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ABSTRACT. Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the
normNp(·). For anA ∈ Sp (1 < p < ∞), the inequality[ ∞∑

k=1

|Re λk(A)|p
] 1

p

+ bp

[ ∞∑
k=1

| Im λk(A)|p
] 1

p

≥ Np(AR)− bpNp(AI) (bp = const.> 0)

is derived, whereλj(A) (j = 1, 2, . . . ) are the eigenvalues ofA, AI = (A − A∗)/2i and
AR = (A + A∗)/2. The suggested approach is based on some relations between the real and
imaginary Hermitian components of quasinilpotent operators.
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1. STATEMENT OF THE M AIN RESULT

Let Sp (1 ≤ p < ∞) be the Schatten-von Neumann ideal of compact operators in a separable
Hilbert spaceH equipped with the norm

Np(A) := [Trace(A∗A)p/2]1/p < ∞ (A ∈ Sp),

cf. [4, 6]. Letλj(A) (j = 1, 2, . . . ) be the eigenvalues ofA ∈ Sp taken with their multiplicities.
In addition,σ(A) denotes the spectrum ofA, AI = (A−A∗)/2i andAR = (A + A∗)/2 are the
Hermitian components ofA.

Recall the classical inequalities

j∑
k=1

|λk(A)|p ≤
j∑

k=1

sp
k(A) (p ≥ 1, j = 1, 2, . . . )
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cf. [6, Corollary II.3.1] and
j∑

k=1

| Im λk(A)| ≤
j∑

k=1

sk(AI) (j = 1, 2, . . . )

(see [6, Theorem II.6.1]). These results give us the upper bounds for sums of the eigenvalues
of compact operators. In the present paper we derive lower inequalities for the eigenvalues.
Our results supplement the very interesting recent investigations of the Schatten-von Neumann
operators, cf. [1, 2, 8, 9, 11, 12, 13, 14].

Let {cn}∞n=1 be a sequence of positive numbers defined by

(1.1) cn = cn−1 +
√

c2
n−1 + 1 (n = 2, 3, . . . ), c1 = 1.

To formulate our main result, for ap ∈ [2n, 2n+1] (n = 1, 2, . . . ), put

(1.2) bp = ct
nc

1−t
n+1 with t = 2− 2−np.

For instance,b2 = c1 = 1, b3 =
√

c1c2 =
√

1 +
√

2 ≤ 1.554, b4 = c2 ≤ 2.415,

b5 = c
3/4
2 c

1/4
3 ≤ 2.900; b6 = (c2c3)

1/2 ≤ 3.485; b7 = c
1/4
2 c

1/4
3 ≤ 4.185

andb8 = c3 ≤ 5.027. In the case1 < p < 2, we use the relation

(1.3) bp = bp/(p−1)

proved below.
The aim of this paper is to prove the following

Theorem 1.1.LetA ∈ Sp (1 < p < ∞). Then

(1.4)

[
∞∑

k=1

|Re λk(A)|p
] 1

p

+ bp

[
∞∑

k=1

| Im λk(A)|p
] 1

p

≥ Np(AR)− bpNp(AI).

The proof of this theorem is presented in the next section. Clearly, inequality (1.4) is effective
only if its right-hand part is positive.

Replacing in (1.4)A by iA we get

Corollary 1.2. LetA ∈ Sp (1 < p < ∞). Then[
∞∑

k=1

| Im λk(A)|p
] 1

p

+ bp

[
∞∑

k=1

|Re λk(A)|p
] 1

p

≥ Np(AI)− bpNp(AR).

Note that ifA is self-adjoint, then inequality (1.4) is attained, since[
∞∑

k=1

|Re λk(A)|p
] 1

p

= Np(AR) = Np(A).

Moreover, if A ∈ S2 is a quasinilpotent operator, then from Theorem 1.1, it follows that
N2(AR) ≤ N2(AI). However, as it is well known,N2(AR) = N2(AI), cf. [5, Lemma 6.5.1].
So in the case of a quasinilpotent Hilbert-Schmidt operator, inequality (1.4) is also attained.

Let {ek} be an orthonormal basis inH, andF ∈ Sp with p ≥ 2. Then by Theorem 4.7 from
[3, p. 82],

Np(F ) ≥

(
∞∑

k=1

‖Fek‖p

) 1
p

=

 ∞∑
k=1

[
∞∑

j=1

|fjk|2
] p

2

 1
p

.
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Here‖ · ‖ is the norm inH andfjk are the entries ofF in {ek}. Moreover,

Np(F ) ≤

 ∞∑
j=1

(
∞∑

k=1

|fjk|p
′

) p
p′
 1

p

,
1

p
+

1

p′
= 1,

cf. [10, p. 298]. Letajk be the entries ofA in {ek}. Then the previous inequalities yield the
relations

Np(AR) ≥ mp(AR) :=

 ∞∑
k=1

(
∞∑

j=1

∣∣∣∣ajk + akj

2

∣∣∣∣2
) p

2

 1
p

and

Np(AI) ≤ Mp(AI) :=

 ∞∑
k=1

(
∞∑

j=1

∣∣∣∣ajk − akj

2

∣∣∣∣p′) p
p′
 1

p

.

Now Theorem 1.1 implies:

Corollary 1.3. LetA ∈ Sp (2 ≤ p < ∞). Then[
∞∑

k=1

|Re λk(A)|p
] 1

p

+ bp

[
∞∑

k=1

| Im λk(A)|p
] 1

p

≥ mp(AR)− bpMp(AI).

Furthermore, from (1.1) it follows thatcn+1 ≥ 2cn ≥ 2n. Therefore,

cn+1 ≤ cn

(
1 +

√
1 + 2−(n−1)2

)
.

Hence,

(1.5) cn ≤
n−1∏
k=1

(
1 +

√
1 + 4−(k−1)

)
(n = 2, 3, . . . ).

Since √
1 + x ≤ 1 +

x

2
, x ∈ (0, 1),

1 + x ≤ ex (x ≥ 0), and
∞∑

k=1

1

4k
=

1

3
,

from inequality (1.5) it follows that

cn+1 ≤ 2n

n∏
k=1

(1 + 4−k) ≤ 2n+1 e1/3

2
.

Hence it follows that

(1.6) bp ≤
pe1/3

2
(2 ≤ p < ∞).

Indeed, by (1.2) forp = t2n + (1− t)2n+1 (n = 1, 2, . . . ; 0 ≤ t ≤ 1) we have

bp = ct
nc

1−t
n+1 ≤ 2nt2(1−t)(n+1) · e1/3

2
= 2n−t · e1/3

2
.

However,2n−t ≤ p = t2n + (1− t)2n+1 (0 ≤ t ≤ 1). So (1.6) is valid.
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2. PROOF OF THEOREM 1.1

First let us prove the following lemma.

Lemma 2.1. Let V be a quasinilpotent operator,VR = (V + V ∗)/2 andVI = (V − V ∗)/2i
its real and imaginary parts, respectively. Assume thatVI ∈ S2n for an integern ≥ 2. Then
N2n(VR) ≤ cnN2n(VI).

Proof. To apply the mathematical induction method assume that forp = 2n there is a constant
dp, such thatNp(WR) ≤ dpNp(WI) for any quasinilpotent operatorW ∈ Sp. Then replacing
W by Wi we haveNp(WI) ≤ dpNp(WR). Now letV ∈ S2p. ThenV 2 ∈ Sp and therefore,

Np((V
2)R) ≤ dpNp((V

2)I).

Here

(V 2)R =
V 2 + (V 2)∗

2
, (V 2)I =

V 2 − (V 2)∗

2i
.

However,
(V 2)R = (VR)2 − (VI)

2, (V 2)I = VIVR + VRVI

and thus
Np(V

2
R − V 2

I ) ≤ dpNp(VRVI + VIVR) ≤ 2dpN2p(VR)N2p(VI).

Take into account that

Np((VR)2) = N2
2p(VR), Np((VI)

2) = N2
2p(VI).

So
N2

2p(VR)−N2
2p(VI)− 2dpN2p(VR)N2p(VI) ≤ 0.

Solving this inequality with respect toN2p(VR), we get

N2p(VR) ≤ N2p(VI)
[
dp +

√
d2

p + 1
]

= N2p(VI)d2p

with

d2p = dp +
√

d2
p + 1.

In addition,d2 = 1 according to Lemma 6.5.1 from [5]. We thus have the required result with
cn = d2n. �

We will say that a linear mappingT is a linear transformer if it is defined on a set of linear
operators and its values are linear operators. A linear transformerT : Sp → Sr (1 ≤ p, r < ∞)
is bounded if its norm

Np→r(T ) := sup
A∈Sp

Nr(TA)

Np(A)

is finite. Below we give some examples of transformers. To prove relation (1.3) we need
Theorem III.6.3 from [7]. To formulate that theorem we recall some notions from [7, Section
I.3]. A set π of projections inH is called achain of projectionsif for all P1, P2 ∈ π either
P1 < P2 or P2 < P1. This means that eitherP1H ⊂ P2H or P2H ⊂ P1H. A chain of
projections iscontinuousif it does not have gaps. A continuous chain of projectionsπ is called
a complete one if the zero and the unit operators belong toπ.

Let us introducethe integral with respect to a chain of projectionsπ, cf. [7, Sections 1.4 and
I.5]. To this end for a partition

0 = P0 < P1 < · · · < Pn = I, Pk ∈ π, k = 1, . . . , n
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and an operatorR ∈ Sp put

Tn =
n∑

k=1

PkR∆Pk (∆Pk = Pk − Pk−1).

If there is a limitTn → T asn →∞ in the operator norm, we write

T =

∫
π

PRdP.

This limit is called the integral ofR with respect to a chain of projectionsπ. By Theorem III.4.1
from [7], this integral converges for anyR ∈ Sp, 1 < p < ∞. Due to Theorem I.6.1 [7], any
Volterra operatorV with VI ∈ Sp can be represented as

V = 2i

∫
π

PVIdP.

Hence,
VR = Fπ(iVI),

where

(2.1) Fπ(R) :=

∫
π

PRdP +

(∫
π

PRdP

)∗
(R ∈ Sp, 1 < p < ∞).

A transformer of this form is called a transformer of the triangular truncation with respect toπ.
Theorem III.6.3 from[7] asserts the following:Let π be a complete continuous chain of

projections inH. Let Fπ(R) be a transformer of the triangular truncation with respect toπ
defined by (2.1). Then the normNp→p(Fπ) is logarithmically convex. Moreover, the relation

(2.2) Np→p(Fπ) = Nq→q(Fπ) with
1

p
+

1

q
= 1 (p ≥ 2)

is valid.

Lemma 2.2. Let V be a quasinilpotent operator, and for ap ∈ [2n, 2n+1], n = 1, 2, . . . , let
VI ∈ Sp. Then

(2.3) Np(VR) ≤ bpNp(VI).

Proof. By Lemma 2.1, we have

N2n→2n(Fπ) ≤ cn = b2n .

Put
p = t2n + (1− t)2n+1 (0 ≤ t ≤ 1).

Since the norm ofFπ is logarithmically convex andFπ(iVI) = VR, we can write

Np→p(Fπ) ≤ bt
2nb1−t

2n+1 (t = 2− 2−np).

So
Np(VR)

Np(VI)
≤ bp.

This proves the lemma. �

Furthermore, taking in (2.1)R = iVI , by the previous lemma and the equalities (2.2) and
Fπ(iVI) = VR, we get

Nq(VR) ≤ bqNq(VI) (q ∈ (1, 2))

with bq = bp, q = p/(p− 1). So we arrive at
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Corollary 2.3. LetV ∈ Sp be a quasinilpotent operator withp ∈ (1, 2). Then (2.3) holds with
(1.3) taken into account.

Proof of Theorem 1.1.As it is well known, cf. [6] for any compact operatorA, there are a
normal operatorD and a quasinilpotent operatorV , such that

(2.4) A = D + V andσ(D) = σ(A).

Relation (2.4) is called the triangular representation ofA; V andD are called the nilpotent part
and diagonal one ofA, respectively. Clearly, by the triangular inequality,

Np(VR) = Np(AR −DR) ≥ Np(AR)−Np(DR)

andNp(AI −DI) ≤ Np(AI) + Np(DI). This and the previous lemma imply that

Np(AR)−Np(DR) ≤ bpNp(AI −DI) ≤ bp(Np(AI) + Np(DI)).

Hence,Np(AR)− bpNp(AI) ≤ bpNp(DI) + Np(DR). By (2.4),

Np
p (DR) =

∞∑
k=1

|Re λk(A)|p andNp
p (DI) =

∞∑
k=1

| Im λk(A)|p.

So relation (1.4) is proved, as claimed. �

3. ADDITIONAL BOUNDS

By Lemma 6.5.2 [5], for anA ∈ S2 we have

(3.1) N2
2 (A)−

∞∑
k=1

|λk(A)|2 = 2N2
2 (AI)− 2

∞∑
k=1

(Im λk(A))2.

Hence,

N2
2 (A)−

∞∑
k=1

|λk(A)|2 = 2N2
2 (AR)− 2

∞∑
k=1

(Re λk(A))2

and therefore,

N2
2 (AI)−

∞∑
k=1

(Im λk(A))2 = N2
2 (AR)−

∞∑
k=1

(Re λk(A))2.

Or
∞∑

k=1

(Re λk(A))2 −
∞∑

k=1

(Im λk(A))2 = N2
2 (AR)−N2

2 (AI) (A ∈ S2).

This equality improves Theorem 1.1 in the casep = 2. Moreover, from (3.1) it directly follows
that

2
∞∑

k=1

(Im λk(A))2 = 2N2
2 (AI)−N2

2 (A) +
∞∑

k=1

|λk(A)|2

≥ 2N2
2 (AI)−N2

2 (A) + Trace A2.

Now replacingA by Ap we arrive at

Theorem 3.1.LetA ∈ S2p (1 ≤ p < ∞). Then

2
∞∑

k=1

(Im(λp
k(A)))2 ≥ 2N2

2 ((Ap)I)−N2p
2p (A) + Trace A2p.
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