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ABSTRACT. In this paper we study the asymptotic behaviour of the sequence(rn)n of the pow-

ers of primes. Calculations also yield the evaluation
√

rn − pn = o
(

n
logsn

)
for every positive

integer s,pn denoting then-th prime.
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1. I NTRODUCTION

One denotes by:

• pn then-th prime
• rn then-th number (in increasing order) which can be written as a powerpm, m ≥ 2, of

a primep.
• π(x) the number of prime numbers not exceedingx.
• π̃(x) the number of prime powerspm, m ≥ 2, not exceedingx.

The asymptotic equivalences

(1.1) π(x) ∼ x

log x

and

(1.2) pn ∼ n logn

are well known.
M. Cipolla [1] proves the relations

(1.3) pn = n(log n + log log n− 1) + o(n)
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2 GABRIEL M INCU

and

(1.4) pn = n

(
log n + log log n− 1 +

log log n− 2

log n

)
+ o

(
n

log n

)
that he generalizes to

Theorem 1.1. There exists a sequence(Pm)m≥1 of polynomials with integer coefficients such
that, for any integerm,

(1.5) pn = n

[
log n + log log n− 1 +

m∑
j=1

(−1)j−1Pj(log log n)

logj n
+ o

(
1

logm n

)]
.

In the same paper, M. Cipolla gives recurrence formulae forPm; he finds that everyPm has
degreem and leading coefficient(m− 1)!.

As far as(rn)n is concerned, L. Panaitopol [2] proves the asymptotic equivalence

(1.6) rn ∼ n2 log2 n.

We prove in this paper that(rn)n has an asymptotic expansion comparable to that of Theorem
1.1 .

We will need the next results of L. Panaitopol:

(1.7) π̃(x)− π(
√

x) = O( 3
√

x),

(from [2]), and

Proposition 1.2. There exist a sequence of positive integersk1, k2, . . . and for everyn ≥ 1 a
functionαn, limx→∞ αn(x) = 0, such that:

(1.8) π(x) =
x

log x− 1− k1

log x
− k2

log2x
− · · · − kn(1+αn(x))

logn x

.

Moreover,k1, k2, . . . are given by the recurrence relation

(1.9) kn + 1! · kn−1 + 2! · kn−2 + · · ·+ (n− 1)! · k1 = n · n!, n ≥ 1.

(from [3]).
We will also establish a result similar to Proposition 1.2 forπ̃(x) and the evaluation

√
rn − pn = o

(
n

logs n

)
for every positive integers.

2. ON THE ASYMPTOTIC BEHAVIOUR OF π̃

Proposition 2.1. For every positive integern, there exists a functionβn, limx→∞ βn(x) = 0,
such that

(2.1) π̃(x) =

√
x

log
√

x− 1− k1

log
√

x
− . . .− kn−1

logn−1√x
− kn(1+βn(x))

logn√x

,

(kn)n being the sequence of (1.9).

Proof. Let us set

(2.2) π̃(x) =

√
x

log
√

x− 1− k1

log
√

x
− . . .− kn−1

logn−1√x
− kn(1+βn(x))

logn√x

.
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(1.8) and (1.7) give us:

(2.3)
√

x · kn[βn(x)− αn(
√

x)]

logn+2 x
= O( 3

√
x),

so

(2.4) kn[βn(x)− αn(
√

x)] = O

(
logn+2 x

6
√

x

)
,

leading tolimx→∞βn(x) = 0. �

3. I NITIAL ESTIMATES FOR rn

Equation (2.1) gives:

(3.1) π̃(x) ∼ 2
√

x

log x
.

If we putx = rn, we get

(3.2) n ∼
2
√

rn

log rn

,

so

(3.3) lim
n→∞

(log 2 + log
√

rn − log n− log log rn) = 0,

whence

(3.4) lim
n→∞

log
√

rn

log n
= 1,

leading to:

(3.5) lim
n→∞

(log log rn − log 2− log log n) = 0.

(3.3) and (3.5) give:

(3.6) log
√

rn = log n + log log n + o(1).

(2.1) implies

(3.7) π̃(x) =

√
x

log
√

x− 1 + o(1)
.

Forx = rn we get (in view of (3.6)):

(3.8)
√

rn

n
= log n + log log n− 1 + o(1).

By taking logarithms of both sides we get:

(3.9) log
√

rn − log n = log log n + log

[
1 +

log log n− 1

log n
+ o

(
1

log n

)]
.

For big enoughn we have
∣∣∣ log log n−1

log n
+ o

(
1

log n

)∣∣∣ < 1, which means that we can expand the

logarithm. We derive:

(3.10) log
√

rn = log n + log log n +
log log n− 1

log n
+ o

(
1

log n

)
.
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(2.1) also gives:

(3.11) π̃(x) =

√
x

log
√

x− 1− 1
log
√

x
+ o

(
1

log x

) .

Forx = rn and in view of (3.4), we obtain:

(3.12)
√

rn

n
= log

√
rn − 1− 1

log
√

rn

+ o

(
1

log n

)
.

(3.10) and (3.12) allow us to write

(3.13)
√

rn

n
= log n + log log n− 1 +

log log n− 1

log n

− 1

log n
[
1 + log log n

log n
+ log log n−1

log2 n
+ o

(
1

log2 n

)] + o

(
1

log n

)
.

For big enoughn we have∣∣∣∣ log log n

log n
+

log log n− 1

log2 n
+ o

(
1

log2 n

)∣∣∣∣ < 1;

we can therefore use the expansion of1
1+x

in (3.13) and we get

(3.14)
√

rn = n

(
log n + log log n− 1 +

log log n− 2

log n

)
+ o

(
n

log n

)
.

4. M AIN RESULT

Theorem 4.1.For every positive integers we have

(4.1)
√

rn − pn

n
= o

(
1

logs n

)
.

Proof. Induction with respect tos.
For s = 1 the statement is true because of (1.4) and (3.14).

Now lets ≥ 1; suppose that

(4.2)
√

rn − pn

n
= o

(
1

logs n

)
.

(4.2) and (1.5) lead to

(4.3)
√

rn = n

[
log n + log log n− 1 +

s∑
j=1

(−1)j−1Pj(log log n)

logj n
+ o

(
1

logs n

)]
.

By taking logarithms of both sides in (1.5) we derive

(4.4) log pn = log n + log log n

+ log

[
1 +

log log n− 1

log n
+

s∑
j=1

(−1)j−1Pj(log log n)

logj+1 n
+ o

(
1

logs+1 n

)]
.

(1.8) gives us

(4.5) π(x) =
x

log x− 1− k1

log x
− k2

log2 x
− ...− ks+1

logs+1 x
+ o

(
1

logs+1 x

) .
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Forx = pn, this relation becomes (in view of (1.2)):

(4.6)
pn

n
= log pn − 1− k1

log pn

− . . .− ks+1

logs+1 pn

+ o

(
1

logs+1 n

)
.

By taking logarithms of both sides in (4.3) we get

(4.7) log
√

rn = log n + log log n

+ log

[
1 +

log log n− 1

log n
+

s∑
j=1

(−1)j−1Pj(log log n)

logj+1 n
+ o

(
1

logs+1 n

)]
.

(2.1) gives

(4.8) π̃(x) =
x

log
√

x− 1− k1

log
√

x
− k2

log2√x
− · · · − ks+1

logs+1√x
+ o

(
1

logs+1√x

) .

Forx = rn, this relation becomes (in view of (3.4)):

(4.9)
√

rn

n
= log

√
rn − 1− k1

log
√

rn

− · · · − ks+1

logs+1√rn

+ o

(
1

logs+1 n

)
.

If x andy are≥ 1, Lagrange’s theorem gives us the inequality

(4.10) |log y − log x| ≤ |y − x| ;
with (4.4) and (4.7), it leads to:

(4.11) log
√

rn − log pn = o

(
1

logs+1 n

)
.

This last relation gives for everyt ∈ {1, 2, . . . , s + 1}

(4.12)
1

logt pn

− 1

logt √rn

= o

(
1

logs+t+2 n

)
= o

(
1

logs+1 n

)
.

(4.6), (4.9), (4.11) and (4.12) give

(4.13)
√

rn − pn

n
= o

(
1

logs+1 n

)
and the proof is complete. �

Theorem 4.2.There exists a unique sequence(Rm)m≥1 of polynomials with integer coefficients
such that, for every positive integerm,

(4.14) rn = n2

[
log2 n + 2(log log n− 1) log n + (log log n)2

− 3 +
m∑

j=1

(−1)j−1Rj(log log n)

(j + 1)! · logj n

]
+ o

(
n2

logm n

)
.

Proof. (4.9) allows us to write

(4.15) rn = n2

[
log n + log log n− 1 +

m+1∑
j=1

(−1)j+1Pj(log log n)

j! · logj n
+ o

(
1

logm+1 n

)]2

.

If we set

(4.16) R1 := 4(X − 1)P1 − 2P2
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and

(4.17) Rj := −2Pj+1 + 2(j + 1)(X − 1)Pj −
j−1∑
i=1

(j + 1)

(
j
i

)
PiPj−i , j ≥ 2

(4.15) gives for everym ≥ 1:

rn = n2

[
log2 n + 2(log log n− 1) log n + (log log n)2

− 3 +
m∑

j=1

(−1)j−1Rj(log log n)

(j + 1)! · logj n

]
+ o

(
n2

logm n

)
,

so the existence is proved.
Suppose now the existence of two different sequences(Rm)m≥1 and(Sm)m≥1 satisfying the

conditions of the theorem. For the leastj such asSj 6= Rj we can write

Rj(log log n)− Sj(log log n)

(j + 1)! · logj n
= o

(
1

logj n

)
,

soRj(log log n)− Sj(log log n) = o(1), a contradiction. �

Corollary 4.3. We have

rn = n2 log2 n + 2n2(log log n− 1) log n + n2(log log n)2 − 3n2 + o(n2).

5. COMPUTING THE COEFFICIENTS OF THE POLYNOMIAL Rm

Proposition 5.1. For everym ≥ 1, the degree ofRm is m + 1 and its leading coefficient is
2(m− 1)!.

Proof. If we recall from the introduction that everyPn has degreen and leading coefficient
(n− 1)!, the statement follows from (4.16) and (4.17). �

(1.4) gives
P1(X) = X − 2.

We can easily derive from M. Cipolla’s paper [1] the relations

P ′
k = k(k − 1)Pk−1 + k · P ′

k−1 , k ≥ 2

and

Pk+1(0) = −k

{
k−1∑
j=1

(
k − 1

j

)
Pj(0)[Pk−j(0) + P ′

k−j(0)] + [Pk(0) + P ′
k(0)]

}
− (k + 1)Pk(0)− P ′

k+1(0).

Computations gave him

P2(X) = X2 − 6X + 11;
P3(X) = 2X3 − 21X2 + 84X − 131;
P4(X) = 6X4 − 92X3 + 588X2 − 1908X + 2666;
P5(X) = 24X5 − 490X4 + 4380X3 − 22020X2 + 62860X − 81534;
P6(X) = 120X6 − 3084X5 + 35790X4 − 246480X3 + 1075020X2 − 2823180X + 3478014;
P7(X) = 720X7 − 22428X6 + 322224X5 − 2838570X4 + 16775640X3 − 66811920X2

+ 165838848X − 196993194.

In view of (4.16) and (4.17), we get in turn:
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R1(X) = 2X2 − 14;
R2(X) = 2X3 − 6X2 − 42X + 172;
R3(X) = 4X4 − 24X3 − 144X2 + 1544X − 3756;
R4(X) = 12X5 − 110X4 − 600X3 + 12300X2 − 64060X + 122298;
R5(X) = 48X6 − 600X5 − 2940X4 + 102000X3 − 842520X2 + 3319512X − 5484780;
R6(X) = 240X7−3836X6−16380X5+913080X4−10543400X3+63989100X2−215203884X
+ 323035480.
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