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ABSTRACT. In this paper, the Gaussian product of generalized means (or reflexive functions) is
considered and an invariance principle for generalized means is proved.
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1. MEANS

A general abstract definition of means can be given in the following way/Leé a set in
R? andM be a real function defined af.

Definition 1.1. We call the function// ameanon D if it has the property
min(a,b) < M(a,b) < max(a,b), V(a,b) € D.
In the special cas® = .J2, whereJ C R, is an interval, the functio/ is calledmeanon J.
Remark 1.1. Each mean iseflexiveon its domain of definitiorD, that is
M(a,a) =a, V(a,a)€ D.
A function M (not necessarily a mean) can have some special properties.
Definition 1.2.
i) The function) is symmetrion D if (a,b) € D implies(b,a) € D and
M(a,b) = M(b,a), V(a,b) € D.

i) The functionM is homogeneou®f degree one) ol if there exists a neighborhodd
of 1 such that € V and(a,b) € D implies(ta,tb) € D and

M (ta,tb) = tM(a,b).
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iif) The function)M is strict at the left(respectivelystrict at the right)on D if for (a,b) € D
M (a,b) = a (respectivelyM (a, b) = b), impliesa = b.
iv) The function)M is strictif it is strict at the left and strict at the right.

The operations with means are considered as operations with functions. For instance, given
the means\/ and N defineM - N by
(M- N)(a,b) = M(a,b) - N(a,b), Va,be D.
We shall refer to the following means @&, (see [2]):
— theweighted Gini meadefined by

1

Aoam 4 (1= A) -]
Aoas+ (1= A)-bs

Br,s;)\(aa b) =

77’.#87

with X\ € [0, 1] fixed;
— the special case of theeighted power meah, o.» = P,.\,r # 0;
— theweighted arithmetic mead, = P;.y;
— theweighted geometric mean

Gr(a,b) = a*b'™;

— the corresponding symmetric means, obtained\fer 1/2 and denoted by, , P,, A
respectivelyg;
—forA=00r\=1,we have

B, so0 = Il respectivelyB, ., =1I;, Vr,seR,
where we denoted bM; andIl; the first respectively the second projections defined by
ITi(a,b) = a, Uy(a,b) =b, Va,b>0.
2. GENERALIZED MEANS
Let D be a set iR andM be a real function defined ab. In [6] the following was used:

Definition 2.1. The function)M is called ageneralized meaan D if it has the property

M(a,a) =a, V(a,a)€ D.
Remark 2.1. Each mean is reflexive, thus it is a generalized mean. Conversely, each general-
ized mean orD is a mean orD N A, where

A ={(a,a);a > 0}.

The question is if the sdd N A can be extended. The answer is generally negative. Take for
instance the generalized me#.., for A ¢ [0, 1]. Even though it is defined on a larger set like

A 1/s b A 1/r
- << [/ for 1 0
()\_1> _a_<)\_1> , A>1,r>s5>0,

it is a mean only omA. However, the above question may have also a positive answer. For
example, in[[6], the following was proved.

Theorem 2.2.1f M is a differentiable homogeneous generalized meaR“such that
0 < My(1,1) <1,
then there exists the constarits< 1 < 7”7 such thatM is a mean on
D ={(a,b) eR%;T'a <b<Ta}.
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We can strengthen the previous result by dropping the hypothesis of homogeneity for the
generalized mean/.

Theorem 2.3.1f M is a differentiable generalized mean on the open/sstich that

0 < My(a,a) <1, V¥(a,a)€ D,
then for each(a, a) € D there exist the constani§ < 1 < 7,” such that

ta < M(a,ta) <a; T,<t<1
and .

a< M(a,ta) <ta; 1<t<T,.
Proof. Let us consider the auxiliary functions defined by:

f(t) = M(a,ta) — a, g(t) = ta — M(a,ta),
in a neighborhood of . Then there exist the numbeFé < 1 < T, such that
f/(t) = aMy(a,ta) >0, te (T.,1,)

and
g'(t) =a—aMy(a,ta) >0, te(1..T,).
As
f(1) =g(1) =0,
the conclusions follow. O

Example 2.1. Let us takeM = A3/G. As M,(1,1) = (3 — 4))/2 , the previous result is valid
for M if A\ € (0.25,0.75). Looking at the seD on which A/ is a mean, fon < b we have to
verify the inequalities

Aa+ (1= \) b
a < NG <b.

Denotinga/b = t* € [0, 1], we get the equivalent system
Mt — 3 LA (1= N2+ (1 -\ >0,

ML (1 =N —t+(1-N?<0.

A similar system can be obtained for the case b. Solving these systems, we obtain a table
with the interval(7”, 7”) for some values ok :

A T T
0.25| 0.004... 1.

0.3 1 0.008...| 1.671...
0.5 /1 0.087...| 11.444...
0.7 | 0.598...| 113.832...
0.75| 1.0 |243.776...

For\ ¢ [0.25,0.75] ,we getl” =T" = 1.

Remark 2.4. A similar result can be proved in the case
0< M,(bb) <1, V¥(bb)e D.
If the partial derivatives do not belong to the inter¢@l1), the result can be false.

Example 2.2. For M = B, .\, we haveM,(a,a) = 1 — X\. As we remarked, foh ¢ [0, 1] the
generalized Gini mean is a mean only An
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3. COMPLEMENTARY MEANS

Let us now consider the following notion. Two meawisandN are said to beomplementary
(with respect taA) ([4]) if M + N = 2 - A. They are callednverse(with respect tog) if
M - N = G2 In [B] a generalization was proposed, replacit@ndg by an arbitrary mear®.

Given three functions\/, N and P on D, their compositionP (), N) can be defined on
D' C D by

P(M,N)(a,b) = P(M(a,b),N(a,b)), ¥ (a,b) €D,
if (M(a,b), N(a,b)) € D, V(a,b) € D'.If M, N andP are means oY thenD’ = D.

Definition 3.1. A function NV is calledcomplementary td/ with respect taP (or P— comple-
mentaryto M ) if it verifies

P(M,N)=PonD'

Remark 3.1. In the same circumstances, the functi@ris called(M, N)— invariant (see [1]).

If M has a uniqué®—complementaryV , denote it byN = M. We get

MA =24~ M and M9 = G?/M,
as in [4].
Remark 3.2. If P andM are means, th€—complementary ofl/ is generally not a mean.
Example 3.1.1t can be verified that
G = Gaam,

whichisameanifandonlyif < A\ < 1/(2 — p).

For generalized means we get the following result.

Theorem 3.3.If P and M are generalized means and is strict at the left, then theé®—
complementary ob/ is a generalized meakl.

Proof. We have
P(M(a,a),N(a,a)) = P(a,a), V(a,a)€ D,
thus
P(a,N(a,a)) =a, V(a,a)€ D
and asP is strict at the left, we geV(a,a) = a, V (a,a) € D. O

The result cannot be improved for means, thus we have only the following

Corollary 3.4. If P and M are means and is strict at the left, then th& —complementary of
M is a generalized mean.

4. DOUBLE SEQUENCES

An important application of complementary means is in the search of Gaussian double se-
guences with known limit. The arithmetic-geometric process of Gauss can be generalized as
follows. Let us consider two functionk/ and N defined on a seb and let(a,b) € D be an
initial point.
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Definition 4.1. If the pair of sequence@.,), -, and(b,),,-, can be defined by
ani1 = M(an,b,) and b,y = N(ap,b,)

for eachn > 0, whereaq = a, by = b, then it is called aGaussian double sequencé&he
function M is compoundable in the sense of Ga(@3G-compoundablewith the functionV if
the sequences:,),,-, and(b,),~, are defined and convergent to a common lifitz N (a, b)
for each(a,b) € D. In this caseM ® N is called theGaussian compound functidor G-
compound function

Remark 4.1. If M andN are G-compoundable means, theh N is also a mean called the
G-compound mean.

The following general result was proved In [3].

Theorem 4.2.If the meansl/ and N are continuous and strict at the left on an intervathen
M and N are G-compoundable od.

A similar result is valid for means which are strict at the right. [In [5] the same result was
proved assuming that one of the medrisand V is continuous and strict.

In the case of means, the method of searctirafompound functions is based generally on
the followinginvariance principle proved in[[1] .

Theorem 4.3. Suppose that/ @ N exists and is continuous. Théh ® N is the unique mean
P which is(M, N)-invariant.

In the same way, Gauss proved that the arithmetic-geom@tdompound mean can be rep-

resented by
-1

/2

T do
A®Qa,b = = /
(,0) 2 [0 Va2 cos? 0 + b2 sin? 6

This example shows that the search of an invariant mean is very difficult even for simple means
like A andgG. We prove the following generalization of the invariance principle.

Theorem 4.4. Let P be a continuous generalized mean ©rand M and N be two functions
on D such thatV is the P— complementary af/. If the sequence@, ), ., and(b,),-, defined

b
’ an+1 = M(an,b,) andb, 11 = N(an,b,), n >0,

are convergent to a common linfitdenoted as\/ ® N (ay, by), then this limit is

M ® N(ag,by) = P(ag, bo).
Proof. As N is the P— complementary of\/, we have

P(M (an,b,), N(an,b,)) = P(ay,b,), Yn >0,
thus
P(ans1,bn11) = Plap,b,), ¥n>0.
But this also means that
P(ag,bo) = P(an,b,), ¥n>0.

Finally, asP is a continuous generalized mean, passing to the limit we get

P(ag,by) = P(L,L) = L,
which proves the result. O

It is natural to study the following
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Problem 4.1. If N is the P—complementary of\/ but M, N or P are not means, are the
sequencetu,,), -, and(b,),,-, convergent?

The answer can be positive as it is shown in the following

Example 4.1.We havegf/‘*g‘”’ = G3/2, Wheregs , is not a mean. Take, = 10°,b, = 1 and
ant1 = Gs/8(an, bn),  bny1 = Gzj2(an, by), n>0.
Although some of the first terms take values outside the intéyal| like
by ~3.1-107, by3~4.7-10° by;~1.1-10° b;~3.7-10°, by=~1.5-10°,
finally we getaioo = 9999.9. .., bigo = 10000.1.. ., while G,/5(ao, by) = 10%.
But the answer to the above problem can be also negative.

Example 4.2.We haveGy ' = G, but takingay = 10, by = 1 and
Ap4+1 = g2(ana bn) andbn+1 - g(a’m bn)7 n Z Oa
we getas = 10°, b3 = 4 - 10° and the sequences are divergent. In this ¢asandG_; are not
means.
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