Journal of Inequalities in Pure and Applied Mathematics

SIMULTANEOUS APPROXIMATION BY LUPAŞ MODIFIED OPERATORS WITH WEIGHTED FUNCTION OF SZASZ OPERATORS

NAOKANT DEO

Department of Applied Mathematics Delhi College of Engineering Bawana Road, Delhi - 110042, India.

EMail: dr_naokant_deo@yahoo.com

volume 5, issue 4, article 113, 2004.

Received 20 August, 2004; accepted 01 September, 2004.

Communicated by: A. Lupas

©2000 Victoria University ISSN (electronic): 1443-5756 151-04

Abstract

In the present paper, we consider a new modification of the Lupaş operators with the weight function of Szasz operators and study simultaneous approximation. Here we obtain a Voronovskaja type asymptotic formula and an estimate of error in simultaneous approximation for these Lupaş-Szasz operators.

2000 Mathematics Subject Classification: 41A28, 41A36.

Key words: Simultaneous approximation, Lupaş operators, Szasz operators.

Contents

1	Introduction	3
2	Basic Results	5
3	Main Results	9
Ref	ferences	

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Go Back

Close

Quit

Page 2 of 14

1. Introduction

Lupaş proposed a family of linear positive operators mapping $C[0,\infty)$ into $C[0,\infty)$, the class of all bounded and continuous functions on $[0,\infty)$, namely,

$$(L_n f)(x) = \sum_{k=0}^{\infty} {n+k-1 \choose k} \frac{x^k}{(1+x)^{n+k}} f\left(\frac{k}{n}\right),$$

where $x \in [0, \infty)$.

Motivated by the integral modification of Bernstein polynomials by Derriennic [1], Sahai and Prasad [3] modified the operators L_n for functions integrable on $C[0, \infty)$ as

$$(M_n f)(x) = (n-1) \sum_{k=0}^{\infty} P_{n,k}(x) \int_0^{\infty} P_{n,k}(y) f(y) dy,$$

where

$$P_{n,k}(t) = \binom{n+k-1}{k} \frac{t^k}{(1+t)^{n+k}}.$$

Integral modification of Szasz-Mirakyan operators were studied by Gupta [2]. Now we consider another modification of Lupaş operators with the weight function of Szasz operators, which are defined as

(1.1)
$$(B_n f)(x) = n \sum_{k=0}^{\infty} P_{n,k}(x) \int_0^{\infty} S_{n,k}(y) f(y) dy$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Go Back

Close

Quit

Page 3 of 14

where

$$P_{n,k}(x) = \binom{n+k-1}{k} x^k (1+x)^{-n-k}$$

and

$$S_{n,k}(y) = \frac{e^{-ny}(ny)^k}{k!}.$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

2. Basic Results

The following lemmas are useful for proving the main results.

Lemma 2.1. Let $m \in \mathbb{N}^0$, $n \in \mathbb{N}$, if we define

$$T_{n,m}(x) = n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} S_{n,k+r}(y) (y-x)^{m} dy$$

then

(i)
$$T_{n,0}(x) = 1, T_{n,1}(x) = \frac{1+r(1+x)}{n}$$
, and

(2.1)
$$T_{n,2}(x) = \frac{rx(1+x) + 1 + [1 + r(1+x)]^2 + nx(2+x)}{n^2}$$

(ii) For all
$$x \ge 0$$
,

$$T_{n,m}(x) = O\left(\frac{1}{n^{\left[\frac{m+1}{2}\right]}}\right).$$

$$nT_{n,m+1}(x) = x(1+x)T_{n,m+1}^{(1)}(x) + [m+1+r(1+x)]T_{n,m}(x) + mxT_{n,m-1}(x)$$

where $m \geq 2$.

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Go Back

Close

Quit

Page 5 of 14

Proof. The value of $T_{n,0}(x)$, $T_{n,1}(x)$ easily follows from the definition, we give the proof of (iii) as follows.

$$x(x+1)T_{n,m}^{(1)}(x)$$

$$= n\sum_{k=0}^{\infty} x(1+x)P_{n+r,k}^{(1)}(x)\int_{0}^{\infty} S_{n,k+r}(y)(y-x)^{m}dy$$

$$- mn\sum_{k=0}^{\infty} x(1+x)P_{n+r,k}(x)\int_{0}^{\infty} S_{n,k+r}(y)(y-x)^{m-1}dy.$$

Now using the identities

$$yS_{n,k}^{(1)}(y) = (k - ny)S_{n,k}(y),$$

and
$$x(1+x)P_{n,k}^{(1)}(x) = (k-nx)P_{n,k}(x)$$
, we get

$$x(1+x)T_{n,m}^{(1)}(x)$$

$$= n\sum_{k=0}^{\infty} \left[k - (n+r)x\right]P_{n+r,k}(x) \int_{0}^{\infty} S_{n,k+r}(y)(y-x)^{m} dy$$

$$- mx(1+x)T_{n,m-1}(x).$$

Therefore,

$$x(1+x)[T_{n,m}^{(1)}(x) + mT_{n,m-1}(x)]$$

$$= n\sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} [(k+r-ny) + n(y-x) - r(1+x)] S_{n,k+r}(y) (y-x)^{m} dy$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Page 6 of 14

J. Ineq. Pure and Appl. Math. 5(4) Art. 113, 2004 http://jipam.vu.edu.au

$$= n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} y S_{n,k+r}^{(1)}(y)(y-x)^{m} dy + n T_{n,m+1}(x) - r(1+x) T_{n,m}(x)$$

$$= n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} y S_{n,k+r}^{(1)}(y)(y-x)^{m+1} dy$$

$$+ n x \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} S_{n,k+r}^{(1)}(y)(y-x)^{m} dy$$

$$+ n T_{n,m+1}(x) - r(1+x) T_{n,m}(x)$$

$$= -(m+1) T_{n,m}(x) - m x T_{n,m-1}(x) + n T_{n,m+1}(x) - r(1+x) T_{n,m}(x)$$

This leads to proof of (iii).

Corollary 2.2. Let α and δ be positive numbers, then for every $m \in \mathbb{N}$ and $x \in [0, \infty)$, there exists a positive constant $C_{m,x}$ depending on m and x such that

$$n\sum_{k=0}^{\infty} P_{n,k}(x) \int_{|t-x|>\delta} S_{n,k}(t)e^{\alpha t}dt \le C_{m,x}n^{-m}.$$

Lemma 2.3. If f is differentiable r times (r = 1, 2, 3, ...) on $[0, \infty)$, then we have

$$(2.2) (B_n^{(r)}f)(x) = \frac{(n+r-1)!}{n^{r-1}(n-1)!} \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_0^{\infty} S_{n,k+r}(y) f^{(r)}(y) dy.$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Quit

Page 7 of 14

Proof. Applying Leibniz's theorem in (1.1) we have

$$(B_{n}^{(r)}f)(x)$$

$$= n \sum_{i=0}^{r} \sum_{k=i}^{\infty} {r \choose i} \frac{(n+k+r-i-1)!}{(n-1)!k!} (-1)^{r-i} x^{k-i} (1+x)^{-n-k-r+i}$$

$$\times \int_{0}^{\infty} S_{n,k}(y) f(y) dy$$

$$= n \sum_{k=0}^{\infty} \frac{(n+k+r-1)!}{(n-1)!k!} \cdot \frac{x^{k}}{(1+x)^{n+k+r}} \int_{0}^{\infty} \sum_{i=0}^{r} (-1)^{r-i} {r \choose i} S_{n,k+i}(y) f(y) dy$$

$$= n \frac{(n+r-1)!}{(n-1)!} \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} \sum_{i=0}^{r} (-1)^{r-i} {r \choose i} S_{n,k+i}(y) f(y) dy.$$

Again using Leibniz's theorem,

$$S_{n,k+r}^{(r)}(y) = \sum_{i=0}^{r} {r \choose i} (-1)^{i} n^{r} \frac{e^{-ny}(ny)^{k+i}}{(k+i)!}$$
$$= n^{r} \sum_{i=0}^{r} (-1)^{i} {r \choose i} S_{n,k+i}(y).$$

Hence

$$(B_n^{(r)}f)(x) = \frac{(n+r-1)!}{n^{r-1}(n-1)!} \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_0^{\infty} S_{n,k+r}^{(r)}(y)(-1)^r f(y) dy$$

and integrating by parts r times, we get the required result.

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Go Back

Close

Quit

Page 8 of 14

3. Main Results

Theorem 3.1. Let f be integrable in $[0, \infty)$, admitting a derivative of order (r+2) at a point $x \in [0, \infty)$. Also suppose $f^{(r)}(x) = o(e^{\alpha x})$ as $x \to \infty$, then

$$\lim_{n \to \infty} n[(B_n^{(r)}f)(x) - f^{(r)}(x)] = [1 + r(1+x)]f^{(r+1)}(x) + x(2+x)f^{(r+2)}(x).$$

Proof. By Taylor's formula, we get

(3.1)
$$f^{(r)}(y) - f^{(r)}(x)$$

= $(y-x)f^{(r+1)}(x) + \frac{(y-x)^2}{2}f^{(r+2)}(x) + \frac{(y-x)^2}{2}\eta(y,x),$

where

$$\eta(y,x) = \frac{f^{(r)}(y) - f^{(r)}(x) - (y-x)f^{(r+1)}(x) - \frac{(y-x)^2}{2}f^{(r+2)}(x)}{\frac{(y-x)^2}{2}} \quad \text{if} \quad x \neq y$$

$$= 0 \quad \text{if} \quad x = y.$$

Now, for arbitrary $\varepsilon > 0$, $A > 0 \exists a\delta > 0$ s. t.

(3.2)
$$|\eta(y,x)| \le \varepsilon \quad \text{for} \quad |y-x| < \delta, x \le A.$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Go Back

Close

Quit

Page 9 of 14

Using (2.2) in (3.1)

$$\frac{n^{r}(n-1)!}{(n+r-1)!} (B_{n}^{(r)}f)(x) - f^{(r)}(x)$$

$$= n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} S_{n,k+r}(y) f^{(r)}(y) dy - f^{(r)}(x)$$

$$= n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} S_{n,k+r}(y) \left\{ f^{(r)}(y) - f^{(r)}(x) \right\} dy$$

$$= T_{n,1} f^{(r+1)}(x) + T_{n,2} f^{(r+2)}(x) + E_{n,r}(x),$$

where

$$E_{n,r}(x) = \frac{n}{2} \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_0^{\infty} S_{n,k+r}(y) (y-x)^2 \eta(y,x) dy.$$

In order to completely prove the theorem it is sufficient to show that

$$nE_{n,r}(x) \to 0$$
 as $n \to \infty$.

Now

$$nE_{n,r}(x) = R_{n,r,1}(x) + R_{n,r,2}(x),$$

where

$$R_{n,r,1}(x) = \frac{n^2}{2} \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{|y-x| < \delta} S_{n,k+r}(y)(y-x)^2 \eta(x,y) dy$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Page 10 of 14

and

$$R_{n,r,2}(x) = \frac{n^2}{2} \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{|y-x| > \delta} S_{n,k+r}(y)(y-x)^2 \eta(y,x) dy$$

By (3.2) and (2.1)

$$(3.3) |R_{n,r,1}(x)| < \frac{n\varepsilon}{2} \left[n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{|y-x| \le \delta} S_{n,k+r}(y) (y-x)^2 dy \right]$$

$$\le \varepsilon x (2+x)$$

as $n \to \infty$.

Finally we estimate $R_{n,r,2}(x)$. Using Corollary 2.2 we have

(3.4)
$$R_{n,r,2}(x) = \frac{n^2}{2} \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{|y-x| > \delta} S_{n,k+r}(y) e^{\alpha y} dy$$
$$= \frac{n}{2} M_{m,x} n^{-m} = 0$$

as $n \to \infty$.

Theorem 3.2. Let $f \in C^{(r+1)}[0,a]$ and let $w(f^{(r+1)};\cdot)$ be the modulus of continuity of $f^{(r+1)}$, then $r=0,1,2,\ldots$

$$||(B_n^{(r)}f)(x) - f^{(r)}(x)|| \le \frac{[1 + r(1+a)]}{n} ||f^{(r+1)}(x)|| + \frac{1}{n^2} \left(\sqrt{T_{n,2}(a)} + \frac{T_{n,2}(a)}{2}\right) w\left(f^{(r+1)}; n^{-2}\right)$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Go Back

Close

Quit

Page 11 of 14

where $\|\cdot\|$ is the sup norm [0, a].

Proof. We have by Taylor's expansion

$$f^{(r)}(y) - f^{(r)}(x)$$

$$= (y - x)f^{(r+1)}(x) + \int_{x}^{y} [f^{(r+1)}(t) - f^{(r+1)}(x)]dt$$

$$\times \frac{n^{r}(n-1)!}{(n+r-1)!} (B_{n}^{(r)}f)(x) - f^{(r)}(x)$$

$$= n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} S_{n,k+r}(y) \left\{ f^{(r)}(y) - f^{(r)}(x) \right\} dy$$

$$= n \sum_{k=0}^{\infty} P_{n+r,k}(x) \int_{0}^{\infty} S_{n,k+r}(y) \left((y-x)f^{(r+1)}(x) + \int_{x}^{y} [f^{(r+1)}(t) - f^{(r+1)}(x)] dt \right) dy.$$

Also

$$\left| f^{(r+1)}(t) - f^{(r+1)}(x) \right| \le \left(1 + \frac{|t-x|}{\delta} \right) w(f^{(r+1)}; \delta)$$

Hence

$$\left| \frac{n^{r}(n-1)!}{(n+r-1)!} (B_{n}^{(r)}f)(x) - f^{(r)}(x) \right| \\ \leq |T_{n,1}| \cdot |f^{(r+1)}(x)| + \left(\left| \sqrt{T_{n,2}} \right| + \frac{|T_{n,2}|}{2\delta} \right) \cdot w(f^{(r+1)}; \delta).$$

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

Title Page

Contents

Page 12 of 14

By Schwarz's inequality. Choosing $\delta = \frac{1}{n^2}$ and using (i) and (2.1) we obtain the required result.

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

References

- [1] M.M. DERRIENNIC, Sur l'approximation de fonctions integrables sur [0,1] par des polynomes de Bernstein modifies, *J. Approx, Theory*, **31** (1981), 325–343.
- [2] V. GUPTA, A note on modified Szasz operators, *Bull. Inst. Math. Academia Sinica*, **21**(3) (1993), 275–278.
- [3] A. SAHAI AND G. PRASAD, On simultaneous approximation by modified Lupaş operators, *J. Approx.*, *Theory*, **45** (1985), 122–128.

Simultaneous Approximation by Lupaş Modified Operators with Weighted Function of Szasz Operators

Naokant Deo

