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Abstract

In the present paper, we consider a new modification of the Lupas operators
with the weight function of Szasz operators and study simultaneous approxima-
tion. Here we obtain a Voronovskaja type asymptotic formula and an estimate
of error in simultaneous approximation for these Lupas-Szasz operators.
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Lupas proposed a family of linear positive operators mapgifi@y oo) into
(0, 00), the class of all bounded and continuous functionglorc), namely,

e =3 (") e ()

= 1+x)

wherezx € [0, 00).

Motivated by the integral modification of Bernstein polynomials by Derrien-
nic [1], Sahai and Prasa@]modified the operators,, for functions integrable
onC[0,00) as

(Mof) (1) = (0= 1)S Pus(e) / " P f )y,

k=0

where k A
n+k—1 t

Integral modification of Szasz-Mirakyan operators were studied by Gupta [
Now we consider another modification of Lupas operators with the weight func-
tion of Szasz operators, which are defined as

(1.2) (Buf) (2) = 1S Pus(a) / " Sl f () dy
k=0 0
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where

and
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The following lemmas are useful for proving the main results.

Lemma 2.1.Letm € N° n € N, if we define

oo
0

Ty(2) =13 Prcri(a) / St (1) (y — 2)"dy

then Simultaneous Approximation by
Lupas Modified Operators with

. 14r(142 Weighted Function of Szasz
(I) Tnjo(x) = 1,Tn71(:€) = %, and Operators
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Proof. The value ofl;, o(x), T, 1(x) easily follows from the definition, we give
the proof of (iii) as follows.

w(z + )T (@)

[e.9]

Z 1 + ZL’ n+r k( ) Am Sn,k—f—r(y)(y — x)mdy

o0 S w1t 1) P (o) | Suratwty =y

om0 Simultaneous Approximation by

Lupas Modified Operators with
Weighted Function of Szasz

Now using the identities

Operators
ySSI)c (y) = (/{: — ny)Sn’k(y), Naokant Deo
andz(1 + x)Pél,z (x) = (k — nz) P, x(x), we get Title Page
z(1+ x)Tr(le(x) Contents
- o . <« >
=n Z [k - (TL + T)x]PnJrr,k(w) / Sn,k+r<y)(y - .’L‘) dy
k=0 0 < >
—mx(1 +2)T 1 (). Go Back
Therefore, Close
x(1+ x)[Tr(le(x) + mTym—1(2)] Quit
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= nzpn+r,k(x)/ ySSI)g-w (y) (y - x)mdy + nTn,m-i-l(x) - T<1 + CC)Tmm(.T)
k=0 0

=) Pasnao) [ S )y~ o)y
k=0 0

n 3" Prosla) [ S0,
k=0 0

+ 0Ty i1 () — r(1 4 2) T, m(2)
—(m+ 1T m(x) — maTyme1(x) + 0Ly mir(x) — (1 + )T, 1 (2)

—x)"dy

This leads to proof of (iii). O

Corollary 2.2. Let « and § be positive numbers, then for every € N and
€ [0,00), there exists a positive constaftf,, , depending onn andz such

that .
0> Purle) [ Sur(t)edt < Cron ™.
k=0

jt—a|>3

Lemma 2.3.If f is differentiabler times(r = 1,2,3,..
have

.) on |0, 00), then we

22) (BYf)(x) =

nrl

n+r !an—i-rk / nk-i—r( )f()< )
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Proof. Applying Leibniz’s theorem in1.1) we have

(B f)(x)
&K\ (ke —i—1)! i f—i ket
— —1) t(1 n r+1i
" <@> R B S
=0 k=1
X / Sni(Y) f(y)dy
0
n+k+r—1) r — P
=n Z e Rl e T / V() Seasi) Ty e gty
Weighted Function of Szasz
n 4o — 1 r Operators
- (n — 1 Z P”"'Tk / <Z> S”’k+i<y)f(y)dy' Naokant Deo
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Theorem 3.1. Let f be integrable inj0, oo), admitting a derivative of order
(r +2) atapointz € [0, 00). Also suppos¢)(z) = o(e**) asz — oo, then
lim n[(BYf)(x) — fO(2)] = [L+r(1+2)] [T (@) + 22+ 2) f ().

n—oo

Proof. By Taylor’s formula, we get

@3.1) () — fD(x)

= (=)@ + U ey U
where
) — FO () — (4 — ) FrD () — W= £(r+2) (4
) = L O I0@Db-D) BE)
=0 if z=uy.

Now, for arbitrarye > 0, A > 03 ad > 0s. t.

(3.2) n(y, )| <e for |y—z[<dz<A
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Using 2.2) in (3.1

n"(n —1)!
=) g _
BN @) = 1@
=03 Pasnal@) [ Sueir) )iy — 1)
k=0 0
=13 Pueale) [ Su ) {£00) — 1)} dy
k=0 0 Simultaneous Approximation by
Lupas Modified Operators with
= Tn’lfo%l) (x) -+ Tn,gf(wﬂ) ($) + En,r (:L'), Weighted Function of Szasz
Operators
where Naokant Deo
n — o
En,r (ZE) = § Z Pn+r,k<x) /0 Sn,k’—i—r(y) (y - 33)277(% l’)dy Title Page
k=0
. o Contents
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44 4 4
nE,.(r) -0 as n— oc. < >
Now Go Back
nEn,r (J:) = Rn,r,l(ﬁ) + Rn,r,?(x)a Close
where Quit
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and

nr2 E Pn+7'k

By (3.2 and @.1)

/ Sngerr () (y — x)?0(y, z)dy

ly—z|>d

3.3)  |Runul(z) < =

n Z Pn—f—r,k ({L‘)
k=0

<ex(2+x)

/ Snperr () (y — x)2dy

ly—z| <6

asn — oQ.
Finally we estimater,, T2(x). Using Corollary2.2we have

Z Pn—i—rk / Sn,k:—i—r (y)eaydy
n

ly—z|>6
= §Mm,mnim =0

asn — oo. L]

Theorem 3.2.Let f € C*V[0, a] and letw(f+Y;
nuity of f+Y thenr =0, 1,2, ...

(34) nr2

; -) be the modulus of conti-

(B f)(a ()] < J”“—Ha 17 (@)

Tn(a)

o)) (g0

1
+ ) ( Tn2(a) +
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where||-|| is the sup norno, a].

Proof. We have by Taylor’s expansion
Fy) = fO(x)
Y
==V + [ - S e

< D (B0 1))~ 50 )

=13 Putes@) [ Suaae ) {100 = 1)) dy
k=0 0
1> Pares@) [ S0 — ) @)

v [0 - ) dy

Also
700 - 0@ < (145w
Hence
B )~

|Tn 2|

<|Tha ‘ TH) ‘+(‘\/ n,2

) w(fUH;6).
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By Schwarz’s inequality. Choosing= # and using (i) and4.1) we obtain the
required result. ]
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