0 < p < 1, we have the reverse inequality in £q (3.41).

Proof. In Eq (3.20) and Eq (3.22), take = 1 and instead ot/*, useZ, the selection matrix
which satisfy the following property:

AcoB=Z7'(AVB)Z, Z'Z =1
Then, withZ’, AV B, Z substituted folJ, X, U*, we have from Eq(3.20)
APooBP = Z'(APV B?)Z
= Z'(APNI + ITIB")Z
< Z'{AVBY Z
< MZ'(AVB)Z} = MAcoB)?
where,\ is given by Eq[(3.21). O

Similarly, from Eq [3.2R), we obtain Ef (3.41)
Special cases include from Hq (3.40):

(2.1) Forp = 2, we have

2
(3.42) A200B? < % {AcoB)?
(2.9) Forp = —1, we have

2
(3.43) AooB! < % {AcoB}™!

Similarly, special cases include from Eq (3.41):
(2.7) Forp = 2, we have

(3.44) (A%00B?) — (AcoB)? <
(2.9) Forp = —1, we have

(M —m)*I

| =

VM —m

(3.45) (A'ocoB™) — (AcoB) ™' < e

{1}
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4. SPECIAL RESULTS ON HADAMARD AND KRONECKER SUMS

The results obtained in Sectiph 3 are quite general. Now, we consider some inequalities in
a special case which involves non-partitioned matride® and/ with the Hadamard product
(sum) replacing the Khatri-Rao product (sum) and the Kronecker product (sum) replacing the
Tracy-Singh product (sum). As these inequalities can be viewed as a corollary (some of) the
proofs are straightforward and alternative to those for the existing inequalities.

Definition 4.1. Let A and B be square matrices of orderx n.TheHadamard sunis defined
as follows:

(4.1) AeB=Aol,+1,0B=Aol,+Bol,=(A+B)ol,.
Corollary 4.1. Let A > 0. Then
(4.2) Ae A7l > 2]

Corollary 4.2. Let A > 0 be a matrix of order x n with eigenvalues contained in the interval
betweenn and M (M > m). Then

4.3 Aeat < M)y

(4.3) o« AT < 1

Corollary 4.3. Let A and B ben x n positive definite Hermitian matrices and tetand M be,
respectively, the smallest and the largest eigenvalues®fB. Then

(a) For p a nonzero integer, we have
(4.4) AP o BP < A\(Ao B)?
where,\ is given by Eq[(3.31).

While, for0 < p < 1, we have the reverse inequality in £q (4.4).
(b) For p is a nonzero integer, we have

(4.5) (APo BP) — (Ao B <al

where,« is given by Eq[(3.23).
While, for0 < p < 1, we have the reverse inequality in Eq (4.5).

Special cases include from Hq (§.4):
(2.7) Forp = 2, we have

(M 4 m)?

(4.6) A?o B% < i A By
(2.3) Forp = —1, we have
2
4.7) Al oB < % {AoB} .
Similarly, special cases include from Eq (4.5):
(2.1) Forp = 2, we have
(4.8) (A?0 B?) — (Ao B)?* < }l(M —m)?I
(2.3) Forp = —1, we have
(4.9 (A 'oB™)—(AoB)™' < %{]},

where results in Eq (4.6), EQ (4.7), and Eq [4.8) are given ih [11].
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We note that the eigenvalues df® B are then? products of the eigenvalues df by the
eigenvalues oB.Thus if the eigenvalues of and B are, respectively, ordered by:

(4.10) 01203220, >0, m=m=>-2mn>0,

then in all the previous results in this sectidh = 6,7, andm = 4,,n,. Thus Eq[(4.p) to Eq
(4.9) become:

(51771 + 5n77n)2

(4.11) Ao B? < s, {Ao B}

(4.12) Ao Bl < —(527?1;557?:)2 {AoB}!
(4.13) (420 B) — (Ao B)® < 1(6um — dun)* {1}
(4.14) (A'oB™Y) —(AoB)' < (Vo = Vi) {I}.

51 Uil 5717]71

Corollary 4.4. Let A and B be an x n positive definite Hermitian matrices. Let; and M;
be, respectively, the smallest and the largest eigenvaludsof andm, and M,, respectively,
the smallest and the largest eigenvalueg of B. Then

(a) For p a nonzero integer, we have
(4.15) AP o B < max {\;, \2} (A e B)P,

where)\; and )\, are given by Eq((3.31) and EQ (3]32).
While, for0 < p < 1, we have the reverse inequality in £q (4.15).
(b) For p a nonzero integer, we have

(4.16) (AP @ BP) — (A e B)P <max{ay,as} I,

wherea; andasare given by Eq(3.34) and EQ (3135).
While, for0 < p < 1, we have the reverse inequality in £q (4.16).

Note that, the eigenvalues df® I equal the eigenvalues df and the eigenvalues éf® B
equal the eigenvalues &f.

Corollary 4.5. Let A and B ben x n positive definite Hermitian matrices. Let and M be,
respectively, the smallest and the largest eigenvalues®fB. Then

(a) For p a nonzero integer, we have
(4.17) AP ¢ BP < \(A e B)?,

where,\ is given by Eq[(3.21).
While, for0 < p < 1, we have the reverse inequality in Eq (4.17).
(b) For p a nonzero integer, we have

(4.18) (A’ e B?) — (Ae B)? < al,

where,« is given by Eq[(3.23).
While, for0 < p < 1, we have the reverse inequality in Eq (4.18).
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Special cases include from Hq (4.17):
(2.1) Forp = 2, we have

(4.19) Ae B’ < % {Ae B)?
(2.9) Forp = —1, we have
(4.20) AleBl< % {AeB)!
Similarly, special cases include from Eq (4.18):
(2.7) Forp = 2, we have
(4.21) (A2e B%)— (Ae B) < i(M )
(2.2) Forp = —1, we have

U

(4.22) (A 'eB )~ (AeB)! {I}.

We note that the eigenvalues4fc B are then? sums of the elgenvalues dfby the eigenvalues
of B. Thus if the eigenvalues of and B are, respectively, ordered by:

02002 20,>0, m=2m=---2n,>0,

then in all previous results of this sectidfh = 6, + 7, andm = §,, + 1,,. Thus Eq(4.199) to Eq
(4.22) become:

(81 + 11+ On 4+ 10)?

(4.23) Ate B2 < T e G ay AeBy

1 (51 + 11 4 On + 1) -1
(4.24) Al eB < S rIe Ty e B
(4.25) (A% BY) — (Ao B < {((0y+m) — (6. + )1,
(4.26) (Al e B 1) — (AeB) 1 < YOLEM = VonF 1,

(01 4 11) (0n + 1)
Corollary 4.6. Let A > 0 and B > 0 be compatibly matrices. Then
4.27) (i) (Ae@B)(A® B)" > AA* @ BB*
(4.28) (ii) (A@B)"> A" ® BY, for any positive integew.
Corollary 4.7. Let A and B be matrices of ordem x m andn x n respectively. Then
(4.29) (a) tr(A@® B)=n-tr(A)+m-tr(B)
(4.30) (b) [Ae B, < VnlAll,+¥m|B],,
where || A|, = [tr |A]']'?, 1 < p < occ.
(4.31) (c) e®P =P
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Corollary 4.8. Let A and B be non singular matrices of orden x m andn x n, respectively.
Then

(432) (i) (AeB)'=A"'eB H (A 'eB™

(433) (i) (AeB)'=A"'"@L)A"'aB ) '(I,®B™")

(4.34) (iti) (AeB)'=U,@B A 'eB ) (4A'®I,)
In [1], Ando proved the following inequality;

(4.35) AoB < (AP0 I)¥#(B%o I)i,

whereA and B are positive definite matrices apdg > 1with 1/p+1/¢ = 1.
If ||-|| is a unitarily invariant norm ang-|| _ is the spectral norm, Horn and Johnsonlin [3]
proved the following three conditions are equivalent:

0 [Al, < 4]
(4.36) (i) [AB] <l4] - 13|
(i) |40 B] < |A]-|B|

for all matricesA and B.
In [2], Hiai and Zhan proved the following inequalities:

|AB]| lA+B 4 4Bl |A+ Bl

(4.37) < <
IAN-1BI— 1A+ 11 B IAl- 1B~ 1Al + (1B

for any invariant norm with|diag(1,0,...,0)|| > 1 and A, B are nonzero positive definite
matrices.

We have an application to generalize the inequalities in[Eq](4.37) involving the Hadamard
product (sum) and the Kronecker product (sum).

Theorem 4.9. Let||-|| be a unitarily invariant norm with|diag(1,0,...,0)|| > 1 and A and B
be nonzero positive definite matrices. Then

|A o B |AeB|
LA Bl [[AF+ 1Bl

Proof. Let ||-|| . be the spectral norm and applying Eq (4.35)46(|A||, < I, B/ ||B||, < I
and using the Young inequality for scalars, we get

nﬁm°Q£L)S[QM|> ][(wn) }

(4.38)

1 A P 1 1
SEGEE)OI+qQBH>°I
1 A 1 B
SﬁGEE)O[ EQBH) °f
1 A 1 B
:{;<m) e (m)}”
We choose
1 A g Lo Bl
p (Al + IBI.] ¢ [l + 1Bl
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Since||A]|, < [|A] and||B||, < || B] thanks tddiag(1,0,...,0)|| > 1, we obtain

Al - 1Bl
(4.39) AoBg{ 0 120 (A4 B)ol
1Al + 1Bl
HMHBH}
<< igr ((AeB)
%MMWW
Hence,
IA] - [1B] | Ao B |A e B
|[Ao B < s—my IAe Bl or <
IA] + 1Bl JAI-IIBIF— AN+ (18]

O

Corollary 4.10. Let||-|| be a unitarily invariant norm with|diag(1,0,...,0)| > 1 and A and
B be nonzero positive definite matrices. Then

A2 B _ [A®B]

LA - [1BIF = 1A+ 11 Bl

Proof. Applying Eq (2.7) and Ed (4.39), we have

, 1AL 1Bl
K'(A® B)K < * LK (A® B)K
|A[l + [|B]

(4.40)

and

|K'(A® B)K| < H”A” MBIy ka0 B)K| .

Al + 1Bl
Provided that|-|| is unitarily invariant norm, we get the result. O
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