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ABSTRACT. LetS, be the Schatten-von Neumann ideal of compact operators equipped with the
normN,(-). Forand € S, (1 < p < ), the inequality

P
+ by

P

> Np(Ar) — bpN,(Ar) (b, = const.> 0)

> IReAu(A)”
k=1

D ITm A (AP
k=1

is derived, where\;(A) (j = 1,2,...) are the eigenvalues of, A; = (4 — A*)/2i and
Ar = (A + A*)/2. The suggested approach is based on some relations between the real and
imaginary Hermitian components of quasinilpotent operators.
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1. STATEMENT OF THE MAIN RESULT

Let S, (1 < p < o0) be the Schatten-von Neumann ideal of compact operators in a separable
Hilbert spacel equipped with the norm

N,(A) := [Trace(A*AP|VP < 00 (A € S,),

cf. [4,[6]. Let);(A) ( =1,2,...) be the eigenvalues of € S, taken with their multiplicities.
In addition,o(A) denotes the spectrum df A; = (A — A*)/2i andAr = (A + A*)/2 are the
Hermitian components of.
Recall the classical inequalities
j j
DIMAP <Y A =1 =12,
k=1 k=1
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cf. [6, Corollary 11.3.1] and
j j

S ImA(A)] <Y si(4) (G=12,...)

k=1 k=1
(seell6, Theorem 11.6.1]). These results give us the upper bounds for sums of the eigenvalues
of compact operators. In the present paper we derive lower inequalities for the eigenvalues.
Our results supplement the very interesting recent investigations of the Schatten-von Neumann
operators, cf.[[1,12,18,9, 11, 12,113, 14].

Let {c,}5°, be a sequence of positive numbers defined by

(1.1) Chn=Cn1+1/E 1+1 (n=2,3,...), =1

To formulate our main result, forae [2",2" "] (n=1,2,...), put
(1.2) b, =chelly  with ¢t=2-—2""p.
Forinstancep, = ¢, = 1, b3 = \/cic2 = \/r\/? < 1.554, by = ¢y < 2.415,
by = &/ ed/* < 2.900;  be = (cacs)/? < 3.485: by = ¢/ *ei/* < 4.185
andbg = c3 < 5.027. Inthe casd < p < 2, we use the relation

(1.3) bp = bp/p-1)
proved below.
The aim of this paper is to prove the following

Theorem 1.1.LetA € S, (1 <p < o0). Then

p

(1.4) D IReM(A)P| 45, [ D 1TmA(A)P| = Ny(Ar) — bN,(Ar).
k=1 k=1

The proof of this theorem is presented in the next section. Clearly, ineqiiality (1.4) is effective
only if its right-hand part is positive.
Replacing in[(T.A)A by A we get

Corollary 1.2. LetA € S, (1 <p < 00). Then

[Z [ Tm A (AP

Note that if A is self-adjoint, then inequality (1.4) is attained, since

P

1
+ b, > N,(A;) — byN,(Ag).

> [ReAu(A))
k=1

1

P

= Np(Ar) = Np(A).

> [ReA(A)P

k=1

Moreover, if A € S, is a quasinilpotent operator, then from Theorem 1.1, it follows that

Ny(Ag) < No(Aj). However, as it is well knownNy(Ag) = Na(Af), cf. [5, Lemma 6.5.1].

So in the case of a quasinilpotent Hilbert-Schmidt operator, inequality (1.4) is also attained.
Let {e,} be an orthonormal basis iff, andF’' € S, with p > 2. Then by Theorem 4.7 from

[3. p. 82],

p\ L
) p

N, (F) > <Z\|Fek\|p>p =Y [Z|fjk|2]

=1
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Here|| - || is the norm ind and f;;, are the entries of in {e; }. Moreover,
275
v 1 1
NP < | Zlfykl S o=
=\ p P

cf. [10, p. 298]. Leta;;, be the entries ofl in {e,}. Then the previous inequalities yield the
relations

Cl]k + ag;

[\
I
3=

N,(Ag) > my(Ag) : Z (Z

and

v
S =

N,(Ay) < My(A;) - i(

Now Theoreny 1]1 implies:
Corollary 1.3. LetA € S, (2 <p < o0). Then

1
> [ReAu(A)P > [Tm Ay(A)P
k=1 k=1

Furthermore, from (I]1) it follows that,, > 2¢, > 2". Therefore,

Cnt1 < (1 + v 1+ 2—(n—1)2> .

3=

+ bp > mp(AR) — bpMp(A[).

Hence,

n—1
(1.5) H(HVH‘““) (n=2,3,...).
Since

\/1‘|‘$§1+g7 xe(oal)a

1+z<e" (x>0),and
ZOO 11
4 - 7
k=1

from inequality [(1.5) it follows that

n L 161/3
n - n+
Cnsr < 2 H(1+4 ) <2 —~
k=1
Hence it follows that
1/3
(1.6) by < F5— (2<p <o),
Indeed, by[(12) fop = 12" + (1 —)2"*! (n=1,2,...; 0 <t < 1) we have
1/3 1/3
1 n 1—t)(n+1 € n— €
b_C;Cn_i_tlSQtQ( —t(n+1) TZQ t'T.

However,2" " < p = 2" 4+ (1 — ¢)2"*! (0 <t < 1). So [1.6) is valid.
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2. PROOF OF THEOREM [1.]
First let us prove the following lemma.

Lemma 2.1. Let V' be a quasinilpotent operatoV/z = (V + V*)/2 andV; = (V — V*)/2i
its real and imaginary parts, respectively. Assume thHat Sy-. for an integern > 2. Then
NQ'IL(‘/R) S CnNQTL(‘/I).

Proof. To apply the mathematical induction method assume that fer2” there is a constant
d,, such thatV,(Wg) < d,N,(W;) for any quasinilpotent operatd¥” € S,. Then replacing
W by Wi we haveN,(W;) < d,N,(Wg). Now letV € S,,. ThenV? € S, and therefore,

No((VA)R) < dpN,((V)1).

Here
V2 + (VQ)* VQ _ (V2)*
2\ 2y _
(V )R - 9 ) (V )I 27, .
However,
(Ve = (Vr)* = (V1)?, (V) =ViVa+ V&V,
and thus

NP(V}% - Vlz) < dep(‘/RVI + VIVR) < 2de2p<vR)N2p(VI)~
Take into account that
Np((Va)?) = N3,(Va), N,((V1)?) = N3,(Vi).

So
N3, (Vi) — N3, (Vi) — 2dp Noy(Vr) Nap (Vi) < 0.

Solving this inequality with respect @W,,(Vz), we get

Nop(Vr) < Noy(Vr) [d,, +1/d5 + 1| = Nop(Vi)day,

dgp:dp—l-\/dg—l—l.

In addition,d, = 1 according to Lemma 6.5.1 from![5]. We thus have the required result with
Cp = dQn. |:|

with

We will say that a linear mapping is a linear transformerif it is defined on a set of linear
operators and its values are linear operators. A linear transfédmef, — S, (1 < p,r < 00)
is bounded if its norm

L NJ(TA)

Moo ()= 200 N ()
is finite. Below we give some examples of transformers. To prove reldtioh (1.3) we need
Theorem 111.6.3 from[[7]. To formulate that theorem we recall some notions from [7, Section
1.3]. A setr of projections inH is called achain of projectionsf for all P, P, € 7 either
P, < Py or P, < P,. This means that eithe?, H ¢ P,H or »,H C P,H. A chain of
projections iscontinuoudf it does not have gaps. A continuous chain of projections called
a complete one if the zero and the unit operators belong to

Let us introducehe integral with respect to a chain of projectionscf. [7, Sections 1.4 and

I.5]. To this end for a partition

O0=FR<P<---<P,=1, Pk€7r,k::17...,n
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and an operataR € .S, put

T.=)» P.RAP, (AP, =P, - Py).
k=1
If there is a limit7,, — T asn — oo in the operator norm, we write

T = /PRdP.

This limit is called the integral oR with respect to a chain of projections By Theorem 111.4.1
from [7], this integral converges for any € S,,1 < p < oo. Due to Theorem 1.6.1.[7], any
Volterra operatoit” with V; € S, can be represented as

V= 22’/PV1dP.

Hence,
VR = FTI’(Z‘/})7
where
(2.1) F.(R) = /PRdP+ </ PRdP) (Re S, 1<p<o0).

A transformer of this form is called a transformer of the triangular truncation with respect to
Theorem 111.6.3 fron{/7] asserts the following:Let = be a complete continuous chain of

projections inH. Let F;(R) be a transformer of the triangular truncation with respect to

defined by). Then the nori,_,,(F) is logarithmically convex. Moreover, the relation

(2.2) N, .p(Fy) = N,_q(Fy) with ]13 + é =1 (p=2)

is valid.

Lemma 2.2. Let V be a quasinilpotent operator, and forjac [2",2" "] n = 1,2,..., let
Vi € S,. Then

(2.3) N,(Vr) < b,N,(Vr).

Proof. By Lemmd 2.1, we have
Non_on (Fy) < ¢ = bon.
Put
p=1t2"+ (1 —t)2" (0<t<1).
Since the norm of’; is logarithmically convex and’, (:V;) = Vg, we can write
Npp(Fr) < bgnbéﬁl (t=2-27"p).

So
Np(VR)
Ny(V1)
This proves the lemma. O

Furthermore, taking iff (211% = iV}, by the previous lemma and the equalities(2.2) and
F.(iV7) = Vg, we get

<b,

Nq(VR) < quq(VI) (¢ €(1,2))
with b, = b,, ¢ = p/(p — 1). So we arrive at
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Corollary 2.3. LetV e S, be a quasinilpotent operator with < (1,2). Then [(2.B) holds with
(1.3) taken into account.

Proof of Theorer 1]1As it is well known, cf. [6] for any compact operatet, there are a
normal operatoD and a quasinilpotent operatbr, such that

(2.4) A=D+V ands(D) = o(A).

Relation [(2.4) is called the triangular representatiodp¥” and D are called the nilpotent part
and diagonal one ofl, respectively. Clearly, by the triangular inequality,

Np(VR> = Np(AR — Dp) > Np(AR> - Np(DR>
andN,(A; — D;) < N,(A;) + N,(Dy). This and the previous lemma imply that
Ny(Agr) — Np(Dg) < b,N,(Ar — Dy) < b,(N,(Ar) + Np(Dy)).
Hence,N,(Ag) — b,N,(Ar) < b,N,(D;) + N,(Dg). By (2.9),

ZyReAk )[P andN?(D;) = Z|Im)\k

So relation|(1.4) is proved, as claimed. O

3. ADDITIONAL BOUNDS

By Lemma 6.5.2[[5], for am € S, we have

(3.1) NF(A) = D (AP = 2N; (A7) =2 (Im Ay(4))%
Hence, :
N3 (A) =D IM(A))® = 2N5(Ag) =2 ) _(ReA(4))?

and therefore,

NQQ(A]> — i(lm )\k(A)) N2 AR i Re /\k
Or . : . :
D (ReAk(A)? =) (ImA\g(A))* = N3(Ar) — N3 (A1) (A€ S).

This equality improves Theorem 1.1 in the case 2. Moreover, from|[(3.1) it directly follows
that

250: Im A\, (A))? = 2N3(Ap) — +Z|Ak
k=1

> 2N (Af) — N3 (A) + Trace A2,
Now replacingA by AP we arrive at
Theorem 3.1.LetA € S5, (1 <p < o0). Then

2> "(Im(A(A)))> = 2N3((AP);) — N32(A) + Trace A™.
k=1
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