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1. Means

A general abstract definition of means can be given in the following wayDlUe¢
a setinR2 andM be a real function defined ab.

Definition 1.1. We call the function\/ a mean onD if it has the property
min(a,b) < M(a,b) < max(a,b), V(a,b)€ D.

In the special cas® = J%, whereJ C R, is an interval, the functiod/ is called
mean onJ.

Remarkl.1 Each mean iseflexiveon its domain of definitiorD, that is
M(a,a) =a, V(a,a)€ D.
A function M (not necessarily a mean) can have some special properties.
Definition 1.2.
i) The function! is symmetric orD if (a,b) € D implies(b,a) € D and
M(a,b) = M(b,a), V(a,b) € D.

i) The functionM is homogeneous (of degree one) onf there exists a neigh-
borhoodV of 1 such that € V and(a,b) € D implies(ta,tb) € D and

M (ta,tb) = tM(a,b).

iii) The function)/ is strict at the left (respectively strict at the right) dnif for
(a,b) € D

M (a,b) = a (respectivelyM (a,b) = b), impliesa = b.
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Iv) The function) is strict if it is strict at the left and strict at the right.

The operations with means are considered as operations with functions. For in-
stance, given the meaig and NV defineM - N by

(M- N)(a,b) = M(a,b) - N(a,b), Va,be D.
We shall refer to the following means @, (see P]):

— theweighted Gini meadefined by

1

A-a”+ (L= A) -]
X-at+ (1= A)-b°

Br,s;/\(av b) = y T # S,

with A € [0, 1] fixed,;
— the special case of theeighted power meah, o., = P,.x, 7 # 0;
— theweighted arithmetic mead, = P;.y;
— theweighted geometric mean

Gia(a,b) = a*b' ™,

— the corresponding symmetric means, obtainedXor 1/2 and denoted by

B, s, P., A respectivelyg;
—forA=0o0r\A=1,wehave

B, s0 =1y respectivey3, ., =1I;, Vr,seR,

where we denoted bi; andIl, the first respectively the second projections
defined by

Iy (a,b) = a, ls(a,b) =b, Va,b>0.

W

-~
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2. Generalized Means

Let D be a set iR and M be a real function defined ab. In [6] the following
was used:

Definition 2.1. The function)M is called a generalized mean ab if it has the
property

M(a, CL) = a, i ((I, CZ) eD. Means and Generalized Means

Gheorghe Toader and Silvia Toader

Remark2.1. Each mean is reflexive, thus it is a generalized mean. Conversely, each

. . vol. 8, iss. 2, art. 45, 2007
generalized mean ob is a mean orD N A, where

A ={(a,a);a > 0}.
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We can strengthen the previous result by dropping the hypothesis of homogeneity

for the generalized mealy.

Theorem 2.3.1f M is a differentiable generalized mean on the open/sstich that
0 < My(a,a) <1, V(a,a)€ D,

then for eacha, a) € D there exist the constanf§ < 1 < 7,” such that
ta < M(a,ta) <a; T.<t<1

and
a < M(a,ta) < ta; 1§t§T;.

Proof. Let us consider the auxiliary functions defined by:
f(t)=M(a,ta) —a,g(t) =ta — M(a,ta),
in a neighborhood of . Then there exist the numbers < 1 < T, such that
f(t) = aMy(a,ta) > 0, te (T,,T,)

and
g (t) =a—aMy(a,ta) >0, te (T,T,).
As
f(1)=g(1) =0,
the conclusions follow. H

Example2.1 Let us takeM = A3/G. As My(1,1) = (3 — 4)\)/2 , the previous
result is valid forM if A € (0.25,0.75). Looking at the setD on which M is a
mean, fora < b we have to verify the inequalities

Aa+ (1= \)b)°
a < T <b.
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Denotinga/b = t? € [0, 1], we get the equivalent system
A2t — 32X (1= N2+ (1= N >0,
A LA (1= N2 —t4(1-N2<0.

A similar system can be obtained for the case- b. Solving these systems, we
obtain a table with the interv&ll’”, 7”) for some values ok :

A T T
0.25| 0.004... 1.

0.3 | 0.008...| 1.671...
0.5 | 0.087...| 11.444...
0.7 | 0.598...| 113.832...
0.75| 1.0 | 243.776...

For\ ¢ [0.25,0.75] ,we getl” =T" = 1.
Remark2.2. A similar result can be proved in the case
0 < M,(bb) <1, V(bb)e€D.

If the partial derivatives do not belong to the inter¢@l1), the result can be false.

Example2.2 For M = B, ., we haveM,(a,a) = 1 — . As we remarked, for
A ¢ [0, 1] the generalized Gini mean is a mean only/on
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3. Complementary Means

Let us now consider the following notion. Two meahs and N are said to be

complementarywith respect tod) ([4]) if M + N =2 - A. They are calleihverse

(with respect tag) if M - N = G2. In [5] a generalization was proposed, replacing

A andg by an arbitrary mear.
Given three functions\/, N and P on D, their compositionP(M, N) can be
defined onD’ C D by

P(M,N)(a,b) = P(M(a,b), N(a,b)), V(a,b) €D,

if (M(a,b), N(a,b)) € D, V(a,b) € D'.If M,N and P are means orD then
D' =D.

Definition 3.1. A function N is called complementary td/ with respect toP (or
P— complementary ta/ ) if it verifies

P(M,N)=PonD'

Remark3.1 In the same circumstances, the functi@is called(), N)— invariant
(see L]).
If M has a uniqué®—complementaryV , denote it byN = M”. We get
MA=2A4—M and MY = G?/M,

asin .
Remark3.2 If P andM are means, th€—complementary oft/ is generally not a
mean.

Example3.1 It can be verified that

G = Graw,
DY
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whichisameanifandonly it < A < 1/(2 — ).
For generalized means we get the following result.

Theorem 3.2.1f P and M are generalized means arfdis strict at the left, then the
P— complementary a#/ is a generalized meah.

Proof. We have
P(M(a,a), N(a,a)) = P(a,a), V(a,a) € D,

thus
P(a,N(a,a)) =a, V(a,a)€ D

and asP is strict at the left, we geN(a, a) = a, V (a,a) € D. O

The result cannot be improved for means, thus we have only the following

Corollary 3.3. If P andM are means and is strict at the left, then th& —complementary

of M is a generalized mean.
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4. Double Sequences

An important application of complementary means is in the search of Gaussian dou-
ble sequences with known limit. The arithmetic-geometric process of Gauss can be

generalized as follows. Let us consider two functidisand NV defined on a seb
and let(a, b) € D be an initial point.

Definition 4.1. If the pair of sequence@.,),, and(b,),-, can be defined by

any1 = M(an,b,) and b,y = N(ay,by,)

for eachn > 0, whereag = a, by = b, then it is called a Gaussian double sequence.
The function)M is compoundable in the sense of Gauss@compoundable) with
the functionV if the sequenceg,,), ., and(b,), -, are defined and convergent to
a common limitM ® N(a,b) for each(a,b) € D. In this caseM ® N is called the
Gaussian compound function (&-compound function).

Remark4.1l If M and N are G-compoundable means, theh® N is also a mean
called theG-compound mean.

The following general result was proved 8]

Theorem 4.2. If the meansV/ and N are continuous and strict at the left on an
interval J thenM and NV are G-compoundable od.

A similar result is valid for means which are strict at the right. Shthe same
result was proved assuming that one of the medrend N is continuous and strict.

In the case of means, the method of searcli-afompound functions is based
generally on the followingnvariance principle proved in [] .

Theorem 4.3. Suppose thal/ ® N exists and is continuous. Théd ® N is the
unique mearP which is(M, N)-invariant.
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In the same way, Gauss proved that the arithmetic-geonm@toempound mean

can be represented by
-1

w/2 de
T
A®Qa,b=—-/
(a.9) 2 [0 Va2 cos? 0 + b2 sin’ 6

This example shows that the search of an invariant mean is very difficult even for
simple means liked andG. We prove the following generalization of the invariance

principle.

Theorem 4.4.Let P be a continuous generalized meanbrand M and N be two
functions onD such thatV is the P— complementary aof/. If the sequences, ), -,
and(by),,-, defined by -

any1 = M(ay,,b,) andb, 1 = N(ap,b,), n >0,
are convergent to a common linfitdenoted as\/ ® N (ay, by), then this limit is
M ® N(ag,by) = P(ag, bo).
Proof. As N is the P— complementary of\/, we have
P(M(an,b,), N(an,b,)) = P(an,b,), Yn >0,

thus
P(an+17 bn—i—l) = P<an7 bn)v Vn Z O

But this also means that
P(ag,by) = P(an,b,), Vn>0.
Finally, asP is a continuous generalized mean, passing to the limit we get
P(ag,by) = P(L,L) = L,
which proves the result. ]
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It is natural to study the following

Problem4.1 If N isthe P—complementary of\/ but M, N or P are not means, are
the sequence@.,,),, ., and(b,),,-, convergent?

The answer can be positive as it is shown in the following

Example4.1 We havegffgf’ = G3/2, Whereg; , is not a mean. Take, = 10°, by =
1 and
Ap4+1 = 95/8(%, bn),  bng1 = g3/2(Gm bn), 1 2>0.

Although some of the first terms take values outside the intéyal,| like
by =~3.1-107, b3~4.7-10° b5~1.1-10° b, ~=3.7-10°, by~ 1.5-10°,
flna”y we getaqgg = 9999.9. .. 7b100 = 10000.1..., while 94/5(a0, bo) = 10%.
But the answer to the above problem can be also negative.
Example4.2 We havegg‘1 = @G, but takingay, = 10,5, = 1 and
Ap4+1 = gQ(an; bn) andanrl = g(an7 bn)7 n Z 07

we getas = 10°,b; = 4 - 10° and the sequences are divergent. In this ¢asand
G_, are not means.

Means and Generalized Means
Gheorghe Toader and Silvia Toader

vol. 8, iss. 2, art. 45, 2007

Title Page
Contents
44 44
< >
Page 12 of 13
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:gheorghe.toader@math.utcluj.ro
mailto:
mailto:silvia.toader@math.utcluj.ro
http://jipam.vu.edu.au

References

[1] J.M. BORWEINAND P.B. BORWEIN,Pi and the AGM - a Study in Analytic
Number Theory and Computational Complextyhn Wiley & Sons, New York,
1986.

[2] P.S. BULLEN,Handbook of Means and Their Inequalitigduwer Acad. Publ.,
Dordrecht, 2003.

[3] D.M.E. FOSTERAND G.M. PHILLIPS, General Compound Means, Approxi-
mation Theory and Application&t. John’s, Nfld., 1984), 56-65, Res. Notes in
Math. 133, Pitman, Boston, Mass.-London, 1985.

[4] C. GINI, Le Medie Unione Tipografico Torinese, Milano, 1958.

[5] G. TOADER, Some remarks on meaAsial. Numér. Théor. Approx20(1991),
97-109.

[6] S. TOADER, Derivatives of generalized meamdath. Inequal. Appl. 5(3)
(2002), 517-523.

Means and Generalized Means
Gheorghe Toader and Silvia Toader

vol. 8, iss. 2, art. 45, 2007

Title Page
Contents
44 44
< >
Page 13 of 13
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:gheorghe.toader@math.utcluj.ro
mailto:
mailto:silvia.toader@math.utcluj.ro
http://jipam.vu.edu.au

	Means
	Generalized Means
	Complementary Means
	Double Sequences

