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Let S, be the Schatten-von Neumann ideal of compact operators equipped with
the normN,(-). ForanA € S, (1 < p < o0), the inequality
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S [Tm e (A)?
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> Np(AR) — bpyN,(Ar) (bp = const.> 0)

is derived, where\;(A) (j = 1,2,...) are the eigenvalues of, A; = (A —
A*)/2i and Arp = (A + A™)/2. The suggested approach is based on some
relations between the real and imaginary Hermitian components of quasinilpotent
operators.
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1. Statement of the Main Result ||\v

Let S, (1 < p < o0) be the Schatten-von Neumann ideal of compact operators in a
separable Hilbert spadé equipped with the norm

N,(A) := [Trace(A*AP?)V/P < 00 (A€ S,),

cf. [4,6]. Let \;(A) (j = 1,2,...) be the eigenvalues of € S, taken with their
multiplicities. In additiong(A) denotes the spectrum df. 4; = (A — A*)/2i and Schatten-on Neumann Operators
Agr = (A + A¥)/2 are the Hermitian components df el

Recall the classical inequalities
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ZiAk |p<Zsk (p=1,j=12..) Title Page
k=1 Contents
cf. [6, Corollary II.3.1] and
. <« >
Zilm)\k gz WA (1=1,2,...) < >
h=1 . Page 3 of 16
(see B, Theorem [1.6.1]). These results give us the upper bounds for sums of the
eigenvalues of compact operators. In the present paper we derive lower inequalities Go Back
for the eigenvalues. Our results supplement the very interesting recent investigations Full Screen
of the Schatten-von Neumann operators, £f2] 8,9, 11, 12, 13, 14].
Let {¢,}°>°, be a sequence of positive numbers defined by Close
(1.1) Cn = Cpn1 + A /Cgk1 +1 (n=2,3,...), ¢ =1 journal of inequalities
in pure and applied
To formulate our main result, forae [2",2""| (n=1,2,...), put mathematics
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For instanceby = ¢; = 1, by = \/c1¢3 = V1 + V2 < 1.554, by = ¢5 < 2.415,

by = cg/4c§/4 <2.900; bg = (cocs)Y/? < 3.485; by = 05/4051,,/4 <4.185

andbg = ¢3 < 5.027. Inthe casd < p < 2, we use the relation

(1.3) bp = bp/(p—l)

proved below.
The aim of this paper is to prove the following

Theorem 1.1.LetA € S, (1 <p < o0). Then

2 NP<AR) - prp(AI)-

1
(1.4) + b,

> [ReAu(A)P
k=1

> [ImA(A)pP
k=1

The proof of this theorem is presented in the next section. Clearly, inequality
(1.4) is effective only if its right-hand part is positive.
Replacing in {.4) A by iA we get

Corollary 1.2. LetA € S, (1 <p < o0). Then

[Z [ Tm A (A) 7

Note that if A is self-adjoint, then inequality'(4) is attained, since

P

+ bp > Np(AI) - prp(AR)-

> [ReA(A)”
k=1

=

p

= Np(AR) = Np(A)'

> [ReAu(A))
k=1
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Moreover, if A € S is a quasinilpotent operator, then from Theorér, it fol-
lows that Ny (Ag) < Na(A;). However, as it is well knownNy(Ag) = Na(Aj),

cf. [5, Lemma 6.5.1]. So in the case of a quasinilpotent Hilbert-Schmidt operator,

inequality (L.4) is also attained.
Let{e,} be an orthonormal basis i, andF" € S, withp > 2. Then by Theorem
4.7 from 3, p. 82],

n= (Sirar) = (3 S|

Here|| - || is the norm inH andf;;, are the entries of" in {e; }. Moreover,
P 1
L
Np Z Z|fjk|p ) _+_,:17
=\ pop

cf. [10, p. 298]. Leta,;, be the entries ofl in {e;}. Then the previous inequalities
yield the relations

RS

[e'¢) [e’e] _ 2 %
ajr + Qk;
No(AR) = my(Ag) == | (Z % )
k=1 \j=1
and
Ajk — Akj Qj

ﬁd\
SN——
S s
3=

N, (A7) < My(Ay) : i (i

Now Theoreml.1limplies:
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Corollary 1.3. LetA € S, (2 <p < o0). Then

1
P
+ by,

> [ReAu(A)
k=1

> [mA ()P
k=1

Furthermore, from1.1) it follows thatc, .1 > 2¢,, > 2". Therefore,

i < Cn (1 1+ 2—<n—1>2> .

Hence,

(1.5) Cn < ﬁ (1 +Vv1+ 4—<k—1>) (n=2,3,...).
k=1

Since

Vitr<i+s,  ae(),
l+z<e” (x>0),and
54
k P
=4 3
from inequality (L.5) it follows that

1/3

Cnit S on H(l + 4—k) S 2n-‘r1eT

k=1
Hence it follows that
o1/3

(1.6) by < 55

(2<p< ).

> my(Ag) — byMy(Ar).
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Indeed, by (.2) for p = 2" + (1 — ¢)2"™' (n=1,2,...; 0 <t < 1) we have

- e n ol/3 . ol/3
by = ey < 220700 —gnt
However 2"t < p=12"+ (1 —t)2"™ (0 <t < 1). So (L.6) is valid.
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2. Proof of Theoreml1l.1

First let us prove the following lemma.

Lemma 2.1. Let V' be a quasinilpotent operatol/z = (V + V*)/2 and V; =
(V —V*)/2iits real and imaginary parts, respectively. Assume that Sy- for an
integern > 2. ThenNy. (Vg) < ¢, Non (V7).

Proof. To apply the mathematical induction method assume thap fer 2" there
is a constantl,, such thatV,(Wx) < d,N,(W;) for any quasinilpotent operator
W € S,. Then replacingV by Wi we haveN,(W;) < d,N,(Wg). Now let
V € Sy,. ThenV? € S, and therefore,

No((VA)R) < dp N ((V)1).

Here V2 (V2) 2 (VQ)
o _ VAV oy _ VI (V)
(v )R - 2 9 (V )I - % .
However,
(Vg = (Va)* = (V1)?, (V3 =ViVe+ VaVi
and thus

Np(VJ% - VIQ) < dep(VRVI + VIVR) < 2de2p(VR)N2p(VI)-
Take into account that
No((Vr)?) = N3, (Vr), Np((Vi)?) = N3, (Vi).

So
N3, (Vi) = N3,(Vi) = 2dy, Nop(Vi) Ny (Vi) < 0.
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Solving this inequality with respect W¥,,(Vz), we get

Nap(Vi) < Napl(Vi) [dy + /2 + 1] = Nap(Vi)dy

dgp:dp‘i‘\/d;‘i‘l.

In addition,d, = 1 according to Lemma 6.5.1 frond]. We thus have the required
result withe,, = dan. O

with

We will say that a linear mapping is a linear transformer if it is defined on

a set of linear operators and its values are linear operators. A linear transformer

T:5,— S, (1<p,r<oo)isbounded if its norm

is finite. Below we give some examples of transformers. To prove relatiGhwe
need Theorem [11.6.3 from7]. To formulate that theorem we recall some notions
from [7, Section 1.3]. A setr of projections inH is called achain of projectionsf
forall P, P, € 7 eitherP, < P, or P, < P;. This means that eithed?, H C P, H
or H C P H. A chain of projections i€ontinuousf it does not have gaps. A
continuous chain of projectionsis called a complete one if the zero and the unit
operators belong to.

Let us introducethe integral with respect to a chain of projections cf. [7,
Sections 1.4 and 1.5]. To this end for a partition

0O=F <P < ---<P,=1, Poem, k=1,...,n

and an operataR € S, put
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3

T,=Y P.RAP, (AP, =P, — P,4).
k=1
If there is a limitT,, — T asn — oo in the operator norm, we write

T = /PRdP.

This limit is called the integral o2 with respect to a chain of projections By
Theorem 111.4.1 from T}, this integral converges for any € S,,1 < p < co. Due
to Theorem 1.6.17], any Volterra operatoV” with V; € S, can be represented as

V= 22’/PV1dP.

Hence,
Vi = F(iV]),

where
(2.1) F.(R) := /PRdP+ (/ PRdP> (Re S, 1<p<o0).

A transformer of this form is called a transformer of the triangular truncation with
respect tar.

Theorem I11.6.3 from T] asserts the followinglLet = be a complete continuous
chain of projections in{. Let F.(R) be a transformer of the triangular truncation
with respect tor defined by £.1). Then the normV,_,,(F;) is logarithmically
convex. Moreover, the relation

1 1
(2.2) Ny—p(Fr) = Nyey(Fr) with ]—9 + 5 =1 (p>2)
is valid.
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Lemma 2.2. Let V be a quasinilpotent operator, and forja e [2°,2""], n =
1,2,...,letV; € S,. Then

(2.3) N,(Vr) < b,N,(Vr).
Proof. By LemmaZ2.1, we have
N2ng,2n<Fﬂ-) S Cp = bgn.

Put
p=t2"+ (1 —t)2" (0<t<1).

Since the norm of; is logarithmically convex and’, (iV;) = Vg, we can write
Np—p(Fr) < bénb;L (t=2-27"p).
So

< by.
This proves the lemma. ]

Furthermore, taking inA1) R = iV}, by the previous lemma and the equalities
(2.2) and F,(iV;) = Vg, we get

Nq(VR) < quq(VI) (¢ €(1,2))
with b, = b,, ¢ = p/(p — 1). So we arrive at

Corollary 2.3. LetV € S, be a quasinilpotent operator withe (1,2). Then £.3)
holds with (L.3) taken into account.

Proof of Theoreni.l Asitis well known, cf. B] for any compact operatot, there
are a normal operatdp and a quasinilpotent operat®r, such that

(2.4) A=D+V ands(D)=o(A).
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Relation ¢.4) is called the triangular representation 4f I and D are called the
nilpotent part and diagonal one df respectively. Clearly, by the triangular inequal-
ity,

Nyp(Vr) = Nyp(Ar — Dr) 2 Nyp(Agr) — Np(Dr)
andN,(A; — D;) < N,(Ar) + N,(Dy). This and the previous lemma imply that

Np(Ar) = Nyp(Dr) < b,Np(Ar — Dr) < by(Np(Az) + Np(Dr)).

Hence,N,(Agr) — b,N,(A;) < b,N,(D;) + N,(Dg). By (2.4),
N?(Dg) = Z | Re \y(A)[” andN?(D;) = Z]Im)\k
So relation (..4) is proved, as claimed. O]
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3. Additional Bounds

By Lemma 6.5.2%], foran A € S, we have

(3.1) N3 (A) =Y (AP = 2N5(Ar) — 2 ) (Im Ay (A))*.
Hence, - -
=D (AP =2NF(Ag) — 2 "(Re Ay(A))

and therefore,

NF(A) = (ImAy(A))* = N7 (Ag) — ) (Re (A

k=1 k=1

Or
D (ReMe(A))* =) (ImAx(A))* = N3(Ag) — N3 (A;) (A€ Sy).
k=1 k=1

This equality improves Theorem 1 in the casep = 2. Moreover, from 8.1) it
directly follows that

2) (ImA(A))> = 2N3(A7) = N3(A) + ) e(A)?
: > 2NF(A;) — N3 (A) + T;ace A2,

Now replacingA by AP we arrive at
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Theorem 3.1.LetA € S5, (1 <p < o0). Then

2> (Im(M}(A)))* = 2N3((AP);) — N3 (A) + Trace A™.

00
k=1
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