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1. INTRODUCTION
In this paper we study second-order differential inclusions of the form
(1.1) (p()2'(t)) € F(t,z(t)) a.e. ([0,T]), z(0)=uzg, 2'(0)=m,

wherel = [0,7], F' : I x X — P(X) is a set-valued map¥ is a separable Banach space,
xo,x1 € X andp(-) : [0, 7] — (0, 00) is continuous.

In some recent papers ([3, 6]) several existence results for proplem (1.1) were obtained using
fixed point techniques. Even if we deal with an initial value problem instead of a boundary
value problem, the differential inclusign (1.1) may be regarded as an extension to the set-valued
framework of the classical Sturm-Liouville differential equation.

The aim of this paper is to show that Filippov’s ideas ([4]) can be suitably adapted in order
to prove the existence of solutions to problém](1.1). We recall that for a differential inclusion
defined by a lipschitzian set-valued map with nonconvex values, Filippov’s thebrem [4], well
known in the literature as the Filippov-Gronwall inequality, consists in proving the existence of
a solution satisfying some inequalities involving a given quasi trajectory.

Such an approach allows us to avoid additional hypotheses on the Lipschitz constant of the
set-valued map that appear in the fixed point approaches|([3, 6]). The proof of our results
follows the general ideas inl[5], where a similar result is obtained for solutions of semilinear
differential inclusions.
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The paper is organized as follows: in Secf{ipn 2 we present the notations, definitions and the
preliminary results to be used in the sequel and in Seftion 3 we prove our main results.

2. PRELIMINARIES

Let us denote by the intervall0, 7], T' > 0 and letX be a real separable Banach space with
the norm| - | and with the corresponding metrig:, -). With B we denote the closed unit ball
in X.

ConsiderF' : I x X — P(X) a set-valued mapgy,x; € X andp(-) : I — (0,00) a
continuous mapping that have defined the Cauchy proljlern (1.1).

A continuous mapping(-) € C(I, X) is called a solution of problem (1.1) if there exists a
(Bochner) integrable functiofi(-) € L'(7, X) such that:

(2.1) F(t) € F(t,a(t)  ae. (D),

(2.2) x(t) = xg +p(0)x1/0 Z%ds +/O ]ﬁ /OS f(u)duds, Vtel.

This definition of the solution is justified by the fact thatfif-) € L'(Z, X) satisfies[(2]1),
then from the equalityp(t)z'(t))’ = f(t) a.e. (I), integrating by parts and applying the
Leibnitz-Newton formula for absolutely continuous functions twice, we obtain first

iy P(0) 1 / :
2.3 r(t) = —=1 + —= u)du, tel
(2:3) 0 ="57 0 ) f@
and afterwardg (2] 2).
Note that, if we denoté& (¢, u) := fj ﬁ t € I, then ) may be rewritten as
t
(2.4) z(t) = xo + p(0)21.5(t,0) +/ S(t,u)f(u)du Vtel.
0

We shall call(z(-), f(-)) atrajectory-selection paiof (1.1) if (2.1) and[(2.R) are satisfied.
We shall use the following notations for the solution sets ofj (1.1):

(2.5) S(zo,z1) = {(z(-), £()); (x(-), f(+)) is a trajectory-selection pair df (1.1

In what followsyy, y1 € X, g(-) € L'(I, X) andy(-) is a solution of the Cauchy problem
(2.6) (p@)y' (@) =g(t) y(0) =y, y(0)=u.
Hypothesis 2.1.

i) F(-,-) : I x X — P(X) has nonempty closed values and for every X, F'(-,z) is
measurable.

ii) There exist3 > 0 and L(-) € L'(I,(0,00)) such that for almost alt € I, F(t,-) is
L(t)-Lipschitz ony(t) + B in the sense that

dy(F(t,x1), F(t,xq)) < L(t)|z1 — x2| Vaq, 29 € y(t) + BB,
wheredy (A, C) is the Pompeiu-Hausdorff distance betweki’ C X
dy(A,C) =max{d"(A,C),d"(C,A)}, d*(A,C)=sup{d(a,C);a € A}.
iif) The functiont — ~(t) := d(g(t), F(t,y(t)) is integrable on/.
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Setm(t) = eMTJo L0, ¢ € [ and M := sup,e; 5. Note thatlS(t,u)| < M(t - u) < Mt
Vi,u e I, u<t.
OnC(I,X) x L'(I,X) we consider the following norm

(@, Hloxe = |zl +|fh YV (z, f) e C(I,X) x L'(I, X),

where, as usualz|c = sup,¢; |z(t)], z € C(I, X) and|f]; = fOT |f(t)|dt, fe LY, X).
The technical results summarized in the next lemma are well known in the theory of set-
valued maps. For their proofs we refer, for example, to [5].

Lemma 2.2([5]). Let X be a separable Banach spadé,: I — P(X) ameasurable set-valued
map with nonempty closed values apd : I — X, L : I — (0,00) measurable functions.
Then one has:

i) The functiont — d(h(t), H(t)) is measurable.
i)y If H{t)N(g(t)+L(t)B) # 0 a.e. (I) then the set-valued map— H(t)N(g(t)+L(t)B)
has a measurable selection.

Moreover, if Hypothesis 2.1 is satisfied and) € C(7,X) with |z — y|c < 3, then the
set-valued map — F'(t,z(t)) is measurable.

3. THE MAIN RESULTS
We are ready now to present a version of the Filippov theorem for the Cauchy prblém (1.1).

Theorem 3.1. Considers > 0, assume that Hypothesis P.1 is satisfied and set

n(t) =m(t)(d + ]\4T/O v(s)ds).

If n(T") < G, then for anyzg, z; € X with

(Jro = yol + MTp(0)|z1 — 3u]) <6
and anye > 0 there existgz(-), f(-)) € S(xg, x1) such that

lz(t) —y(t)| < n(t) +eMTtm(t) Vtel,
1f(t) —g(®)| < L(t)(n(t) + eMTtm(t)) +v(t) +e a.e. (I).

Proof. Lete > 0 such that)(T') + eMT?*m(T) < /3 and set

x({t) =6+ MT /tv(s)ds +eMTt,

0

zo(t) = y(t), folt) = g(t), t € 1.

We claim that it is sufficient to construct the sequencgs) € C(I, X), f.(-) € L'(I, X),
n > 1 with the following properties

(3.1) n(t) = 20 + p(0)S(t, 0z + /0 CS(ts)fu(s)ds, Vel
3.2) |21 (t) — wo(t)] < x(t) Vtel,

(3-3) 11(t) = fo()] < (1) +e  ae. (1),

(3.4) fult) € F(t s (t) ace (D), n> L,
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(3.5) [frr1(8) = fa(D)] < L@O)|2a(t) = 2na(t)]  ae (I),n =1
Indeed, from[(31)[(3]2) anl (3.5) we have for almost all I

nia(t) — 2a(t)] < / S t0)] - s (1) — Fultr)ldtr
S MT /t L(t1>|l‘n(t1) — xn_1<t1)|dt1

t t1
< MT / Lity) / 1S(t1, 12)],
0 0

Falts) = Far(t2)|dty < (MT)? / L(t) / L(ta) | () — s ()| dadlty
< (MT)" / L) / Llty) - / L) (t) — y(t)|d . dt

<XQXMTW[jMﬁ)AhL@ﬂ~-AMIL@mﬁw.du

T fJnL!<s>ds>"_

Therefore{z,(-)} is a Cauchy sequence in the Banach spa¢g X). Thus, from [(3.5) for
almost allt € I, the sequencéf,(t)} is Cauchy inX. Moreover, from[(3.R) and the last
inequality we have

(3.6) 20 (t) — y(t)] < |z (t) —y(t)] + Z |ziy1(2) ()]

¢ (MT ds)?
1+MT/L@%+ kw@3>+m
0 .

< x(t)

< y(t)eMT J{L(s)ds
=n(t) +eMTtm(t)
and taking into account the choiceqfwe get
3.7) |2a() —y()le < B, ¥n=0.
On the other hand, fron (3.3), (3.5) a@B 6) we obtain for almostall

(3.8) | falt) — gt !<Z\fm ()] + | f1(t) — g(t)|

< Lt Zm — g ()] + (1) +

< L()(ﬁ()*-€ﬁn())+-7()-+€-

Let z(-) € C(I,X) be the limit of the Cauchy sequeneg(-). From [3.8) the sequence
fn(+) is integrably bounded and we have already proved that for almastall, the sequence
{f.(t)}is Cauchy inX. Takef(-) € L*(I, X) with f(t) = lim,, . fn(t).
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Using Hypothesip 2]1 iii) we have that for almostiaé I, the set

Q(t) = {(z,v);v € F(t, z), [z —y(t)| < 5}

is closed. In addition[ (3]4) and (3.7) imply that for> 1 andt € I, (z,_1(t), fa(t)) € Q(2).
So, passing to the limit we deduce that {2.1) holds true for almostall.

Moreover, passing to the limit iff (3.1) and using Lebesque’s dominated convergence theorem
we get[(2.4). Finally, passing to the limit jn (8.6) apd {3.8) we obtained the desired estimations.

It remains to construct the sequencgs-), f,(-) with the properties in[ (3]1) 4 (3.5). The
construction will be done by induction.

We apply, first, Lemmp 2|2 and we have that the set-valuedimagF (¢, y(t)) is measurable
with closed values and

Et,y) N{g(t) + (v(t) +)B} #0  a.e. ().

From Lemma 22 we fingl; (-) a measurable selection of the set-valued map

Hy(t) := F(t,y(t)) N{g(t) + (v(t) + ) B}.
Obviously, f;(-) satisfy [3.8). Define:;(-) as in [3.1) withn = 1. Therefore, we have

/0 S(t,5)(f(s) — g(s))ds

21(t) = y()] < [zo = yol + [p(0)S(2, 0) (21 — y1)[ +

<5+M/ s)+e)ds < n(t)+ MTet < j3.

Assume that for som& > 1 we already constructed,(-) € C(I, X)andf,(-) € L' (I, X),n =
1,2,..., N satisfying [3.1) -{(3]5). We define the set-valued map
Hy () == F(t.an(t) 0 {fx(t) + L) on(t) — ana(D|B}, te L

From Lemmg 2]2 the set-valued map— F(t,zn(t)) is measurable and from the lips-
chitzianity of F'(¢, -) we have that for almost alle I, Hy4(t) # 0. We apply Lemma 2|2 and
find a measurable selectigiy . (-) of F'(-, zx(-)) such that

[fna(t) = fn@)] < L) |len (t) — 2n-a(8)] a.e. (1)
We definery1(-) as in [3.1) withn = N + 1 and the proof is complete. 0O

Remark 1. As one can see from the proof of Theorem| 3.1 the funcfion is obtained to be
integrable and so the functian— fo s)ds is at most absolutely continuous. Taking into
account|(2.B), if we assume that) is absolutely continuous we find that-), the solution of
(1.1), belongs to the space of differentiable functions whose first derivafjveis absolutely
continuous.

The next corollary of Theorefn 3.1 shows the Lipschitz dependence of the solutions with
respect to the initial conditions.

Corollary 3.2. Let (y, g) be a trajectory-selection of (1.1) and assume that Hypothesjs 2.1 is
satisfied. Then there existsfa > 0 such that for anyy = (n;,72) in a neighborhood of
(%(0),4(0)) we have

dexr((y,9), S, m2)) < K(Im — y(0)] + |n2 — 4/(0)]).

Proof. Take0 < ¢ < 1. We apply Theorerh 311 and deduce the existencge>of) such that for
anyn = (m,m2) € B((y(0),v/(0)),d) there exists a trajectory-selectién., f.) of (1.1) with
xe(0) = n; andx.(0) = n, such that

[ze — yle < m(T)(Im — y(0)| + p(0)MT|nz — ' (0)]) + eMT*m(T)
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and
[fe = gly < m(T)(Im = y(0)] + MTnz — i/ (0)]) + (MT*m(T) + 1).
Sinces > 0 is arbitrary the proof is complete. O
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