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ABSTRACT. Given a polynomiap(z) = Z;‘:O a;jz7, we give the best possible constaptr)
such thaf|p”’|| + c3(n)|ag] < n(n —1)(n — 2)||p||, where]| || is the maximum norm on the unit
circle{z : |z| = 1}. Most of the computations are done with a computer.
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1. INTRODUCTION

n

Let 7, denote the class of all polynomiaisz) = > 7, a;z’, of degree< n with complex
coefficients. The famous Bernstein’s inequality states that

(1.1) 11 < nllpll,

where||p|| := max|.—; [p(z)|. The inequality[(1.]l) has been refined and generalized in numer-
ous ways; see [3] for many interesting results. It is obvious ffon (1.1) that

n!
12) 1 <

for 1 <k < n. Letcg(n) be thebest possibleonstant such that

n!
(1.3) 1p™|| + cx(n)ao| < mﬂpw
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2 CLEMENT FRAPPIER

By “best possible” we mean that, for every- 0, there exists a polynomigl(z) = Z;‘:O a;j(e)z?
such that

191+ (cx(m) + ) o) > il

It is known (seel[4, p. 125] of [2, p. 70]) that(1) = 1 andc,(n) = 2%, n > 2. We [1, p. 30]

n+27
also have:(n) = % n > 1. The aim of this note is to prove the following result.

Theorem 1.1.Letp € Py, p(z) = Y7, a;2’. If we denote bys(n) the best possible constant
such that

(1.4) Ip" 1l + es(n)laol < n(n —1)(n —2)]lp|
thencs(1) = ¢3(2) = 0 and, forn > 3,

(1.5) cs(n) = :

where

A(n) ==6(n —2)(n —1)° ((n — 1)3(8n* — 151 + 6)

+ (n —1)*(2n® 4+ Tn? — 21n + 6)T, (

— n(110® — 47n? + 560 — 14)U,, (M))

B(n) = n<4(n —1)°(2n —1)

+2(n — 1)*(n* + 3n® — 13n? + 10n — 2)T), (%)

—2)
—n(11lnt = 3 2_ U n(n— )
n( 1n 54n° + 86n 50n+9) n ((n 1)2

sin((ntl) arccos@)) - 5re respectively the

sin(arccos(z))

Here, T,,(z) := cos(narccos(z)) and U,(z) :=
Chebyshev polynomials of the first and second kind.

2. PROOF OF THE THEOREM

The method of proof used to obtain inequalities of the type] (1.3) is well described in the
aforementioned references. We give some details for the sake of completeness. Consider two

analytic functions
f(z) = Z a;z?,  g(z) = ijzj
: =

7=0
for |z| < K. The function

o0

(f*9)(z) =) a;b;z (2| < K)

J=0

is said to be their Hadamard product.
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Let B,, be the class of polynomial3 in P,, such that

1@+ pll < [lpll foreveryp € P,.

Top € P, we associate the polynomia(z) := z"p (1). Observe that

QeB, < QecbB,.

Let us denote by’ the subclass aB,, consisting of polynomialg in B, for which R(0) = 1.
The following lemma contains a useful characterizatioBhf

Lemma 2.1. [2] The polynomial?(z) = > " b;z7, whereb, = 1, belongs ta3? if and only if
the matrix

bo by bho_1 bn
b bo bn—2 bn—
M(by,by,...,by) = :
bu1 bys bo b
b, bn_1 by bo

is positive semi-definite.

The following well-known result enables us to study the definiteness of the matrix
M(1,by,...,b,) associated with the polynomidl(z) = Q(z) = 1+ X7, b;2/.

Lemma 2.2. The hermitian matrix

a1y ai2 ... QAip
ao1 Q922 ... QA9 B

» o Qij = Qi
ap1 A12 ... QApp

is positive definite if and only if its leading principal minors are all positive.

Here we simply use the calculations done’in [1], where Lenjmas 2.[[ and 2.2 are applied to a
polynomial of the form

n—1

R(Z):1+Zn(n—1)(n—2)z +n(n—1)(n—2)z '

j=1

In that paper, the evaluation of the best possible constani is reduced to the evaluation of
the least positive root of the quadratic polynomiatin

—c  —6(n—1)% 12n(n—2) —6(n—1)2 0
6+c  Tin—a4 Y, 4 6n(n—2) 767ﬁ
(2.1) D("’L7 C) = —C T2 n—4 Y2,n—4 76(n71)(n72) 6(n72)7ﬁ 9
c T3,n—5 Y3,n—5 3(n—1)(n—2) —3(n—1)(n—-2)
—c Ta,n—6 Yan—6 (n—1)(n—2)(n—3) n(n—1)(n—2)
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where

xj1=Hj, + 1%2(111322)7

2n(n — 2)
Tj2 = Yj1 + Wl'j,l; yj1= Hj1 —6,

Ljk — %x]‘,kl +xjp—o=Hjp,
Yig+ 11 =6 for 2<k<n-5,
Yik T Tjk—1 = Hjp,
Yina+ Tins=—6n(n—2)
for;=1,2,3,4,and

p

6 ifj—1, 1<k<n-—4,
L et if j—2, 1<k<n-—4,
" 30k + 1) (k +2) if j=3, 1<k<n-—5,
(k4 1)(k+2)(k+3) ifj=4, 1<k<n—6.

It was impossible at the time ofl[1] to obtain a simple expressioiXor, c). With the devel-
opment of mathematical software, it has become possible to handle nearly all the difficulties.
The following computations can be done with Mathematica 4.1.

The determinanb(n, ¢) can be expressed in the form

(2.2) D(n,c) = qo(n) — q1(n)c — ga2(n)c?,
where

2.3) do(n) = 81((27;2_ _211(;:11)) (S(n _1)(2n = 3)(20% — dn + 1)

+(n—1)"2"(n(n—2) —ivV2n2 —4n +1)"

x (2(2n* — 4n +1)(n* + 2n — 6)
—i(n—2)(11n* — 20n + 3)V2n% — dn + 1)
+(n—1)""(n(n —2)
+iv2n2 —4n +1)"(2(2n* — 4n + 1)(n* + 2n — 6)

+i(n — 2)(11n* — 20n + 3)v/2n2 — 4n + 1)),

(2.4) a(n) == (275;1(11 ;nlfm ((n — 1)(7n* — 14n + 6)(2n® — 4n + 1)

+(n—1)""(n(n—2) —iv2n? —dn+1)"

x (5n* — 10n + 3)((2n* — 4n + 1)
—in(n —2)V2n? —4dn+1) + (n — 1) 7" (n(n — 2)
+iv2n% — 4dn 4+ 1)"(5n° — 10n + 3)((2n* — 4n + 1)

+in(n — 2)vV2n2 — 4n + 1)),
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and

25) @)= (297:‘2(7:;1 3 (S(n P20 — 1)+ (n— 1) (n(n — 2)

—iv2n2 —4n +1)"(2(2n° — 4n + 1)
x (n* + 3n* — 13n* 4+ 10n — 2)
—in(11n* — 54n® 4+ 86n* — 50n + 9)V2n? — 4n + 1)
+(n—1)""(n(n —2)
+iv2n2 —dn +1)"(2(2n° — 4n + 1)
x (n* + 3n* — 13n* 4+ 10n — 2)

+in(11n* — 54n® + 86n* — 50n 4 9)V2n2 — 4n + 1)).

The only real problem we encountered was that the software was unable to recognize that the
discriminanty? + 4qoq. is a perfect square. It is necessary to observe that

27<n _ 1)72n+9
2.6) ¢° 4 4qoqe = (
( ) q1 doq2 ME —dn 11

+ (2n(n —2)V2n2 —4n+ 1 —i(n — 1)(11n* — 22n +6)) (n(n — 2)
— V202 —dn £ 1)" 4 (20(n — 2)V2n2 —dn + 1

+i(n—1)(11n* — 22n + 6)) (n(n — 2) +iv2n? — 4n + 1)”‘1)> .

(4(2n — 1)(2n — 3)(n — 1)*"" V202 —dn + 1

The positive root ofD(n, ¢) is readily found with the help of (2.6). That root can be written

in the form [T.5) where' := "(”‘2)?:;1 f;f“‘”“. Throughout the calculations, the identity

(n(n—2) ~ Ve~ 1) (n(n—2) + V22— 1) = (n—1)"

is useful for simplifying the expressions.

3. Two OPEN QUESTIONS

We immediately obtain the valueg(3) = 6, c3(4) = 15, ¢5(5) = 305, ¢5(6) = 2255,

e3(7) = 22330, etc. Itis highly probable that all the constant$n), appearing in[(1]3), are

rational numbers. Other values arg4) = 24, ¢, (5) = 5%, ¢4(6) = 1228, ¢4 (7) = 122, etc.
In fact, all the constants, ,(n), related to the same kind of inequality with,| rather tharjay|,

seem to be rational numbers.

Question 1.Are the constants, , (n) rational numbers? O

As far as the constantg(n), k > 4, are concerned, it is probable that a few simple expres-
sions can be found for them. The most interesting problem here is perhaps to find the asymptotic
value ofci(n) asn — oco. We have

cx(n)

(3.1) lim —— = 2k
n—oo M
for k =0, 1,2 andk = 3. The latter case follows from (1.5).
Question 2.Does|[(3.1) hold fok > 4? O

J. Inequal. Pure and Appl. Mathb(1) Art. 7, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 CLEMENT FRAPPIER

REFERENCES

[1] C. FRAPPIERAND M.A. QAZI, A refinement of Bernstein’s inequality for the second derivative of
a polynomial Ann. Univ. Mariae Curie-Sklodowska Sect.LA (2,3) (1998), 29-36.

[2] C.FRAPPIER, Q.l. RAHMANAND St. RUSCHEWEYH, New inequalities for polynomialBans.
Amer. Math. So¢2881) (1985), 69-99.

[3] Q.I. RAHMAN AND G. SCHMEISSERAnalytic Theory of Polynomial©xford Science Publica-
tions, Oxford 2002.

[4] St. RUSCHEWEYH,Convolutions in Geometric Function Theolyes Presses de I'Université de
Montréal, Montréal, 1982.

J. Inequal. Pure and Appl. Mathb(1) Art. 7, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Proof of the Theorem
	3. Two Open Questions
	References

