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ABSTRACT. Inthis paper we study the asymptotic behaviour of the sequenge of the pow-
ers of primes. Calculations also yield the evaluatjgn, — p, = o (zo}n> for every positive
integer sp,, denoting then-th prime.
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1. INTRODUCTION

One denotes by:
e p, then-th prime
e 1, then-th number (in increasing order) which can be written as a pgitern > 2, of
a primep.
e 7(x) the number of prime numbers not exceeding
e 7(x) the number of prime poweys™, m > 2, not exceeding:.

The asymptotic equivalences

xZ
(1.1) m(x) ~ g 2
and
(1.2) P ~ n logn
are well known.
M. Cipolla [1] proves the relations
(1.3) pn = n(logn + loglogn — 1) + o(n)
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and

log 1 -2
(1.4) pn:n(logn+log]ogn—1+w>_|_O( n )

logn logn
that he generalizes to

Theorem 1.1. There exists a sequen¢g,,),,>1 of polynomials with integer coefficients such
that, for any integermn,

"~ (=1)771P;(log] 1
(1.5) Pn="n logn+loglogn—1+z( ) j(og Ogn)—l—o( — > .
= log’ n log™n

In the same paper, M. Cipolla gives recurrence formulaggrhe finds that every’,, has
degreen and leading coefficier(tn — 1)!.

As far as(r,,), is concerned, L. Panaitopal [2] proves the asymptotic equivalence
(1.6) r, ~ n?log®n.

We prove in this paper thét,,),, has an asymptotic expansion comparable to that of Theorem
1.1.

We will need the next results of L. Panaitopol:
(1.7) #(z) — n(v/7) = O({/x),
(from [2]), and

Proposition 1.2. There exist a sequence of positive integars:,, ... and for everyn > 1 a
functiona,, lim, ., o, (z) = 0, such that:

s
(1.8) m(z) = p p -
n(1+an(z))
log e — 1~ gz ~ e =~ g
Moreoverk;, ko, . .. are given by the recurrence relation
1.9 kpy+ 1 ky g 4+20 -k o+ + =1k =n-n, n>1
(from [3]).
We will also establish a result similar to Propositjon| 1.2#6r) and the evaluation
n
Vin =P =0 (log5n>

for every positive integes.

2. ON THE ASYMPTOTIC BEHAVIOUR OF 7

Proposition 2.1. For every positive integen, there exists a functiof,, lim, .., 5,(x) = 0,
such that

. Vi
(2.1) 7(x) = - - -
n— 7L(1+ﬁn(-73)) )
logﬁ—l—m—...—logn,llﬁ— log™ \/Z
(k. ). being the sequence o¢f (1L.9).
Proof. Let us set
. Vv
(2.2) 7(z) = - - - .
logﬁ_l_—logi/i_"‘_log”_ll\/}_ e
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(1.8) and[(1.]7) give us:
ko Bn(2) — oy (\/T 5
@3 vi- Bl D a2 _ o,
og" " x
SO
logn+2 T
2.4 — —
(2.9 balin(e) — ()] = 0 (1),
leading tolim, oo Bn(x) = 0. O
3. INITIAL ESTIMATES FOR 1,
Equation|[(2.1L) gives:
2
(3.1) 7(x) ~ \/E
log =
If we putx = r,, we get
2/
log ry,
o]
(3.3) lim (log 2 + log /7, — logn — loglogr,) = 0,
whence
1 n
(3.4) lim 98V
n—oo logmn
leading to:
(3.5) lim (loglogr, — log 2 — loglogn) = 0.
(33 and[3F) give:
(3.6) log /7, = logn + loglogn + o(1).
(2.7) implies
(3.7) 7(x) Ve

" log vz — 1+ o(1)
Forz = r,, we get (in view of [(3.)):

(3.8) VI

~+— =logn +loglogn — 1+ o(1).
n

By taking logarithms of both sides we get:

loglogn — 1 1
(3.9) logﬁ—lognzl"glogn“og[”%*O(lognﬂ'

For big enough we have|'glesn=1 | , ( 1 ) < 1, which means that we can expand the

logn logn
logarithm. We derive:

logl -1 1
(3.10) log /1, = logn + loglogn + % +o <logn> .
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(2.7) also gives:

. T
(3.11) 7(x) = \/—1 -
logv/x —1— s TO (log:{;)

Forz = r, and in view of [3.4), we obtain:

NG 1 1
3.12 =1 n— 1 — :
( ) n 08 V/T'n log\/r_n+0 logn
(3:10) and[(3.12) allow us to write
n log1 -1
(3.13) Vrn =logn + loglogn — 1 + b L
n logn
1 1
N loglogn loglogn—1 1 to log n ‘
1Ogn [1 + logn + log? n +o <log2n>]
For big enougm we have
log1 log 1 —1 1
oglogn N og ogzn ‘o : ~1.
logn log”n log“n
we can therefore use the expansion$f in (3.13) and we get
logl -2
(3.14) \/ﬁ:n(logn—i—loglogn—le%) —i—o(logn) .

4. MAIN RESULT

Theorem 4.1. For every positive integes we have

(4.1) M:0< 1 )

n log®n

Proof. Induction with respect te.
Fors = 1 the statement is true because[of|1.4) and (3.14).
Now lets > 1; suppose that

(4.2) M:0< L )
n log®n
(4.2) and[(1.p) lead to

log’ n

J=1

By taking logarithms of both sides ip (1.5) we derive
(4.4) logp, =logn +loglogn

loglogn —1 <~ (=1)/""Pj(loglogn) 1
+log |14+ ———— + J +o -
& logn ; log/t'n log"™ n
(1.8) gives us
(4.5) () = T ) ,
logz —1— o — % — . — 51, o (k)gshlx)
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Forx = p,, this relation becomes (in view df (1.2)):

Dn ky k5+1 1
4.6 Pr ogp, — 1 — N Y N
(4.6) n oeP log p, log"™ p, ¢ (logSJrl n>

By taking logarithms of both sides ip (4.3) we get
(4.7) log+\/r, =logn + loglogn

loglogn — 1 (—1)771P;(loglogn) 1
+log 1+ 22—~ ¢ . + .
0g Z 0 logSJrl n

logn = log/ T n
273) gives
48  Fx) - — Y
10%\/5—1—W—W—“'—mgsilﬁ+o<m>
Forx = r,, this relation becomes (in view af (3.4)):
VT k1 ks 1
4.9 =1 n— 1 — — = :
( ) n 0g \/T_ logm logs+1 \/E +o logs—‘rl n
If z andy are> 1, Lagrange’s theorem gives us the inequality
(4.10) logy —log | < |y — x;
with (4.4) and[(4.]7), it leads to:
1
(4.12) log \/rn, — logp, =0 ( =i > )
log® " n
This last relation gives for everye {1,2,...,s+ 1}
1 1 1 1
4.12 — = — | = — .
(442 log'p,  log' v <1og8+t+2 n) ’ (logsﬂ n)
(.8). (4.9).[(4.11) and (4.12) give
n -~ Mn 1
(4.13) Vin = pn =0 < S )
n log"™ " n
and the proof is complete. O

Theorem 4.2. There exists a unique sequeriég,,),,>, of polynomials with integer coefficients
such that, for every positive integer,

(4.14) r, = n? [log2 n + 2(loglogn — 1)logn + (loglogn)?

Y ~'R;(loglogn) n?
_3+Z +O(logmn>'

s j—l—l'logn

Proof. (4.9) allows us to write

m—+1 . . 2
—1)7*tPj(logl 1
(4.15) 1, =n*|logn +loglogn — 1 + Z (=1) ‘ i 8 og ) +o (m—H) .
= jl-log’n log"™ ™ n
If we set
(4.16) Ry :=4(X -1)P - 2P,
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and

Jl .
(4.17) R ——2P+1+2(j+1 PJ ( )PP]l ,J =2

=1

(@.13) gives for everyn > 1:

rn = n? | log? n + 2(loglogn — 1) logn + (loglogn)*

Y ~'R;(loglogn) n?
-3+
Z +O (logmn>’

o ]+1'logn

so the existence is proved.
Suppose now the existence of two different seque(Bes,,.>1 and(S,,)>: satisfying the
conditions of the theorem. For the legstuch asS; # R; we can write

R;(loglogn) — S;(loglogn) ) < 1 )
(j+1)!-log’n B
so R;(loglogn) — S;(loglogn) = o(1), a contradiction. u

log’ n

Corollary 4.3. We have
rn = n?log® n + 2n*(loglogn — 1) logn + n?(loglogn)* — 3n? + o(n?).
5. COMPUTING THE COEFFICIENTS OF THE POLYNOMIAL R,

Proposition 5.1. For everym > 1, the degree of?,, is m + 1 and its leading coefficient is
2(m — 1)L

Proof. If we recall from the introduction that ever¥, has degree: and leading coefficient
(n — 1)!, the statement follows from (4.16) and (4.17). O

(1.4) gives
P(X)=X—2.

We can easily derive from M. Cipolla’s papeér [1] the relations
Pi=k(k—1)Pey+k- P, k>2

and
k—1
Pen(0) = {Z (*71) POLr O+ RO+ RO+ P;<o>1}

— (k+1)P:(0) — P41 (0).
Computations gave him

PQ(X) X2 —6X +11;
P3(X) = 2X3 — 21X2 + 84X — 131;
Py(X) = 6X" —92X3 + 588X?2 — 1908 X + 2666;
Ps(X) = 24X5 — 490X* + 4380X3 — 22020X2 + 62860.X — 81534;
Ps(X) = 120X — 3084.X° + 35790X* — 246480X° + 1075020 X2 — 2823180X + 3478014;
Pr(X) = 720X7 — 22428 X6 + 322224 X° — 2838570X* 4+ 16775640X° — 668119202
+ 165838848 X — 196993194.

In view of (4.16) and[(4.77), we get in turn:
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Ry(X) = 2X2% — 14;

Ry(X) = 2X3 — 6X2 — 42X + 172;

Ry(X) = 4X* — 24X3 — 144X + 1544X — 3756;

Ry(X) = 12X° — 110X* — 600X3 + 12300X2 — 64060X + 122298;

Rs(X) = 48X% — 600X — 2940X* + 102000X3 — 842520 X2 + 3319512 — 5484780;

Rg(X) = 240X 7—3836X°—16380X°+913080X*—10543400X 3+63989100.X % —215203884 X
+ 323035480.
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