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1. Introduction

In this paper we study second-order differential inclusions of the form
(1.1) (p(t)2'(t)) € F(t,z(t)) a.e. ([0,T]), z(0)=mxy, z'(0)=uxy,

wherel = [0,T], F': I x X — P(X) is a set-valued map¥ is a separable Banach
spaceyy, 1 € X andp(-) : [0,7] — (0, 00) is continuous.

In some recent papers3([6]) several existence results for problem 1) were
obtained using fixed point techniques. Even if we deal with an initial value problem
instead of a boundary value problem, the differential inclusiof) (nay be regarded
as an extension to the set-valued framework of the classical Sturm-Liouville differ-
ential equation.

The aim of this paper is to show that Filippov’s ideadXtan be suitably adapted
in order to prove the existence of solutions to problém)( We recall that for a dif-
ferential inclusion defined by a lipschitzian set-valued map with nhonconvex values,
Filippov’'s theorem 4], well known in the literature as the Filippov-Gronwall in-
equality, consists in proving the existence of a solution satisfying some inequalities
involving a given quasi trajectory.

Such an approach allows us to avoid additional hypotheses on the Lipschitz con-
stant of the set-valued map that appear in the fixed point approadhés)([ The
proof of our results follows the general ideas®h where a similar result is obtained
for solutions of semilinear differential inclusions.

The paper is organized as follows: in Sectibwe present the notations, defini-
tions and the preliminary results to be used in the sequel and in S€otverprove
our main results.
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2. Preliminaries

Let us denote by the interval[0, 7], T > 0 and letX be a real separable Banach
space with the normt | and with the corresponding metig:, -). With B we denote
the closed unit ball inX.

ConsiderF' : IxX — P(X) aset-valued mapy, z; € X andp(-) : I — (0, 00)
a continuous mapping that have defined the Cauchy problein (

A continuous mapping:(-) € C(I,X) is called a solution of probleml() if
there exists a (Bochner) integrable functipp) € L' (7, X) such that:

(2.2) f(t) € F(t,z(t)) a.e. (1),

(2.2) z(t) = xo ~|—p(0):)31/0 ]%ds +/0 ]%3) /08 f(u)duds, Vtel.

This definition of the solution is justified by the fact thatfif-) € L'(I, X)
satisfies £.1), then from the equalityp(t)z'(t)) = f(t) a.e. (I), integrating by
parts and applying the Leibnitz-Newton formula for absolutely continuous functions
twice, we obtain first

p(0

iy PO) e
(2.3) a:(t)—mxljtm/of(u)du, tel

and afterwardsA.2).

Note that, if we denot&'(t, u) := fj ﬁ t € I, then ¢.2) may be rewritten as

(2.4) z(t) = xo + p(0)215(¢,0) + /Ot S(t,u)f(u)du Vtel.
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We shall call(z(-), f(-)) atrajectory-selection paiof (1.1) if (2.1) and @.2) are
satisfied.

We shall use the following notations for the solution setslof)
(2.5) S(zo, 1) = {(z(), f(+)); (=(-), f(+)) is a trajectory-selection pair of (1) }.

In what followsy,, y1 € X, g(-) € L'(I, X) andy(-) is a solution of the Cauchy
problem

(2.6) (p®)y'(1) = g) y(0)=yo, y'(0)=uyr.
Hypothesis 2.1.

i) F(-,-) : I x X — P(X) has nonempty closed values and for everg X,
F(-,x) is measurable.

i) There exist3 > 0 and L(-) € L*(I,(0,00)) such that for almost alt € I,
F(t,-)is L(t)-Lipschitz ony(t) + 5B in the sense that

dH(F(t, .731), F(t, .2?2)) S L(t)|.CE1 — ZL’Q' Vl’l, To € y(t) + 63,
wheredy (A, C) is the Pompeiu-Hausdorff distance betweer C X
dy(A,C) = max{d"(A,C),d"(C,A)}, d*(A,C)=sup{d(a,C);a € A}.
iif) The functiont — ~(t) := d(g(t), F(t,y(t)) is integrable on/.

Setm(t) = eMTiLwdu ¢ ¢ [ and M := SUPyes - Note that|S(t,u)| <
M(t—u) < MtVt,uel,u<t.
OnC(I,X) x L'(I, X) we consider the following norm

|($7f)’CXL:|x’C+‘f‘l v<x>f)€C(I7X)XL1(IaX)a
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where, as usualx|c = sup,e; |z(t)], = € C(I,X) and|f|; = f0T|f(t)|dt, f €
LNI, X).

The technical results summarized in the next lemma are well known in the theory
of set-valued maps. For their proofs we refer, for example5jto [

Lemma 2.2 (B]). LetX be a separable Banach spadé,: I — P(X)ameasurable
set-valued map with nonempty closed values arid: I — X, L : I — (0,00)
measurable functions. Then one has:

i) The functiont — d(h(t), H(t)) is measurable.

i)y If H(t) N (g(t) + L(t)B) # 0 a.e. (I) then the set-valued map— H(t) N
(g(t) + L(t)B) has a measurable selection.

Moreover, if Hypothesig.1is satisfied and:(-) € C(I, X) with |z — y|¢ < 3,
then the set-valued map— F'(¢,z(t)) is measurable.

Filippov Type Existence
Theorem

Aurelian Cernea

vol. 9, iss. 2, art. 35, 2008

Title Page
Contents
44 44
< >
Page 6 of 13
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:acernea@fmi.unibuc.ro
http://jipam.vu.edu.au

3. The Main Results

We are ready now to present a version of the Filippov theorem for the Cauchy prob-
lem (1.1).

Theorem 3.1. Consider§ > 0, assume that Hypothesisl is satisfied and set

Filippov Type Existence

n(t) =m(t)(d + MT/O v(s)ds). Theorem

If n(T') < 3, then for anyzg, z; € X with
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(3.2) lz1(t) —zo(t)| < x(t) Vtel,

(3.3) |f1(t) = fo()] <y(t) + e ae (1),
Filippov Type Existence
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Therefore{z,(-)} is a Cauchy sequence in the Banach sgatk X). Thus, from
(3.5 for almost allt € I, the sequencéf,(t)} is Cauchy inX. Moreover, from
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Letz(-) € C(I,X) be the limit of the Cauchy sequeneg(-). From (3.9) the
sequencg,,(-) is integrably bounded and we have already proved that for almost all
t € I, the sequencéf,(t)} is Cauchy inX. Take f(-) € L'(I,X) with f(t) =

lim,, oo fiu(2).
Using Hypothesig.1iii) we have that for almost all € 7, the set

Q(t) = {(z,v);v € F(t, ), |z —y(t)] < 5}

Filippov Type Existence
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Assume that for somé&’ > 1 we already constructed, (-) € C(I,X) and
fu() € LI, X),n=1,2,..., N satisfying 8.1) — (3.5). We define the set-valued
map

Hyia(t) = F(t,an(8) N {fx(t) + Lb)|ax(t) — 2y (8)|B}, tel

From Lemma2.2 the set-valued map — F(t,zn(t)) is measurable and from
the lipschitzianity ofF'(¢,-) we have that for almost all € I, Hy,1(t) # 0. We
apply Lemma2.2 and find a measurable selectifia, ;(-) of F'(-, zx(-)) such that

[fvn(t) = In(@)] < Lt)|en(t) —2na (8] ae (D)
We definery () asin @.1) with n = N + 1 and the proof is complete. [

Remarkl. As one can see from the proof of Theorém the functionf(-) is ob-
tained to be integrable and so the function— fot f(s)ds is at most absolutely
continuous. Taking into account. @), if we assume that(-) is absolutely contin-
uous we find that:(-), the solution of {.1), belongs to the space of differentiable
functions whose first derivativé(-) is absolutely continuous.

The next corollary of Theorerm.1 shows the Lipschitz dependence of the solu-
tions with respect to the initial conditions.

Corollary 3.2. Let(y, g) be a trajectory-selection of.(1) and assume that Hypoth-
esis2.1is satisfied. Then there exists/a > 0 such that for any; = (1;,70) in a
neighborhood ofy(0),y'(0)) we have

doxr (Y, 9), S(m,n2)) < K(In = y(0)] + 2 — ¢/ (0)]).
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and
fe = gl <m(T)(Im — y(0)] + MT|ny — ¢/ (0)]) + e(MT*m(T) +1).

Sinces > 0 is arbitrary the proof is complete. O

Title Page

Contents

Page 12 of 13
Go Back

Full Screen

Close



http://jipam.vu.edu.au
mailto:acernea@fmi.unibuc.ro
http://jipam.vu.edu.au

References

[1] J.P. AUBINAND A. CELLINA, Differential InclusionsSpringer, Berlin,1984.

[2] J.P. AUBIN AND H. FRANKOWSKA, Set-valued AnalysiBirkhauser, Basel,
1990.

[3] Y.K. CHANG AND W.T. LI, Existence results for second order impulsive func-
tional differential inclusions). Math. Anal. Appl|.301(2005), 477-490.

[4] A.F. FILIPPQV, Classical solutions of differential equations with multivalued
right hand sideSIAM J. Contro] 5 (1967), 609-621.

[5] H. FRANKOWSKA, A priori estimates for operational differential inclusiods.
Diff. Equations 84 (1990), 100-128.

[6] VY. LIU, J. WU AND Z. LI, Impulsive boundary value problems for Sturm-
Liouville type differential inclusions). Sys. Sci. Complexjtg0 (2007), 370—
380.

Filippov Type Existence
Theorem

Aurelian Cernea

vol. 9, iss. 2, art. 35, 2008

Title Page
Contents
44 4 4
< >
Page 13 of 13
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:acernea@fmi.unibuc.ro
http://jipam.vu.edu.au

	Introduction
	Preliminaries
	The Main Results

