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1. Introduction

In a recent paper?], the authors proved the following result.

Theorem 1.1. Let g be continuous and non-decreasingenb], 0 < a < b < oo
with g(z) > 0,z > 0,7 # 1 and let f(x) be non-negative and Lebesgue-Stieltjes
integrable with respect tg(x) on [a,b]. Suppose,(z) = [ f(t)dg(t), Fy(z) =

J2 f(t)dg(t) and 6 = =2 r £ 1. Then

b
1.1 [ g [g()™ — g(a)~]) " Fu(x)Pdg(z) + Ki(p, 6, a,b)

a

<[] [owrtswseraw, o1

b
(12) [ g(a)’ [9(x)7" = g(0)] " Fy(x)"dg(x) + Ka(p, 5, a,b)

<[]/ @ @) ) Pdgla). v <1,

1—r
where
Ki(p,d,a,b) = T]'%lg(b)(S [9(0)° — g(a)°] " Fu(b)?, <0, ier>1
and
Ks(p,8,a,b) = %rg(a)é [9(a)™ — g0)°] " Fy(a)?, >0, ier<1.
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The above result generalizes Imorl] pnd therefore Shum3]. The purpose
of the present work is to obtain a weighted norm Hardy-type inequality involving

mixed norms which contains the above result as a special case and also provides an
improvement over it.
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2. Main Result

The main result of this paper is the following theorem:

Theorem 2.1. Let g be a continuous function which is non-decreasingamn], 0 <
a < b < oo,with g(z) > 0forx > 0. Suppose thay > p > 1 and f(z) is
non-negative and Lebesgue-Stieltjes integrable with respegt:toon [a, b]. Let
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b b
22)  F) - / F(t)dg(t). by(x) = / g(1) D0 f(p)Pdg(t) il Page
andd = =y £ 1. Theniifr > 1,i.e.0 <0, Contents
44 1 d 2
b sq g :
(2.3) [ / g(2) 7 [g(@) 7 — 9(a) )77 F2(@)dg(2) + Av(p, g, a,b, 5)] < >
X % Page 5 of 12
< C(p.0,) [ [ sty [g(x)f(x)]pdgm] | -
and forr < 1,i.e.§ > 0, Full Screen
Close
b dq 9 (p— %
(2.4) [/ g(z)» " g(x)™" = g(b)™’] b Fl(z)dg(x) + As(p, q,a,0, 5)] journal of inequalities
a . in pure and applied
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where

Co(p,q,0) = [gég(l_p)_l]

Proof. For the proof of Theorer. 1we will use the following adaptations of Jensen'’s
inequality for convex functions,

(2:3) /:h(x,tﬁqu(t) < [/ d)\(t)} o V h(x,t)éd)\(t)] ;

and

@9 /: (e, ) dA(t) < U: dA(t)} . [/:h(x,t);d)\(t)] : :

whereh(z,t) > 0forx > 0,t > 0, A is non-decreasing angd> p > 1.
Let
2.7) (. t) = g(x)g(OP O (e, dA(t) = g() " dg(t),

A? = (=6)»17P if § < 0andA = (6)»T7P)if § > 0.
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Using (2.7) in (2.5), we get

< (=6)r 0P [g(x)" = g(a) 0]V g(a)? [ / " g0 fpdg(n) |

a

Raising both sides of the above inequalities to poyvand using £.1), we obtain
9(@) 7 Fulw)? < Afga(@)? @ Vg(x) 7 ()7,
whereg,(z) = [g(x)° — g(a)~’].
Integrating overa, b) with respect toy(x) " 'dg(x) gives

(2.8) /9(96)?_lga(ﬂﬁ)g(l_p)Fa(fv)ng(x)SA?/ 9(x) 7 Ga(w) P dg(x) = .

a

Now integrate the right side of(8) by parts to obtain

b dq q
7= [ gla)¥ 0 gl

oo ) + (57

b 3q q
X/ g(@) 7 g(a) PV f(2)P0y () dg(x).
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However,

I'= / g(2) 7 g(2) P D0 f(2)007 " (2)dg ()

1_1
dq

= [Csw ¥ sop | [ gare=ssaran]” aw

-/ gy [gw / xg(t)(sp*p-l-éf(t)pdg(t)] dg(x).

Sinced < 0, we have g(z)™° > g(t)~° Vt € [a, z].
Consequently

i< ") ey [owrrperan]” i

- / b [ / ) g<t>5p+p-1f<t>pdg<t>] " g f(pdg(a)

» »

=y gt (o)} dote)|

Thus @.8) becomes
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b »
< 2eaat| [ o @) dyte)
Taking theg'" root of both sides yields assertion §) of the theorem.

To prove ¢.4), we start with inequality4.6) and use %.7) with (2.2) to obtain
glx)r Fix) < (=0)2 " Pgy()s " Vg ()20 ()
= (677" (= ()" Vg ()b ()7,

whereg,(z) = [g(b)~* — g(x)~°].
On rearranging and raising to powgand then integrating both sides oVerb]
with respect tgy(x) ~'dg(x), we obtain

(2.10) / 9(2)% 7 [g(2)™ — g(0)~]*" P Fy)dg(x)

b 5
gAg/ g(x)Fflﬁb(x)dg(x).

We denote the right side of (10 by H, integrate it by parts and use the fact that for
§>0,9(x)° <g(t)° Vte |r, b toobtain

op q b
H < (%A%g(af)qﬁb(x)pm (6q/p) ™A / ()" [f(z)g(2)]" dg(x).
Using this in ¢.10) we obtain
b 3q 1(1—p) P a q
(2.11) / gl@) > [9(@)™ = g®)7' ] F(a)'dg(a) + 57! Adg(a)*bo(a)”

b
< 251y [ / 9" [f(@)g(@)]” dg(x)

a

Weighted Mixed Norm Hardy-Type
Integral Inequalities

C.O. Imoru and A.G. Adeagbo-Sheikh
vol. 8, iss. 4, art. 101, 2007

Title Page
Contents
44 44
< >
Page 9 of 12
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

We take the;*" root of both sides to obtain assertich4) of the theorem. ]

Remarkl. Letp = ¢, andd = 1% < 0,i.e.,r > 1, then .3 reduces to

b
(2.12) / g(x)" [g(2) " = g(a)°]"" Fu(a)Pdg(x) + Ay (p, p, a,b, )

< Cip.p,O) [ [ s @@ dyta)|

where

(2.13) Ai(p,p,a,b,8) = (=8)Pg(b)’6a(b),  6<0
and

(2.14) Ci(p,p,0) = (=0)" = [T f J :

Now from (2.18) in P] we have that, foh < 0

(215)  g(0)°0u(b) > (=01 Pg(b)° [g(b)° — g(a)*] " Fu(b)".
Thus, from ¢.13 and .15, using notations in1(.1), we have
(2.16)  Ai(p,p,a,b,6) = (—=08)g(b)’6a(b)
> (—=6) (=671 Pg(b)’ [g(b) " — gla) ] T Fu(b)?
= (=6)"'g(0)" [g(b)* — g(a)°] " Fu(b)?
= —Lg(0)’ [g()~" — g(a) "] Fulb)
= Ki(p,6,a,b),
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i.e., Ai(p,p,a,b,d) = Ki(p,9d,a,b)+ By forsomeB; > 0.
Thus we can writed.12), using €.14), as

(2.17) / g(@) " [g(x) ™ — g(a) )" Fu(2)Pdg(x) + Ki(p, 6, a,b) + By

<[] [ st vwsr as)|

So, whenB; = 0, (2.17) reduces to{.1). WhenB; # 0, i.e.,B; > 0, (2.17) is an
improvement of {.1). Similarly with notations in {.2) and ¢.4) in this paper we
use (2.19) in2] to prove that

A2<p7p7aa b> 5) = K2(pa 5,&,()) + B2

for someB, > 0.
Thus, wherp = ¢, (2.4) reduces to1.2) if B, = 0 and is an improvement ofi(2)
whenB; # 0, i. e., whenB, > 0.
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